1
|
Hönig M, Roeber VM, Schmülling T, Cortleven A. Chemical priming of plant defense responses to pathogen attacks. FRONTIERS IN PLANT SCIENCE 2023; 14:1146577. [PMID: 37223806 PMCID: PMC10200928 DOI: 10.3389/fpls.2023.1146577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Plants can acquire an improved resistance against pathogen attacks by exogenous application of natural or artificial compounds. In a process called chemical priming, application of these compounds causes earlier, faster and/or stronger responses to pathogen attacks. The primed defense may persist over a stress-free time (lag phase) and may be expressed also in plant organs that have not been directly treated with the compound. This review summarizes the current knowledge on the signaling pathways involved in chemical priming of plant defense responses to pathogen attacks. Chemical priming in induced systemic resistance (ISR) and systemic acquired resistance (SAR) is highlighted. The roles of the transcriptional coactivator NONEXPRESSOR OF PR1 (NPR1), a key regulator of plant immunity, induced resistance (IR) and salicylic acid signaling during chemical priming are underlined. Finally, we consider the potential usage of chemical priming to enhance plant resistance to pathogens in agriculture.
Collapse
Affiliation(s)
- Martin Hönig
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Venja M. Roeber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Mengarelli DA, Roldán Tewes L, Balazadeh S, Zanor MI. FITNESS Acts as a Negative Regulator of Immunity and Influences the Plant Reproductive Output After Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:606791. [PMID: 33613599 PMCID: PMC7889524 DOI: 10.3389/fpls.2021.606791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Plants, as sessile organisms, are continuously threatened by multiple factors and therefore their profitable production depends on how they can defend themselves. We have previously reported on the characterization of fitness mutants which are more tolerant to environmental stresses due to the activation of defense mechanisms. Here, we demonstrate that in fitness mutants, which accumulate moderate levels of salicylic acid (SA) and have SA signaling activated, pathogen infection is restricted. Also, we demonstrate that NPR1 is essential in fitness mutants for SA storage and defense activation but not for SA synthesis after Pseudomonas syringae (Pst) infection. Additionally, these mutants do not appear to be metabolically impared, resulting in a higher seed set even after pathogen attack. The FITNESS transcriptional network includes defense-related transcription factors (TFs) such as ANAC072, ORA59, and ERF1 as well as jasmonic acid (JA) related genes including LIPOXYGENASE2 (LOX2), CORONATINE INSENSITIVE1 (COI1), JASMONATE ZIM-domain3 (JAZ3) and JAZ10. Induction of FITNESS expression leads to COI1 downregulation, and to JAZ3 and JAZ10 upregulation. As COI1 is an essential component of the bioactive JA perception apparatus and is required for most JA-signaling processes, elevated FITNESS expression leads to modulated JA-related responses. Taken together, FITNESS plays a crucial role during pathogen attack and allows a cost-efficient way to prevent undesirable developmental effects.
Collapse
Affiliation(s)
- Diego Alberto Mengarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Lara Roldán Tewes
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - María Inés Zanor
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| |
Collapse
|
3
|
Schwarzenbacher RE, Wardell G, Stassen J, Guest E, Zhang P, Luna E, Ton J. The IBI1 Receptor of β-Aminobutyric Acid Interacts with VOZ Transcription Factors to Regulate Abscisic Acid Signaling and Callose-Associated Defense. MOLECULAR PLANT 2020; 13:1455-1469. [PMID: 32717347 PMCID: PMC7550849 DOI: 10.1016/j.molp.2020.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 05/02/2023]
Abstract
External and internal signals can prime the plant immune system for a faster and/or stronger response to pathogen attack. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces broad-spectrum disease resistance in plants. BABA perception in Arabidopsis is mediated by the aspartyl tRNA synthetase IBI1, which activates priming of multiple immune responses, including callose-associated cell wall defenses that are under control by abscisic acid (ABA). However, the immediate signaling components after BABA perception by IBI1, as well as the regulatory role of ABA therein, remain unknown. Here, we have studied the early signaling events controlling IBI1-dependent BABA-induced resistance (BABA-IR), using untargeted transcriptome and protein interaction analyses. Transcriptome analysis revealed that IBI1-dependent expression of BABA-IR against the biotrophic oomycete Hyaloperonospora arabidopsidis is associated with suppression of ABA-inducible abiotic stress genes. Protein interaction studies identified the VOZ1 and VOZ2 transcription factors (TFs) as IBI1-interacting partners, which are transcriptionally induced by ABA but suppress pathogen-induced expression of ABA-dependent genes. Furthermore, we show that VOZ TFs require nuclear localization for their contribution to BABA-IR by mediating augmented expression of callose-associated defense. Collectively, our study indicates that the IBI1-VOZ signaling module channels pathogen-induced ABA signaling toward cell wall defense while simultaneously suppressing abiotic stress-responsive genes.
Collapse
Affiliation(s)
- Roland E Schwarzenbacher
- P3 Institute for Plant and Soil Biology, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Grace Wardell
- P3 Institute for Plant and Soil Biology, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Joost Stassen
- P3 Institute for Plant and Soil Biology, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Emily Guest
- P3 Institute for Plant and Soil Biology, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Peijun Zhang
- P3 Institute for Plant and Soil Biology, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Estrella Luna
- P3 Institute for Plant and Soil Biology, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jurriaan Ton
- P3 Institute for Plant and Soil Biology, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
4
|
Liu X, Afrin T, Pajerowska-Mukhtar KM. Arabidopsis GCN2 kinase contributes to ABA homeostasis and stomatal immunity. Commun Biol 2019; 2:302. [PMID: 31428690 PMCID: PMC6687712 DOI: 10.1038/s42003-019-0544-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/28/2019] [Indexed: 12/28/2022] Open
Abstract
General Control Non-derepressible 2 (GCN2) is an evolutionarily conserved serine/threonine kinase that modulates amino acid homeostasis in response to nutrient deprivation in yeast, human and other eukaryotes. However, the GCN2 signaling pathway in plants remains largely unknown. Here, we demonstrate that in Arabidopsis, bacterial infection activates AtGCN2-mediated phosphorylation of eIF2α and promotes TBF1 translational derepression. Consequently, TBF1 regulates a subset of abscisic acid signaling components to modulate pre-invasive immunity. We show that GCN2 fine-tunes abscisic acid accumulation and signaling during both pre-invasive and post-invasive stages of an infection event. Finally, we also demonstrate that AtGCN2 participates in signaling triggered by phytotoxin coronatine secreted by P. syringae. During the preinvasive phase, AtGCN2 regulates stomatal immunity by affecting pathogen-triggered stomatal closure and coronatine-mediated stomatal reopening. Our conclusions support a conserved role of GCN2 in various forms of immune responses across kingdoms, highlighting GCN2's importance in studies on both plant and mammalian immunology.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294 USA
- Present Address: Bayer Crop Science, 800 N Lindbergh Blvd., Creve Coeur, MO 63144 USA
| | - Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294 USA
| | | |
Collapse
|
5
|
Poltronieri P, Čerekovic N. Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems. CHALLENGES 2018; 9:3. [DOI: 10.3390/challe9010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr) moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A) and oligoadenylates (oligo2′-5′A), two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr) transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.
Collapse
|
6
|
Agathokleous E. Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O 3 phytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:530-537. [PMID: 28478379 DOI: 10.1016/j.ecoenv.2017.04.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 05/22/2023]
Abstract
Ethylenediurea (EDU) has been widely studied for its effectiveness to protect plants against injuries caused by surface ozone (O3), however its mode of action remains unclear. So far, there is not a unified methodological approach and thus the methodology is quite arbitrary, thereby making it more difficult to generalize findings and understand the EDU mode of action. This review examines the question of whether potential N addition to plants by EDU is a fundamental underlying mechanism in protecting against O3 phytotoxicity. Yet, this review proposes an evidence-based hypothesis that EDU may protect plants against O3 deleterious effects upon generation of EDU-induced hormesis, i.e. by activating plant defense at low doses. This hypothesis challenges the future research directions. Revealing a hormesis-based EDU mode of action in protecting plants against O3 toxicity would have further implications to ecotoxicology and environmental safety. Furthermore, this review discusses the need for further studies on plant metabolism under EDU treatment through relevant experimental approach, and attempts to set the bases for approaching a unified methodology that will contribute in revealing the EDU mode of action. In this framework, focus is given to the main EDU application methods.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), National Research and Development Agency, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
7
|
Floryszak-Wieczorek J, Arasimowicz-Jelonek M, Abramowski D. BABA-primed defense responses to Phytophthora infestans in the next vegetative progeny of potato. FRONTIERS IN PLANT SCIENCE 2015; 6:844. [PMID: 26528308 PMCID: PMC4606069 DOI: 10.3389/fpls.2015.00844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/25/2015] [Indexed: 05/27/2023]
Abstract
The transcript of the PR1 gene accumulation as an informative marker of systemic acquired resistance (SAR) was analyzed in β-aminobutyric acid (BABA) primed potato in the short-lasting (3 days) and long-lasting (28 days) time periods after induction and in the vegetative descendants of primed plants derived from tubers and from in vitro seedlings. BABA pretreatment resulted either in minimal or no PR1 gene expression, but sequential treatment with BABA followed by virulent Phytophthora infestans provided data on the imprint of post-stress information and its duration until fertilization, in the form of an enhanced PR1 transcript accumulation and a transient increase of basal resistance to the late blight disease. The primed state for defense of the susceptible potato cultivar was transmitted to its vegetative progeny as a potentiated PR1 mRNA accumulation following challenge inoculation. However, variation was observed between vegetative accessions of the BABA-primed potato genotype in responsiveness to disease. In contrast to plants derived from tubers, potato propagated through in vitro seedlings largely lost inducible resistance traits, although itretained primed PR1 gene expression.
Collapse
Affiliation(s)
| | | | - Dariusz Abramowski
- Department of Plant Physiology, Poznan University of Life SciencesPoznan, Poland
| |
Collapse
|
8
|
Borges AA, Sandalio LM. Induced resistance for plant defense. FRONTIERS IN PLANT SCIENCE 2015; 6:109. [PMID: 25759706 PMCID: PMC4338655 DOI: 10.3389/fpls.2015.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/10/2015] [Indexed: 05/18/2023]
Affiliation(s)
- Andrés A. Borges
- Grupo de Activadores Químicos de Defensa de la Planta, Departamento de Agrobiología, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La LagunaTenerife, Spain
- *Correspondence:
| | - Luisa M. Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín - Consejo Superior de Investigaciones CientíficasGranada, Spain
| |
Collapse
|