1
|
Rahman SU, Khan MO, Ullah R, Ahmad F, Raza G. Agrobacterium-Mediated Transformation for the Development of Transgenic Crops; Present and Future Prospects. Mol Biotechnol 2024; 66:1836-1852. [PMID: 37573566 DOI: 10.1007/s12033-023-00826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Plant transformation based on Agrobacterium-mediated transformation is a technique that mimics the natural agrobacterium system for gene(s) introduction into crops. Through this technique, various crop species have been improved/modified for different trait/s, showing a successful genetic transformation so far. This technique has many advantages over other transformation methods such as stable integration of transgene, cost effective. However, there are many limitations of this technology such as mostly the crops are recalcitrant to agrobacterium, low transformation efficiency, transgene integration as well as off targets. So, it's very important to explore the major limitations and possible solutions for Agrobacterium-mediated transformation in order to increase its genetic transformation efficiency. Therefore, the present review article gives a comprehensive study how the transgenic crops are developed using Agrobacterium-mediated transformation, crops that have already been modified through this method, and risks associated with transgenic plants based on Agrobacterium-mediated transformation. Moreover, the challenges and problems associated with Agrobacterium-mediated transformation and how those problems can be solved in future for a successful genetic transformation of crops using modern biotechnology techniques such as CRISPR/Cas9 systems. The present review article will be really helpful for the audience those working on Genome editing of crops using Agrobacterium-mediated transformation and will opens many ways for future plant genetic transformation.
Collapse
Affiliation(s)
- Saleem Ur Rahman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan
| | - Muhammad Omar Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan
| | - Rahim Ullah
- Department of Biotechnology, Shahid Benazir Bhatoo University Sheringal, Upper Dir, Khyber Pakhtunkhwa, Pakistan
| | - Fayaz Ahmad
- Agriculture Research Institute (ARI), Swat, Mingora, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
2
|
Adegbaju MS, Ajose T, Adegbaju IE, Omosebi T, Ajenifujah-Solebo SO, Falana OY, Shittu OB, Adetunji CO, Akinbo O. Genetic engineering and genome editing technologies as catalyst for Africa's food security: the case of plant biotechnology in Nigeria. Front Genome Ed 2024; 6:1398813. [PMID: 39045572 PMCID: PMC11263695 DOI: 10.3389/fgeed.2024.1398813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 07/25/2024] Open
Abstract
Many African countries are unable to meet the food demands of their growing population and the situation is worsened by climate change and disease outbreaks. This issue of food insecurity may lead to a crisis of epic proportion if effective measures are not in place to make more food available. Thus, deploying biotechnology towards the improvement of existing crop varieties for tolerance or resistance to both biotic and abiotic stresses is crucial to increasing crop production. In order to optimize crop production, several African countries have implemented strategies to make the most of this innovative technology. For example, Nigerian government has implemented the National Biotechnology Policy to facilitate capacity building, research, bioresource development and commercialization of biotechnology products for over two decades. Several government ministries, research centers, universities, and agencies have worked together to implement the policy, resulting in the release of some genetically modified crops to farmers for cultivation and Commercialization, which is a significant accomplishment. However, the transgenic crops were only brought to Nigeria for confined field trials; the manufacturing of the transgenic crops took place outside the country. This may have contributed to the suspicion of pressure groups and embolden proponents of biotechnology as an alien technology. Likewise, this may also be the underlying issue preventing the adoption of biotechnology products in other African countries. It is therefore necessary that African universities develop capacity in various aspects of biotechnology, to continuously train indigenous scientists who can generate innovative ideas tailored towards solving problems that are peculiar to respective country. Therefore, this study intends to establish the role of genetic engineering and genome editing towards the achievement of food security in Africa while using Nigeria as a case study. In our opinion, biotechnology approaches will not only complement conventional breeding methods in the pursuit of crop improvements, but it remains a viable and sustainable means of tackling specific issues hindering optimal crop production. Furthermore, we suggest that financial institutions should offer low-interest loans to new businesses. In order to promote the growth of biotechnology products, especially through the creation of jobs and revenues through molecular farming.
Collapse
Affiliation(s)
- Muyiwa Seyi Adegbaju
- Department of Crop, Soil and Pest Management, Federal University of Technology Akure, Akure, Ondo, Nigeria
| | - Titilayo Ajose
- Fruits and Spices Department, National Horticultural Institute, Ibadan, Oyo, Nigeria
| | | | - Temitayo Omosebi
- Department of Agricultural Technology, Federal College of Forestry, Jos, Nigeria
| | | | - Olaitan Yetunde Falana
- Department of Genetics, Genomic and Bioinformatics, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Olufunke Bolatito Shittu
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Olalekan Akinbo
- African Union Development Agency-NEPAD, Office of Science, Technology and Innovation, Midrand, South Africa
| |
Collapse
|
3
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
4
|
Niazian M, Belzile F, Curtin SJ, de Ronne M, Torkamaneh D. Optimization of in vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation of soybean for visual screening of transformants using RUBY. FRONTIERS IN PLANT SCIENCE 2023; 14:1207762. [PMID: 37484469 PMCID: PMC10361064 DOI: 10.3389/fpls.2023.1207762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
In vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation (HRT) assays are key components of the plant biotechnology and functional genomics toolkit. In this report, both in vitro and ex vitro HRT were optimized in soybean using the RUBY reporter. Different parameters including A. rhizogenes strain, optical density of the bacterial cell culture (OD600), co-cultivation media, soybean genotype, explant age, and acetosyringone addition and concentration were evaluated. Overall, the in vitro assay was more efficient than the ex vitro assay in terms of the percentage of induction of hairy roots and transformed roots (expressing RUBY). Nonetheless, the ex vitro technique was deemed faster and a less complicated approach. The highest transformation of RUBY was observed on 7-d-old cotyledons of cv. Bert inoculated for 30 minutes with the R1000 resuspended in ¼ B5 medium to OD600 (0.3) and 150 µM of acetosyringone. The parameters of this assay also led to the highest percentage of RUBY through two-step ex vitro hairy root transformation. Finally, using machine learning-based modeling, optimal protocols for both assays were further defined. This study establishes efficient and reliable hairy root transformation protocols applicable for functional studies in soybean.
Collapse
Affiliation(s)
- Mohsen Niazian
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Shaun J. Curtin
- Plant Science Research Unit, United States Department of Agriculture (USDA), St Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec City, QC, Canada
| |
Collapse
|
5
|
An Y, Wang Y, Wang X, Xiao J. Development of chloroplast transformation and gene expression regulation technology in land plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1037038. [PMID: 36407602 PMCID: PMC9667944 DOI: 10.3389/fpls.2022.1037038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chloroplasts in land plants have their own small circular DNA that is presumed to have originated from cyanobacteria-related endosymbionts, and the chloroplast genome is an attractive target to improve photosynthetic ability and crop yield. However, to date, most transgenic or genetic engineering technologies for plants are restricted to manipulations of the nuclear genome. In this review, we provide a comprehensive overview of chloroplast genetic engineering and regulation of gene expression from the perspective of history and biology, focusing on current and latest methods. In addition, we suggest techniques that may regulate the chloroplast gene expression at the transcriptional or post-transcriptional level.
Collapse
Affiliation(s)
- Yaqi An
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yue Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xinwei Wang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Hasan MN, Bhuiyan FH, Hoque H, Jewel NA, Ashrafuzzaman M, Prodhan SH. Ectopic expression of Vigna radiata's vacuolar Na+/H+ antiporter gene (VrNHX1) in indica rice (Oryza sativa L.). BIOTECHNOLOGY REPORTS 2022; 35:e00740. [PMID: 35646621 PMCID: PMC9130519 DOI: 10.1016/j.btre.2022.e00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
Successful Agrobacterium-mediated transformation of indica Dhan28 and BRRI Dhan29 Ectopic expression of the Na+/H+ exchanger 1 (VrNHX1) from Vigna radiata L. Wilczek in indica rice improves salinity tolerance. Under 150 mM NaCl salinity stress, transgenic lines performed significantly better than wild type.
It is essential to develop high salt-tolerant rice varieties in order to cultivate the salt-affected lands. In this study, Na+/H+ exchanger 1 (NHX1) gene isolated from Vigna radiata L. Wilczek was transferred in Bangladesh Rice Research Institute (BRRI) developed two indica rice genotypes BRRI Dhan28 and BRRI Dhan29 using in-planta approach for improvement of salinity tolerance. Embryonic axes of matured dehusked rice seeds were injured and co-cultivated with Agrobacterium strain harboring VrNHX1 gene and finally regenerated. GUS histochemical assay and PCR amplification of GUS-a and VrNHX1 were performed to confirm the transformation. Expression confirmation was done by semi-quantitative RT-PCR. Under salinity stress, transgenic lines showed higher chlorophyll, relative water content and decreased electrolyte leakage, proline content, lipid peroxidation level, and catalase enzyme activity which represent the better physiology than control plants. Moreover, under salinity stress (150 mM), transgenic lines exhibited superior growth and salt tolerant than non-transgenic plants.
Collapse
|
7
|
Wikandari R, Manikharda, Baldermann S, Ningrum A, Taherzadeh MJ. Application of cell culture technology and genetic engineering for production of future foods and crop improvement to strengthen food security. Bioengineered 2021; 12:11305-11330. [PMID: 34779353 PMCID: PMC8810126 DOI: 10.1080/21655979.2021.2003665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The growing population and the climate changes put a pressure on food production globally, therefore a fundamental transformation of food production is required. One approach to accelerate food production is application of modern biotechnology such as cell culture, marker assisted selection, and genetic engineering. Cell culture technology reduces the usage of arable land, while marker-assisted selection increases the genetic gain of crop breeding and genetic engineering enable to introduce a desired traits to crop. The cell culture technology has resulted in development of cultured meat, fungal biomass food (mycoprotein), and bioactive compounds from plant cell culture. Except cultured meat which recently begin to penetrate the market, the other products have been in the market for years. The marker-assisted selection and genetic engineering have contributed significantly to increase the resiliency against emerging pests and abiotic stresses. This review addresses diverse techniques of cell culture technology as well as advanced genetic engineering technology CRISPR Cas-9 and its application for crop improvement. The pros and cons of different techniques as well as the challenges and future perspective of application of modern biotechnology for strengthening food security are also discussed.
Collapse
Affiliation(s)
- Rachma Wikandari
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Manikharda
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Susanne Baldermann
- Faculty of Life Science, Food Nutrition and Health, Food Metabolome, Universitat Bayreuth, Kulmbach, 95326, Germany
- Food4Future (F4F), Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg1, Grossbeeren, Germany
| | - Andriati Ningrum
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | |
Collapse
|
8
|
Ntui VO, Uyoh EA, Ita EE, Markson AA, Tripathi JN, Okon NI, Akpan MO, Phillip JO, Brisibe EA, Ene‐Obong EE, Tripathi L. Strategies to combat the problem of yam anthracnose disease: Status and prospects. MOLECULAR PLANT PATHOLOGY 2021; 22:1302-1314. [PMID: 34275185 PMCID: PMC8435233 DOI: 10.1111/mpp.13107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 05/05/2023]
Abstract
Yam (Dioscorea spp.) anthracnose, caused by Colletotrichum alatae, is the most devastating fungal disease of yam in West Africa, leading to 50%-90% of tuber yield losses in severe cases. In some instances, plants die without producing any tubers or each shoot may produce several small tubers before it dies if the disease strikes early. C. alatae affects all parts of the yam plant at all stages of development, including leaves, stems, tubers, and seeds of yams, and it is highly prevalent in the yam belt region and other yam-producing countries in the world. Traditional methods adopted by farmers to control the disease have not been very successful. Fungicides have also failed to provide long-lasting control. Although conventional breeding and genomics-assisted breeding have been used to develop some level of resistance to anthracnose in Dioscorea alata, the appearance of new and more virulent strains makes the development of improved varieties with broad-spectrum and durable resistance critical. These shortcomings, coupled with interspecific incompatibility, dioecy, polyploidy, poor flowering, and the long breeding cycle of the crop, have prompted researchers to explore biotechnological techniques to complement conventional breeding to speed up crop improvement. Modern biotechnological tools have the potential of producing fungus-resistant cultivars, thereby bypassing the natural bottlenecks of traditional breeding. This article reviews the existing biotechnological strategies and proposes several approaches that could be adopted to develop anthracnose-resistant yam varieties for improved food security in West Africa.
Collapse
Affiliation(s)
- Valentine Otang Ntui
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
- International Institute of Tropical AgricultureNairobiKenya
| | - Edak Aniedi Uyoh
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
| | - Effiom Eyo Ita
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
| | | | | | - Nkese Ime Okon
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
| | - Mfon Okon Akpan
- Department of Genetics and BiotechnologyUniversity of CalabarCalabarNigeria
| | | | | | | | - Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| |
Collapse
|
9
|
Syombua ED, Tripathi JN, Obiero GO, Nguu EK, Yang B, Wang K, Tripathi L. Potential applications of the CRISPR/Cas technology for genetic improvement of yam (
Dioscorea
spp.). Food Energy Secur 2021. [DOI: 10.1002/fes3.330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Easter D. Syombua
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
- Centre for Biotechnology and Bioinformatics (CEBIB) University of Nairobi Nairobi Kenya
| | | | - George O. Obiero
- Centre for Biotechnology and Bioinformatics (CEBIB) University of Nairobi Nairobi Kenya
| | - Edward K. Nguu
- Department of Biochemistry University of Nairobi Nairobi Kenya
| | - Bing Yang
- Division of Plant Sciences Bond Life Sciences Center University of Missouri Columbia MO USA
- Donald Danforth Plant Science Center St. Louis MO USA
| | - Kan Wang
- Department of Agronomy Iowa State University Ames IA USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| |
Collapse
|
10
|
Anjanappa RB, Gruissem W. Current progress and challenges in crop genetic transformation. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153411. [PMID: 33872932 DOI: 10.1016/j.jplph.2021.153411] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 05/14/2023]
Abstract
Plant transformation remains the most sought-after technology for functional genomics and crop genetic improvement, especially for introducing specific new traits and to modify or recombine already existing traits. Along with many other agricultural technologies, the global production of genetically engineered crops has steadily grown since they were first introduced 25 years ago. Since the first transfer of DNA into plant cells using Agrobacterium tumefaciens, different transformation methods have enabled rapid advances in molecular breeding approaches to bring crop varieties with novel traits to the market that would be difficult or not possible to achieve with conventional breeding methods. Today, transformation to produce genetically engineered crops is the fastest and most widely adopted technology in agriculture. The rapidly increasing number of sequenced plant genomes and information from functional genomics data to understand gene function, together with novel gene cloning and tissue culture methods, is further accelerating crop improvement and trait development. These advances are welcome and needed to make crops more resilient to climate change and to secure their yield for feeding the increasing human population. Despite the success, transformation remains a bottleneck because many plant species and crop genotypes are recalcitrant to established tissue culture and regeneration conditions, or they show poor transformability. Improvements are possible using morphogenetic transcriptional regulators, but their broader applicability remains to be tested. Advances in genome editing techniques and direct, non-tissue culture-based transformation methods offer alternative approaches to enhance varietal development in other recalcitrant crops. Here, we review recent developments in plant transformation and regeneration, and discuss opportunities for new breeding technologies in agriculture.
Collapse
Affiliation(s)
- Ravi B Anjanappa
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland; Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung City 402, Taiwan.
| |
Collapse
|
11
|
Syombua ED, Zhang Z, Tripathi JN, Ntui VO, Kang M, George OO, Edward NK, Wang K, Yang B, Tripathi L. A CRISPR/Cas9-based genome-editing system for yam (Dioscorea spp.). PLANT BIOTECHNOLOGY JOURNAL 2021; 19:645-647. [PMID: 33222361 PMCID: PMC8051594 DOI: 10.1111/pbi.13515] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 05/21/2023]
Affiliation(s)
- Easter D. Syombua
- International Institute of Tropical Agriculture (IITA)NairobiKenya
- Centre for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Zhengzhi Zhang
- Division of Plant SciencesBond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
| | | | | | - Minjeong Kang
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Obiero O. George
- Centre for Biotechnology and BioinformaticsUniversity of NairobiNairobiKenya
| | - Nguu K. Edward
- Department of BiochemistryUniversity of NairobiNairobiKenya
| | - Kan Wang
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Bing Yang
- Division of Plant SciencesBond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| |
Collapse
|
12
|
Liu Q, Li Y, Xu K, Li D, Hu H, Zhou F, Song P, Yu Y, Wei Q, Liu Q, Wang W, Bu R, Sun H, Wang X, Hao J, Li H, Li C. Clay nanosheet-mediated delivery of recombinant plasmids expressing artificial miRNAs via leaf spray to prevent infection by plant DNA viruses. HORTICULTURE RESEARCH 2020; 7:179. [PMID: 33328436 PMCID: PMC7603507 DOI: 10.1038/s41438-020-00400-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 05/10/2023]
Abstract
Whitefly-transmitted begomoviruses are economically important plant pathogens that cause severe problems in many crop plants, such as tomato, papaya, cotton, and tobacco. Tomato yellow leaf curl virus (TYLCV) is a typical monopartite begomovirus that has been extensively studied, but methods that can efficiently control begomoviruses are still scarce. In this study, we combined artificial microRNA (amiRNA)-mediated silencing technology and clay nanosheet-mediated delivery by spraying and developed a method for efficiently preventing TYLCV infection in tomato plants. We designed three amiRNAs that target different regions of TYLCV to silence virus-produced transcripts. Three plant expression vectors expressing pre-amiRNAs were constructed, and recombinant plasmid DNAs (pDNAs) were loaded onto nontoxic and degradable layered double hydroxide (LDH) clay nanosheets. LDH nanosheets containing multiple pDNAs were sprayed onto plant leaves. We found that the designed amiRNAs were significantly accumulated in leaves 7 days after spraying, while the pDNAs were sustainably detected for 35 days after the spray, suggesting that the LDH nanosheets released pDNAs in a sustained manner, protected pDNAs from degradation and efficiently delivered pDNAs into plant cells. Importantly, when the LDH nanosheets coated with pDNAs were sprayed onto plants infected by TYLCV, both the disease severity and TYLCV viral concentration in sprayed plants were significantly decreased during the 35 days, while the levels of H2O2 were significantly increased in those plants. Taken together, these results indicate that LDH nanosheets loaded with pDNAs expressing amiRNAs can be a sustainable and promising tool for begomovirus control.
Collapse
Affiliation(s)
- Qili Liu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanpeng Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Dongxiao Li
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
| | - Feng Zhou
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
| | - Puwen Song
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
| | - Yongang Yu
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
| | - Qichao Wei
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
| | - Qian Liu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
| | - Weipeng Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruifang Bu
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
| | - Haili Sun
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, 04469, USA
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Chengwei Li
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China.
- Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, China.
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China.
| |
Collapse
|
13
|
Epping J, Laibach N. An underutilized orphan tuber crop-Chinese yam : a review. PLANTA 2020; 252:58. [PMID: 32959173 PMCID: PMC7505826 DOI: 10.1007/s00425-020-03458-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/11/2020] [Indexed: 05/09/2023]
Abstract
MAIN CONCLUSION The diversification of food crops can improve our diets and address the effects of climate change, and in this context the orphan crop Chinese yam shows significant potential as a functional food. As the effects of climate change become increasingly visible even in temperate regions, there is an urgent need to diversify our crops in order to address hunger and malnutrition. This has led to the re-evaluation of neglected species such as Chinese yam (Dioscorea polystachya Turcz.), which has been cultivated for centuries in East Asia as a food crop and as a widely-used ingredient in traditional Chinese medicine. The tubers are rich in nutrients, but also contain bioactive metabolites such as resistant starches, steroidal sapogenins (like diosgenin), the storage protein dioscorin, and mucilage polysaccharides. These health-promoting products can help to prevent cardiovascular disease, diabetes, and disorders of the gut microbiome. Whereas most edible yams are tropical species, Chinese yam could be cultivated widely in Europe and other temperate regions to take advantage of its nutritional and bioactive properties. However, this is a laborious process and agronomic knowledge is fragmented. The underground tubers contain most of the starch, but are vulnerable to breaking and thus difficult to harvest. Breeding to improve tuber shape is complex given the dioecious nature of the species, the mostly vegetative reproduction via bulbils, and the presence of more than 100 chromosomes. Protocols have yet to be established for in vitro cultivation and genetic transformation, which limits the scope of research. This article summarizes the sparse research landscape and evaluates the nutritional and medical applications of Chinese yam. By highlighting the potential of Chinese yam tubers, we aim to encourage the adoption of this orphan crop as a novel functional food.
Collapse
Affiliation(s)
- Janina Epping
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143, Muenster, Germany.
| | - Natalie Laibach
- Institute for Food and Resource Economics, University of Bonn, Meckenheimer Allee 174, 53115, Bonn, Germany
| |
Collapse
|
14
|
Obidiegwu JE, Lyons JB, Chilaka CA. The Dioscorea Genus (Yam)-An Appraisal of Nutritional and Therapeutic Potentials. Foods 2020; 9:E1304. [PMID: 32947880 PMCID: PMC7555206 DOI: 10.3390/foods9091304] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022] Open
Abstract
The quest for a food secure and safe world has led to continuous effort toward improvements of global food and health systems. While the developed countries seem to have these systems stabilized, some parts of the world still face enormous challenges. Yam (Dioscorea species) is an orphan crop, widely distributed globally; and has contributed enormously to food security especially in sub-Saharan Africa because of its role in providing nutritional benefits and income. Additionally, yam has non-nutritional components called bioactive compounds, which offer numerous health benefits ranging from prevention to treatment of degenerative diseases. Pharmaceutical application of diosgenin and dioscorin, among other compounds isolated from yam, has shown more prospects recently. Despite the benefits embedded in yam, reports on the nutritional and therapeutic potentials of yam have been fragmented and the diversity within the genus has led to much confusion. An overview of the nutritional and health importance of yam will harness the crop to meet its potential towards combating hunger and malnutrition, while improving global health. This review makes a conscious attempt to provide an overview regarding the nutritional, bioactive compositions and therapeutic potentials of yam diversity. Insights on how to increase its utilization for a greater impact are elucidated.
Collapse
Affiliation(s)
- Jude E. Obidiegwu
- National Root Crops Research Institute, Umudike, Km 8 Umuahia-Ikot Ekpene Road, P.M.B 7006 Umuahia, Abia State, Nigeria
| | - Jessica B. Lyons
- Department of Molecular and Cell Biology and Innovative Genomics Institute, University of California, Berkeley, 142 Weill Hall #3200, Berkeley, CA 94720-3200, USA;
| | - Cynthia A. Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Straβe 9, 97078 Würzburg, Germany; or
| |
Collapse
|
15
|
Asande LK, Omwoyo RO, Oduor RO, Nyaboga EN. A simple and fast Agrobacterium-mediated transformation system for passion fruit KPF4 ( Passiflora edulis f. edulis × Passiflora edulis f. flavicarpa). PLANT METHODS 2020; 16:141. [PMID: 33088337 PMCID: PMC7565748 DOI: 10.1186/s13007-020-00684-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/07/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Passion fruit (Passiflora edulis Sims) is an important horticultural crop in the tropics and subtropics, where it has great commercial potential due to high demand for fresh edible fruits and processed juice as well as source of raw materials in cosmetic industries. Genetic engineering shows great potential in passion fruit improvement and can compensate for the limitations of conventional breeding. Despite the success achieved in genetic modification of few passion fruit varieties, transgenic passion fruit production is still difficult for farmer-preferred cultivars. Therefore, it is important to establish a simple and fast Agrobacterium-mediated cell transformation of commercial hybrid passion fruit KPF4 (Passiflora edulis f. edulis × Passiflora edulis f. flavicarpa). RESULTS In the present study, we have developed a simple and fast Agrobacterium-mediated transformation system for hybrid passion fruit KPF4 using leaf disc explants. Factors affecting the rate of transient beta (β)-glucuronidase (gusA) expression and consequently transformation efficiency were optimized as follows: Agrobacterium cell density with an OD600 of 0.5, 30 min infection time, 3 days of co-cultivation duration and the incorporation of 200 µM acetosyringone into Agrobacterium infection suspension medium. Using the optimized conditions, transgenic plants of KPF4 were produced within 2 months with an average transformation efficiency of 0.67%. The β-glucuronidase (GUS) histochemical staining confirmed the expression and integration of an intron-containing gusA gene into transformed leaf discs and transgenic plant lines of KPF4. The presence of gusA gene in the transgenic plants was confirmed by polymerase chain reaction (PCR). The results confirmed that the gusA gene was efficiently integrated into the passion fruit genome. CONCLUSIONS The developed transformation protocol is simple and rapid and could be useful for functional genomic studies and transferring agronomically important traits into passion fruit hybrid KPF4. This study developed a method that can be used to transfer traits such as resistance to viral diseases, low fruit quality and short storage life. To the best of our knowledge, this is the first report on genetic transformation system for commercial passion fruit hybrid KPF4.
Collapse
Affiliation(s)
- Lydia K. Asande
- Department of Plant Science, Kenyatta University, Nairobi, P.O. Box 43844 – 00100, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, P.O. Box 30197 – 00100, Kenya
| | - Richard O. Omwoyo
- Department of Plant Science, Kenyatta University, Nairobi, P.O. Box 43844 – 00100, Kenya
| | - Richard O. Oduor
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, P.O. Box 43844 – 00100, Kenya
| | - Evans N. Nyaboga
- Department of Biochemistry, University of Nairobi, Nairobi, P.O. Box 30197 – 00100, Kenya
| |
Collapse
|
16
|
Girma G, Natsume S, Carluccio AV, Takagi H, Matsumura H, Uemura A, Muranaka S, Takagi H, Stavolone L, Gedil M, Spillane C, Terauchi R, Tamiru M. Identification of candidate flowering and sex genes in white Guinea yam (D. rotundata Poir.) by SuperSAGE transcriptome profiling. PLoS One 2019; 14:e0216912. [PMID: 31545796 PMCID: PMC6756524 DOI: 10.1371/journal.pone.0216912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/05/2019] [Indexed: 01/03/2023] Open
Abstract
Dioecy (distinct male and female individuals) and scarce to non-flowering are common features of cultivated yam (Dioscorea spp.). However, the molecular mechanisms underlying flowering and sex determination in Dioscorea are largely unknown. We conducted SuperSAGE transcriptome profiling of male, female and monoecious individuals to identify flowering and sex-related genes in white Guinea yam (D. rotundata), generating 20,236 unique tags. Of these, 13,901 were represented by a minimum of 10 tags. A total 88 tags were significantly differentially expressed in male, female and monoecious plants, of which 18 corresponded to genes previously implicated in flower development and sex determination in multiple plant species. We validated the SuperSAGE data with quantitative real-time PCR (qRT-PCR)-based analysis of the expression of three candidate genes. We further investigated the flowering patterns of 1938 D. rotundata accessions representing diverse geographical origins over two consecutive years. Over 85% of accessions were either male or non-flowering, less than 15% were female, while monoecious plants were rare. Intensity of flowering varied between male and female plants, with the former flowering more abundantly than the latter. Candidate genes identified in this study can be targeted for further validation and to induce regular flowering in poor to non-flowering cultivars. Findings of the study provide important inputs for further studies aiming to overcome the challenge of flowering in yams and to improve efficiency of yam breeding.
Collapse
Affiliation(s)
- Gezahegn Girma
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
- Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Satoshi Natsume
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Anna Vittoria Carluccio
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Hiroki Takagi
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Hideo Matsumura
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Aiko Uemura
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Satoru Muranaka
- Japan International Research Center for Agricultural Sciences (JIRCAS), Ohwashi, Tsukuba, Japan
- * E-mail:
| | - Hiroko Takagi
- Japan International Research Center for Agricultural Sciences (JIRCAS), Ohwashi, Tsukuba, Japan
| | - Livia Stavolone
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Melaku Gedil
- Bioscience center, International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Charles Spillane
- Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Ryohei Terauchi
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| | - Muluneh Tamiru
- Department of Genomics and Breeding, Iwate Biotechnology Research Center (IBRC), Kitakami, Iwate, Japan
| |
Collapse
|
17
|
Bömer M, Rathnayake AI, Visendi P, Sewe SO, Sicat JPA, Silva G, Kumar PL, Seal SE. Tissue culture and next-generation sequencing: A combined approach for detecting yam ( Dioscorea spp.) viruses. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2019; 105:54-66. [PMID: 31007374 PMCID: PMC6472605 DOI: 10.1016/j.pmpp.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/04/2018] [Accepted: 06/16/2018] [Indexed: 06/09/2023]
Abstract
In vitro culture offers many advantages for yam germplasm conservation, propagation and international distribution. However, low virus titres in the generated tissues pose a challenge for reliable virus detection, which makes it difficult to ensure that planting material is virus-free. In this study, we evaluated next-generation sequencing (NGS) for virus detection following yam propagation using a robust tissue culture methodology. We detected and assembled the genomes of novel isolates of already characterised viral species of the genera Badnavirus and Potyvirus, confirming the utility of NGS in diagnosing yam viruses and contributing towards the safe distribution of germplasm.
Collapse
Affiliation(s)
- Moritz Bömer
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Ajith I. Rathnayake
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Visendi
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Steven O. Sewe
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Juan Paolo A. Sicat
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - P. Lava Kumar
- International Institute of Tropical Agriculture (IITA), Oyo Road, PMB 5320, Ibadan, Nigeria
| | - Susan E. Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
18
|
Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP. Nanoparticle-Mediated Delivery towards Advancing Plant Genetic Engineering. Trends Biotechnol 2018; 36:882-897. [PMID: 29703583 PMCID: PMC10461776 DOI: 10.1016/j.tibtech.2018.03.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
Abstract
Genetic engineering of plants has enhanced crop productivity in the face of climate change and a growing global population by conferring desirable genetic traits to agricultural crops. Efficient genetic transformation in plants remains a challenge due to the cell wall, a barrier to exogenous biomolecule delivery. Conventional delivery methods are inefficient, damaging to tissue, or are only effective in a limited number of plant species. Nanoparticles are promising materials for biomolecule delivery, owing to their ability to traverse plant cell walls without external force and highly tunable physicochemical properties for diverse cargo conjugation and broad host range applicability. With the advent of engineered nuclease biotechnologies, we discuss the potential of nanoparticles as an optimal platform to deliver biomolecules to plants for genetic engineering.
Collapse
Affiliation(s)
- Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA; These authors contributed equally to this work
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA; These authors contributed equally to this work
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Juliana L Matos
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA 94720, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Ravanfar SA, Orbovic V, Moradpour M, Abdul Aziz M, Karan R, Wallace S, Parajuli S. Improvement of tissue culture, genetic transformation, and applications of biotechnology to Brassica. Biotechnol Genet Eng Rev 2017; 33:1-25. [PMID: 28460558 DOI: 10.1080/02648725.2017.1309821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.
Collapse
Affiliation(s)
- Seyed Ali Ravanfar
- a Department of Agronomy , Institute of Food and Agricultural Sciences, University of Florida , Gainesville , FL 32611-0300 , USA.,b Citrus Research and Education Center-University of Florida/IFAS , Lake Alfred , FL 33850 , USA.,d Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , 43400 Serdang , Selangor Darul Ehsan , Malaysia
| | - Vladimir Orbovic
- b Citrus Research and Education Center-University of Florida/IFAS , Lake Alfred , FL 33850 , USA
| | - Mahdi Moradpour
- d Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , 43400 Serdang , Selangor Darul Ehsan , Malaysia
| | - Maheran Abdul Aziz
- d Laboratory of Plantation Crops , Institute of Tropical Agriculture, Universiti Putra Malaysia , 43400 Serdang , Selangor Darul Ehsan , Malaysia
| | - Ratna Karan
- a Department of Agronomy , Institute of Food and Agricultural Sciences, University of Florida , Gainesville , FL 32611-0300 , USA
| | - Simon Wallace
- c Department of Biology , University of Iowa , Iowa City , IA 52242-1324 , USA
| | - Saroj Parajuli
- e Gulf Coast Research and Education Center, University of Florida , Wimauma , FL 33598 , USA
| |
Collapse
|
20
|
Kumar S, Das G, Shin HS, Patra JK. Dioscorea spp. (A Wild Edible Tuber): A Study on Its Ethnopharmacological Potential and Traditional Use by the Local People of Similipal Biosphere Reserve, India. Front Pharmacol 2017; 8:52. [PMID: 28261094 PMCID: PMC5306286 DOI: 10.3389/fphar.2017.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/24/2017] [Indexed: 12/16/2022] Open
Abstract
A number of wild crops remain unexplored in this world and among them some have excellent medicinal and nutritional properties. India is a harbor of biodiversity in general and phytodiversity in particular. The plant diversity is distributed from the Western Ghats to Eastern Ghats, along with the North-Eastern region and from the Greater Himalayas to the plain of Ganga. Among these distributed floral regions of the country, the Eastern Ghats are important due to their rich floral diversity. The forests of Odisha form a major part of Eastern Ghats in general and the Similipal Biosphere Reserve (SBR) in particular. The SBR is inhabited by many local communities. The food and medicinal habits of these communities are not fully explored even today. They are dependent on the forests of SBR for their food and medicine. Among their collections from forests, root and tuberous plants play a significant role. The local communities of SBR use about 89 types of tuberous plants for various purposes. Dioscorea is one such tuber, having maximum use among the local of SBR. However, less documentation and no specific reports are available on the food and medicinal values of the species available in this part of the World. Dioscorea species, popularly known as Yam worldwide and as Ban Aalu in Odisha, India, is a prime staple medicinal-food substitute for the majority of rural and local people of the state of India. Of the 13 Dioscorea species available in SBR, 10 species are known to be bitter in taste and unpalatable when taken raw. Since less documentation is available on the Dioscorea species of SBR and their traditional uses, the present study was focused on the ethnobotany, nutritional and pharmacological values of these species along its nutraceutical importance.
Collapse
Affiliation(s)
- Sanjeet Kumar
- School of Life Sciences, Ravenshaw University Cuttack, India
| | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul Goyang-si, South Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul Goyang-si, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul Goyang-si, South Korea
| |
Collapse
|
21
|
Liu H, Zhao H, Wu L, Xu W. A Genetic Transformation Method for Cadmium Hyperaccumulator Sedum plumbizincicola and Non-hyperaccumulating Ecotype of Sedum alfredii. FRONTIERS IN PLANT SCIENCE 2017; 8:1047. [PMID: 28670322 PMCID: PMC5472854 DOI: 10.3389/fpls.2017.01047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/31/2017] [Indexed: 05/19/2023]
Abstract
The present study demonstrates the development of an Agrobacterium-mediated genetic transformation method for species of the Sedum genus, which includes the Cd/Zn hyperaccumulator Sedum plumbizincicola and the non-hyperaccumulating ecotype of S. alfredii. Multiple shoots were induced from stem nodes of two Sedum plants using Murashige and Skoog (MS) medium containing 0.1 mg/L cytokinin 6-benzyladenine (6-BA) and 1.0 mg/L auxin 1-naphthaleneacetic acid (NAA). The shoot primordia were used as direct targets for Agrobacterium infection. Selection on hygromycin was highly effective in generating Agrobacterium-transformed explants. This callus-free procedure allowed us to obtain transgenic plantlets after rooting hygromycin-resistant shoots on phytohormone-free MS medium containing the antibiotic. The presence and expression of the reporter genes gusA and GFP in transgenic plants were confirmed by a real-time polymerase chain reaction, histochemical GUS assays, and confocal microscopy. This reliable method for genetic transformation of Sedum plants will help us to understand gene functions and the molecular mechanisms underlying Cd hypertolerance and hyperaccumulation in these species.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Haixia Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- *Correspondence: Wenzhong Xu, Longhua Wu,
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Wenzhong Xu, Longhua Wu,
| |
Collapse
|
22
|
De Guglielmo C ZM, Fernandez Da Silva R. Principales promotores utilizados en la transformación genética de plantas. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n2.61529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El conocimiento pleno de los promotores determina el éxito en la obtención de nuevos cultivares de plantas a través de técnicas biotecnológicas, ya que dicha secuencia del ADN regula la transcripción de otras regiones adyacentes o cercanas, encontrándose los siguientes promotores: constitutivos, tejido-específicos o estadio-específicos, inducibles y sintéticos. En esta revisión se resume de manera precisa los conceptos, ventajas y limitaciones de los distintos tipos de promotores, con ejemplos claros de ello.Palabras clave: promotor, biotecnología vegetal, transcripción genética.
Collapse
|
23
|
Tripathi JN, Oduor RO, Tripathi L. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana. FRONTIERS IN PLANT SCIENCE 2015; 6:1025. [PMID: 26635849 PMCID: PMC4659906 DOI: 10.3389/fpls.2015.01025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/05/2015] [Indexed: 05/21/2023]
Abstract
Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.
Collapse
Affiliation(s)
- Jaindra N. Tripathi
- Bioscience Centre, International Institute of Tropical AgricultureNairobi, Kenya
- Department of Biochemistry and Biotechnology, Kenyatta UniversityNairobi, Kenya
| | - Richard O. Oduor
- Department of Biochemistry and Biotechnology, Kenyatta UniversityNairobi, Kenya
| | - Leena Tripathi
- Bioscience Centre, International Institute of Tropical AgricultureNairobi, Kenya
| |
Collapse
|
24
|
Zeng L, Zhou J, Li B, Xing D. A high-sensitivity optical device for the early monitoring of plant pathogen attack via the in vivo detection of ROS bursts. FRONTIERS IN PLANT SCIENCE 2015; 6:96. [PMID: 25767474 PMCID: PMC4341508 DOI: 10.3389/fpls.2015.00096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/05/2015] [Indexed: 05/20/2023]
Abstract
Biotic stressors, especially pathogenic microorganisms, are rather difficult to detect. In plants, one of the earliest cellular responses following pathogen infection is the production of reactive oxygen species (ROS). In this study, a novel optical device for the early monitoring of Pseudomonas attack was developed; this device measures the ROS level via oxidation-sensitive 2', 7'-dichlorodihydrofluorescein diacetate (H2DCFDA)-mediated fluorescence, which could provide early monitoring of attacks by a range of plant pathogen; ROS bursts were detected in vivo in Arabidopsis thaliana with higher sensitivity and accuracy than those of a commercial luminescence spectrophotometer. Additionally, the DCF fluorescence truly reflected early changes in the ROS level, as indicated by an evaluation of the H2O2 content and the tight association between the ROS and Pseudomonas concentration. Moreover, compared with traditional methods for detecting plant pathogen attacks based on physiological and biochemical measurements, our proposed technique also offers significant advantages, such as low cost, simplicity, convenient operation and quick turnaround. These results therefore suggest that the proposed optical device could be useful for the rapid monitoring of attacks by plant pathogen and yield results considerably earlier than the appearance of visual changes in plant morphology or growth.
Collapse
Affiliation(s)
| | | | | | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal UniversityGuangzhou, China
| |
Collapse
|