1
|
Kahlon KS, Rawale KS, Kumar S, Gill KS. Identification and mapping of QTLs and their corresponding candidate genes controlling high night-time temperature stress tolerance in wheat (Triticum aestivum L.). THE PLANT GENOME 2024:e20517. [PMID: 39318199 DOI: 10.1002/tpg2.20517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
With every 1°C rise in temperature, yields are predicted to decrease by 5%-6% for both cool and warm season crops, threatening food production, which should double by 2050 to meet the global demand. While high night-time temperature (HNT) stress is expected to increase due to climate change, limited information is available on the genetic control of the trait, especially in wheat (Triticum aestivum L.). To identify genes controlling the HNT trait, we evaluated a doubled haploid (DH) population developed from a cross between an HNT tolerant line KSG1203 and KSG0057, a selection out of a mega variety PBW343 from South East Asia that turned out to be HNT susceptible. The population, along with the parents, were evaluated under 30°C night-time (HNT stress) keeping the daytime temperature to normal 22°C. The same daytime and 16°C night-time temperature were used as a control. The HNT treatment negatively impacted all agronomic traits under evaluation, with a percentage reduction of 0.5%-35% for the tolerant parent, 8%-75% for the susceptible parent, and 8%-50% for the DH population. Performed using sequencing-based genotyping, quantitative trait locus (QTL) mapping identified 19 QTLs on 13 wheat chromosomes explaining 9.72%-28.81% of cumulative phenotypic variance for HNT stress tolerance, along with 13 that were for traits under normal growing conditions. The size of QTL intervals ranged between 0.021 and 97.48 Mb, with the number of genes ranging between 2 and 867. A candidate gene analysis for the smallest six QTL intervals identified eight putative candidates for night-time heat stress tolerance.
Collapse
Affiliation(s)
- Kaviraj S Kahlon
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | | | - Sachin Kumar
- Department of Botany/Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Kumar V, Sharma H, Saini L, Tyagi A, Jain P, Singh Y, Balyan P, Kumar S, Jan S, Mir RR, Djalovic I, Singh KP, Kumar U, Malik V. Phylogenomic analysis of 20S proteasome gene family reveals stress-responsive patterns in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1037206. [PMID: 36388569 PMCID: PMC9659873 DOI: 10.3389/fpls.2022.1037206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The core particle represents the catalytic portions of the 26S proteasomal complex. The genes encoding α- and β-subunits play a crucial role in protecting plants against various environmental stresses by controlling the quality of newly produced proteins. The 20S proteasome gene family has already been reported in model plants such as Arabidopsis and rice; however, they have not been studied in oilseed crops such as rapeseed (Brassica napus L.). In the present study, we identified 20S proteasome genes for α- (PA) and β-subunits (PB) in B. napus through systematically performed gene structure analysis, chromosomal location, conserved motif, phylogenetic relationship, and expression patterns. A total of 82 genes, comprising 35 BnPA and 47 BnPB of the 20S proteasome, were revealed in the B. napus genome. These genes were distributed on all 20 chromosomes of B. napus and most of these genes were duplicated on homoeologous chromosomes. The BnPA (α1-7) and BnPB (β1-7) genes were phylogenetically placed into seven clades. The pattern of expression of all the BnPA and BnPB genes was also studied using RNA-seq datasets under biotic and abiotic stress conditions. Out of 82 BnPA/PB genes, three exhibited high expression under abiotic stresses, whereas two genes were overexpressed in response to biotic stresses at both the seedling and flowering stages. Moreover, an additional eighteen genes were expressed under normal conditions. Overall, the current findings developed our understanding of the organization of the 20S proteasome genes in B. napus, and provided specific BnPA/PB genes for further functional research in response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Hemant Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP, India
| | - Lalita Saini
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Archasvi Tyagi
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Pooja Jain
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri Post Graduate (PG) College, Chaudhary Charan Singh (CCS) University, Meerut, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, UP, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST)-Kashmir, Wadura, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology (SKUAST)-Kashmir, Wadura, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki, Novi Sad, Serbia
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, Govind Ballabh (GB) Pant University of Agriculture & Technology, Pantnagar, India
- Vice-Chancellor’s Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Vijai Malik
- Department of Botany, Chaudhary Charan Singh University, Meerut, UP, India
| |
Collapse
|
3
|
Sharma H, Batra R, Kumar S, Kumar M, Kumar S, Balyan HS, Gupta PK. Identification and characterization of 20S proteasome genes and their relevance to heat/drought tolerance in bread wheat. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Yu G, Shoaib N, Xie Y, Liu L, Mughal N, Li Y, Huang H, Zhang N, Zhang J, Liu Y, Hu Y, Liu H, Huang Y. Comparative Study of Starch Phosphorylase Genes and Encoded Proteins in Various Monocots and Dicots with Emphasis on Maize. Int J Mol Sci 2022; 23:ijms23094518. [PMID: 35562912 PMCID: PMC9104829 DOI: 10.3390/ijms23094518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Starch phosphorylase (PHO) is a multimeric enzyme with two distinct isoforms: plastidial starch phosphorylase (PHO1) and cytosolic starch phosphorylase (PHO2). PHO1 specifically resides in the plastid, while PHO2 is found in the cytosol. Both play a critical role in the synthesis and degradation of starch. This study aimed to report the detailed structure, function, and evolution of genes encoding PHO1 and PHO2 and their protein ligand-binding sites in eight monocots and four dicots. "True" orthologs of PHO1 and PHO2 of Oryza sativa were identified, and the structure of the enzyme at the protein level was studied. The genes controlling PHO2 were found to be more conserved than those controlling PHO1; the variations were mainly due to the variable sequence and length of introns. Cis-regulatory elements in the promoter region of both genes were identified, and the expression pattern was analyzed. The real-time quantitative polymerase chain reaction indicated that PHO2 was expressed in all tissues with a uniform pattern of transcripts, and the expression pattern of PHO1 indicates that it probably contributes to the starch biosynthesis during seed development in Zea mays. Under abscisic acid (ABA) treatment, PHO1 was found to be downregulated in Arabidopsis and Hordeum vulgare. However, we found that ABA could up-regulate the expression of both PHO1 and PHO2 within 12 h in Zea mays. In all monocots and dicots, the 3D structures were highly similar, and the ligand-binding sites were common yet fluctuating in the position of aa residues.
Collapse
Affiliation(s)
- Guowu Yu
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.H.)
| | - Noman Shoaib
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Ying Xie
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Lun Liu
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Nishbah Mughal
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.H.)
| | - Huanhuan Huang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
| | - Na Zhang
- College of Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.H.)
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
- Correspondence: (H.L.); (Y.H.)
| | - Yubi Huang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (N.S.); (Y.X.); (L.L.); (N.M.); (H.H.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.H.)
- Correspondence: (H.L.); (Y.H.)
| |
Collapse
|
5
|
Mehla S, Kumar U, Kapoor P, Singh Y, Sihag P, Sagwal V, Balyan P, Kumar A, Ahalawat N, Lakra N, Singh KP, Pesic V, Djalovic I, Mir RR, Dhankher OP. Structural and functional insights into the candidate genes associated with different developmental stages of flag leaf in bread wheat ( Triticum aestivum L.). Front Genet 2022; 13:933560. [PMID: 36092892 PMCID: PMC9449350 DOI: 10.3389/fgene.2022.933560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Grain yield is one of the most important aims for combating the needs of the growing world population. The role of development and nutrient transfer in flag leaf for higher yields at the grain level is well known. It is a great challenge to properly exploit this knowledge because all the processes, starting from the emergence of the flag leaf to the grain filling stages of wheat (Triticum aestivum L.), are very complex biochemical and physiological processes to address. This study was conducted with the primary goal of functionally and structurally annotating the candidate genes associated with different developmental stages of flag leaf in a comprehensive manner using a plethora of in silico tools. Flag leaf-associated genes were analyzed for their structural and functional impacts using a set of bioinformatics tools and algorithms. The results revealed the association of 17 candidate genes with different stages of flag leaf development in wheat crop. Of these 17 candidate genes, the expression analysis results revealed the upregulation of genes such as TaSRT1-5D, TaPNH1-7B, and TaNfl1-2B and the downregulation of genes such as TaNAP1-7B, TaNOL-4D, and TaOsl2-2B can be utilized for the generation of high-yielding wheat varieties. Through MD simulation and other in silico analyses, all these proteins were found to be stable. Based on the outcome of bioinformatics and molecular analysis, the identified candidate genes were found to play principal roles in the flag leaf development process and can be utilized for higher-yield wheat production.
Collapse
Affiliation(s)
- Sheetal Mehla
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Prexha Kapoor
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Yogita Singh
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Pooja Sihag
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Vijeta Sagwal
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P. G. College, CCS University, Meerut, India
| | - Anuj Kumar
- Shantou University Medical College, Shantou, China
- Dalhousie University, Halifax, NS, Canada
| | - Navjeet Ahalawat
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Nita Lakra
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences and Humanities, GB Pant University of Agriculture and Technology, Pantnagar, India
- Vice-Chancellor’s Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - Vladan Pesic
- Department of Genetics and Plant Breeding, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, Serbia
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Srinagar, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
6
|
Iqbal I, Tripathi RK, Wilkins O, Singh J. Thaumatin-Like Protein ( TLP) Gene Family in Barley: Genome-Wide Exploration and Expression Analysis during Germination. Genes (Basel) 2020; 11:E1080. [PMID: 32947963 PMCID: PMC7564728 DOI: 10.3390/genes11091080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Thaumatin-like Proteins (TLPs) are known to play a vital role in plant defense, developmental processes and seed germination. We identified 19 TLP genes from the reference genome of barley and 37, 28 and 35 TLP genes from rice, Brachypodium and sorghum genomes, respectively. Comparative phylogenetic analysis classified the TLP family into nine groups. Localized gene duplications with diverse exon/intron structures contributed to the expansion of the TLP gene family in cereals. Most of the barley TLPs were localized on chromosome 5H. The spatiotemporal expression pattern of HvTLP genes indicated their predominant expression in the embryo, developing grains, root and shoot tissues. Differential expression of HvTLP14, HvTLP17 and HvTLP18 in the malting variety (Morex) over 16-96 h of grain germination revealed their possible role in malting. This study provides a description of the TLP gene family in barley and their possible involvement in seed germination and the malting process.
Collapse
Affiliation(s)
| | | | | | - Jaswinder Singh
- Plant Science Department, McGill University, 21111 Lakeshore Rd., Quebec, QC H9X3V9, Canada; (I.I.); (R.K.T.); (O.W.)
| |
Collapse
|
7
|
Wang J, Yang DH, Yang Y, Wang JQ, Cai CY, Lei ZN, Teng QX, Wu ZX, Zhao L, Chen ZS. Overexpression of ABCB1 Transporter Confers Resistance to mTOR Inhibitor WYE-354 in Cancer Cells. Int J Mol Sci 2020; 21:ijms21041387. [PMID: 32092870 PMCID: PMC7073023 DOI: 10.3390/ijms21041387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
The overexpressing ABCB1 transporter is one of the key factors leading to multidrug resistance (MDR). Thus, many ABCB1 inhibitors have been found to be able to overcome ABCB1-mediated MDR. However, some inhibitors also work as a substrate of ABCB1, which indicates that in order to achieve an effective reversal dosage, a higher concentration is needed to overcome the pumped function of ABCB1, which may concurrently increase the toxicity. WYE-354 is an effective and specific mTOR (mammalian target of rapamycin) inhibitor, which recently has been reported to reverse ABCB1-mediated MDR. In the current study, 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out to determine the cell viability and reversal effect of WYE-354 in parental and drug-resistant cells. Drug accumulation was performed to examine the effect of WYE-354 on the cellular accumulation of chemotherapeutic drugs. The ATPase (adenosine triphosphatase) activity of the ABCB1 transporter in the presence or absence of WYE-354 was conducted in order to determine the impact of WYE-354 on ATP hydrolysis. Western blot analysis and immunofluorescence assay were used to investigate the protein molecules related to MDR. In addition, the interaction between the WYE-354 and ABCB1 transporter was investigated via in silico analysis. We demonstrated that WYE-354 is a substrate of ABCB1, that the overexpression of the ABCB1 transporter decreases the efficacy of WYE-354, and that the resistant WYE-354 can be reversed by an ABCB1 inhibitor at a pharmacological achievable concentration. Furthermore, WYE-354 increased the intracellular accumulation of paclitaxel in the ABCB1-mediated MDR cell line, without affecting the corresponding parental cell line, which indicated that WYE-354 could compete with other chemotherapeutic drugs for the ABCB1 transporter substrate binding site. In addition, WYE-354 received a high score in the docking analysis, indicating a strong interaction between WYE-354 and the ABCB1 transporter. The results of the ATPase analysis showed that WYE-354 could stimulate ABCB1 ATPase activity. Treatment with WYE-354 did not affect the protein expression or subcellular localization of the ABCB1. This study provides evidence that WYE-354 is a substrate of the ABCB1 transporter, implicating that WYE-354 should be avoided for use in ABCB1-mediated MDR cancer.
Collapse
Affiliation(s)
- Jingqiu Wang
- Department of Pharmacy, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210000, China;
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
| | - Linguo Zhao
- Department of Pharmacy, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210000, China;
- Correspondence: (L.Z.); (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA; (D.-H.Y.); (Y.Y.); (J.-Q.W.); (C.-Y.C.); (Z.-N.L.); (Q.-X.T.); (Z.-X.W.)
- Correspondence: (L.Z.); (Z.-S.C.)
| |
Collapse
|
8
|
Mohan A, Dhaliwal AK, Nagarajan R, Gill KS. Molecular Characterization of Auxin Efflux Carrier- ABCB1 in hexaploid wheat. Sci Rep 2019; 9:17327. [PMID: 31757978 PMCID: PMC6874703 DOI: 10.1038/s41598-019-51482-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/29/2019] [Indexed: 11/09/2022] Open
Abstract
Auxin is an important phytohormone that regulates response, differentiation, and development of plant cell, tissue, and organs. Along with its local production, long-distance transport coordinated by the efflux/influx membrane transporters is instrumental in plant development and architecture. In the present study, we cloned and characterized a wheat (Triticum aestivum) auxin efflux carrier ABCB1. The TaABCB1 was physically localized to the proximal 15% of the short arm of wheat homoeologous group 7 chromosomes. Size of the Chinese spring (CS) homoeologs genomic copies ranged from 5.3–6.2 kb with the 7A copy being the largest due to novel insertions in its third intron. The three homoeologous copies share 95–97% sequence similarity at the nucleotide, 98–99% amino acid, and overall Q-score of 0.98 at 3-D structure level. Though detected in all analyzed tissues, TaABCB1 predominantly expressed in the meristematic tissues likely due to the presence of meristem-specific activation regulatory element identified in the promoter region. RNAi plants of TaABCB1 gene resulted in reduced plant height and increased seed width. Promoter analysis revealed several responsive elements detected in the promoter region including that for different hormones as auxin, gibberellic acid, jasmonic acid and abscisic acid, light, and circadian regulated elements.
Collapse
Affiliation(s)
- Amita Mohan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Amandeep K Dhaliwal
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Ragupathi Nagarajan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
9
|
Nazarian-Firouzabadi F, Joshi S, Xue H, Kushalappa AC. Genome-wide in silico identification of LysM-RLK genes in potato (Solanum tuberosum L.). Mol Biol Rep 2019; 46:5005-5017. [PMID: 31317454 DOI: 10.1007/s11033-019-04951-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023]
Abstract
The receptor like kinases (RLKs) belong to the RLK/Pelle superfamily, one of the largest gene families in plants. RLKs play an important role in plant development, as well as in response to biotic and abiotic stresses. The lysine motif receptor like kinases (LysM-RLKs) are a subfamily of RLKs containing at least one lysine motif (LysM) that are involved in the perception of elicitors or pathogen-associated molecular patterns (PAMPs). In the present study, 77 putative RLKs genes and three receptor like proteins were identified in potato (Solanum tuberosum) genome, following a genome-wide search. The 77 potato RLK proteins are classified into two major phylogenetic groups based on their kinase domain amino acid sequence similarities. Out of 77 RLKs, 10 proteins had at least one LysM. Among them three RLP proteins were found in potato genome with either 2 or three tandem LysM but these lacked a cytoplasmic kinase domain. Expression analyses of a potato LysM-RLKs (StLysM-RLK05) was carried out by a Real time RT-PCR, following inoculation of potato leaves and immature tubers with late blight and common scab pathogens, respectively. The expression was significantly higher in resistant than in susceptible following S. scabies inoculation. The StLysM-RLK05 sequence was verified and it was polymorphic in scab susceptible cultivar. The present study provides an overview of the StLysM-RLKs gene family in potato genome. This information is helpful for future functional analysis of such an important protein family, in Solanaceae species.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada.,Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Sripad Joshi
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Huali Xue
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada.,College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X3V9, Canada.
| |
Collapse
|
10
|
Batra R, Agarwal P, Tyagi S, Saini DK, Kumar V, Kumar A, Kumar S, Balyan HS, Pandey R, Gupta PK. A study of CCD8 genes/proteins in seven monocots and eight dicots. PLoS One 2019; 14:e0213531. [PMID: 30861026 PMCID: PMC6413960 DOI: 10.1371/journal.pone.0213531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/23/2019] [Indexed: 02/08/2023] Open
Abstract
In plants, the enzyme CCD8 (carotenoid cleavage dioxygenase 8) is involved in the synthesis of an important hormone, strigolactone, and therefore, plays an important role in controlling growth and development. Using cDNA and protein sequence derived from the gene ZmCCD8 from maize, we identified putative orthologs of the gene encoding CCD8 in six other monocots and eight dicots; the sequence similarity ranged from 52–75.9% at the gene level and 60.9–93.7% at the protein level. The average length of the gene was ~3.3 kb (range: 2.08 to 3.98 kb), although the number of introns within the genes differed (4 or 5 in dicots and 3 or 4 in monocots, except in T. urartu with 6 introns). Several cis-acting regulatory elements were identified in the promoters of CCD8 genes, which are known to respond to biotic and abiotic stresses. The N-terminal end (up to ~70 amino acids) of CCD8 proteins was highly variable due to insertions, deletions and mismatches. The variation in genes and proteins were particularly conspicuous in T. urartu and Ae. tauschii among the monocots and A. thaliana and P. persica among the dicots. In CCD8 proteins, 12 motifs were also identified, of which 6 were novel; 4 of these novel motifs occurred in all the 15 species. The 3D structures of proteins had the characteristic features of the related enzyme apocarotenoid oxygenase (ACO) of Synechocystis (a representative of cyanobacteria). The results of qRT-PCR in wheat revealed that under phosphorous (P)-starved condition (relative to expression under optimum P used as control), the expression of TaCCD8 genes increased ~37 fold in root tissue of the cultivar C306 and ~33 fold in shoot tissue of the cultivar HUW468 (the two cultivars differed in their P-use efficiency). This suggested that expression of TaCCD8 genes is genotype-dependent and tissue-specific and is regulated under different levels of P supply.
Collapse
Affiliation(s)
- Ritu Batra
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Priyanka Agarwal
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Sandhya Tyagi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dinesh Kumar Saini
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Vikas Kumar
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, India
| | - Sanjay Kumar
- Bioinformatics Centre, Biotech Park, Lucknow, India
| | | | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
11
|
A pathway-driven predictive model of tramadol pharmacogenetics. Eur J Hum Genet 2019; 27:1143-1156. [PMID: 30824817 DOI: 10.1038/s41431-019-0369-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/14/2022] Open
Abstract
Predicting metabolizer phenotype (MP) is typically performed using data from a single gene. Cytochrome p450 family 2 subfamily D polypeptide 6 (CYP2D6) is considered the primary gene for predicting MP in reference to approximately 30% of marketed drugs and endogenous toxins. CYP2D6 predictions have proven clinically effective but also have well-documented inaccuracies due to relatively high genotype-phenotype discordance in certain populations. Herein, a pathway-driven predictive model employs genetic data from uridine diphosphate glucuronosyltransferase, family 1, polypeptide B7 (UGT2B7), adenosine triphosphate (ATP)-binding cassette, subfamily B, number 1 (ABCB1), opioid receptor mu 1 (OPRM1), and catechol-O-methyltransferase (COMT) to predict the tramadol to primary metabolite ratio (T:M1) and the resulting toxicologically inferred MP (t-MP). These data were then combined with CYP2D6 data to evaluate performance of a fully combinatorial model relative to CYP2D6 alone. These data identify UGT2B7 as a potentially significant explanatory marker for T:M1 variability in a population of tramadol-exposed individuals of Finnish ancestry. Supervised machine learning and feature selection were used to demonstrate that a set of 16 loci from 5 genes can predict t-MP with over 90% accuracy, depending on t-MP category and algorithm, which was significantly greater than predictions made by CYP2D6 alone.
Collapse
|
12
|
Kumar A, Batra R, Gahlaut V, Gautam T, Kumar S, Sharma M, Tyagi S, Singh KP, Balyan HS, Pandey R, Gupta PK. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.). PLoS One 2018; 13:e0208409. [PMID: 30540790 PMCID: PMC6291158 DOI: 10.1371/journal.pone.0208409] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
RWP-RKs represent a small family of transcription factors (TFs) that are unique to plants and function particularly under conditions of nitrogen starvation. These RWP-RKs have been classified in two sub-families, NLPs (NIN-like proteins) and RKDs (RWP-RK domain proteins). NLPs regulate tissue-specific expression of genes involved in nitrogen use efficiency (NUE) and RKDs regulate expression of genes involved in gametogenesis/embryogenesis. During the present study, using in silico approach, 37 wheat RWP-RK genes were identified, which included 18 TaNLPs (2865 to 7340 bp with 4/5 exons), distributed on 15 chromosomes from 5 homoeologous groups (with two genes each on 4B,4D and 5A) and 19 TaRKDs (1064 to 5768 bp with 1 to 6 exons) distributed on 12 chromosomes from 4 homoeologous groups (except groups 1, 4 and 5); 2–3 splice variants were also available in 9 of the 37 genes. Sixteen (16) of these genes also carried 24 SSRs (simple sequence repeats), while 11 genes had targets for 13 different miRNAs. At the protein level, MD simulation analysis suggested their interaction with nitrate-ions. Significant differences were observed in the expression of only two (TaNLP1 and TaNLP2) of the nine representative genes that were used for in silico expression analysis under varying levels of N at post-anthesis stage (data for other genes was not available for in silico expression analysis). Differences in expression were also observed during qRT-PCR, when expression of four representative genes (TaNLP2, TaNLP7, TaRKD6 and TaRKD9) was examined in roots and shoots of seedlings (under different conditions of N supply) in two contrasting genotypes which differed in NUE (C306 with low NUE and HUW468 with high NUE). These four genes for qRT-PCR were selected on the basis of previous literature, level of homology and the level of expression (in silico study). In particular, the TaNLP7 gene showed significant up-regulation in the roots and shoots of HUW468 (with higher NUE) during N-starvation; this gene has already been characterized in Arabidopsis and tobacco, and is known to be involved in nitrate-signal transduction pathway.
Collapse
Affiliation(s)
- Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Vijay Gahlaut
- Department of Plant Molecular Biology, South Campus, University of Delhi, Delhi, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, CCS University, Meerut, India
| | - Sanjay Kumar
- Bioinformatics Centre, Biotech Park, Lucknow, India
| | - Mansi Sharma
- ICMR- National Institute of Cancer Prevention and Research, Noida, India
| | - Sandhya Tyagi
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Krishna Pal Singh
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, India
- Ch. Charan Singh Haryana Agricultural University, Hisar, India
| | | | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
13
|
Singh K, Singh J, Jindal S, Sidhu G, Dhaliwal A, Gill K. Structural and functional evolution of an auxin efflux carrier PIN1 and its functional characterization in common wheat. Funct Integr Genomics 2018; 19:29-41. [PMID: 29968001 DOI: 10.1007/s10142-018-0625-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Particularly PIN1, PIN protein-mediated rate-limiting auxin distribution plays a critical role in plant differentiation. Although well-characterized in Arabidopsis, little is known about the structural and functional relationship of the PIN1 gene among other plants. Here, we report that the gene structure remained conserved among bryophytes and angiosperms while the gene size varied by ~ 17%. Although the positions were conserved, highly variable intron phase suggests preference for specific regions in the gene sequence for independent events of intron insertion. Significant variation was observed across gene length for insertions and deletions that were mainly localized to the exonic regions flanking intron 1, possibly demarcating the sequences prone to deletions/duplications. The N and C-terminals showed a higher protein sequence similarity (~ 80%) compared to the central hydrophilic loop (~ 26%). In addition to the signature domains and motifs, we identified four novel uncharacterized motifs in the central divergent loop of PIN1 protein. Three different homo-loci, one each on chromosome groups 4, 6, and 7, were identified in wheat each showing dramatically different expression patterns during different plant developmental stages. Virus-induced gene silencing of the TaPIN1 gene resulted up to 26% reduction in plant height. Because of its direct role in controlling plant height along with a higher expression during stem elongation, the TaPIN1 gene can be manipulated to regulate plant height.
Collapse
Affiliation(s)
- Kanwardeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Johar Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Suruchi Jindal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gaganjot Sidhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | | | - Kulvinder Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
14
|
Zhang M, Lu X, Li C, Zhang B, Zhang C, Zhang XS, Ding Z. Auxin Efflux Carrier ZmPGP1 Mediates Root Growth Inhibition under Aluminum Stress. PLANT PHYSIOLOGY 2018; 177:819-832. [PMID: 29720555 PMCID: PMC6001327 DOI: 10.1104/pp.17.01379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/15/2018] [Indexed: 05/25/2023]
Abstract
Auxin has been shown to enhance root growth inhibition under aluminum (Al) stress in Arabidopsis (Arabidopsis thaliana). However, in maize (Zea mays), auxin may play a negative role in the Al-induced inhibition of root growth. In this study, we identified mutants deficient in the maize auxin efflux carrier P-glycoprotein (ZmPGP1) after ethyl methanesulfonate mutagenesis and used them to elucidate the contribution of ZmPGP1 to Al-induced root growth inhibition. Root growth in the zmpgp1 mutant, which forms shortened roots and is hyposensitive to auxin, was less inhibited by Al stress than that in the inbred line B73. In the zmpgp1 mutants, the root tips displayed higher auxin accumulation and enhanced auxin signaling under Al stress, which was also consistent with the increased expression of auxin-responsive genes. Based on the behavior of the auxin-responsive marker transgene, DR5rev:RFP, we concluded that Al stress reduced the level of auxin in the root tip, which contrasts with the tendency of Al stress-induced Arabidopsis plants to accumulate more auxin in their root tips. In addition, Al stress induced the expression of ZmPGP1 Therefore, in maize, Al stress is associated with reduced auxin accumulation in root tips, a process that is regulated by ZmPGP1 and thus causes inhibition of root growth. This study provides further evidence about the role of auxin and auxin polar transport in Al-induced root growth regulation in maize.
Collapse
Affiliation(s)
- Maolin Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Xiaoduo Lu
- Insititue of Molecular Breeding for Maize, Qilu Normal University, Jinan 250200, China
| | - Cuiling Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Bing Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Chunyi Zhang
- Department of Crop Genomics and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
15
|
Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley. Sci Rep 2018; 8:7085. [PMID: 29728569 PMCID: PMC5935748 DOI: 10.1038/s41598-018-25349-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
The SQUAMOSA-promoter binding like (SPL) gene family encodes transcription factors that have been shown in many species to influence plant growth and development, but information about these genes in barley (Hordeum vulgare L.) is limited. This study identified 17 barley SPL genes, within eight distinct groups, that are orthologs of SPL genes described in Arabidopsis, wheat, and rice. Sixteen barley SPLs undergo alternative splicing. Seven SPLs contain a putative miR156 target site and the transcript levels of the miR156-targeted HvSPLs (HvSPL3, 13 and 23) were lower in vegetative than in reproductive phase but this was true also for some SPL genes such as HvSPL6 that were not regulated by miR156. Because SPL gene products regulate miR172, which is also involved in floral development, the expression of miR172 was studied. An antagonistic expression pattern of miR156 and miR172b during the vegetative and the reproductive phases signifies their apparent function in barley growth phase transition. Characterization of a barley mir172 mutant having an abnormal, indeterminate spikelet phenotype suggests the possible feedback role of AP2/miR172 module on HvSPL genes. This is the first comprehensive analysis of the miR156/SPL/miR172 axis in barley that provides a basis to elucidate their roles in various biological processes.
Collapse
|
16
|
Nagarajan R, Gill KS. Evolution of Rubisco activase gene in plants. PLANT MOLECULAR BIOLOGY 2018; 96:69-87. [PMID: 29139059 DOI: 10.1007/s11103-017-0680-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/05/2017] [Indexed: 05/10/2023]
Abstract
Rubisco activase of plants evolved in a stepwise manner without losing its function to adapt to the major evolutionary events including endosymbiosis and land colonization. Rubisco activase is an essential enzyme for photosynthesis, which removes inhibitory sugar phosphates from the active sites of Rubisco, a process necessary for Rubisco activation and carbon fixation. The gene probably evolved in cyanobacteria as different species differ for its presence. However, the gene is present in all other plant species. At least a single gene copy was maintained throughout plant evolution; but various genome and gene duplication events, which occurred during plant evolution, increased its copy number in some species. The exons and exon-intron junctions of present day higher plant's Rca, which is conserved in most species seem to have evolved in charophytes. A unique tandem duplication of Rca gene occurred in a common grass ancestor, and the two genes evolved differently for gene structure, sequence, and expression pattern. At the protein level, starting with a primitive form in cyanobacteria, RCA of chlorophytes evolved by integrating chloroplast transit peptide (cTP), and N-terminal domains to the ATPase, Rubisco recognition and C-terminal domains. The redox regulated C-terminal extension (CTE) and the associated alternate splicing mechanism, which splices the RCA-α and RCA-β isoforms were probably gained from another gene in charophytes, conserved in most species except the members of Solanaceae family.
Collapse
Affiliation(s)
- Ragupathi Nagarajan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
17
|
Mishra BP, Kumar R, Mohan A, Gill KS. Conservation and divergence of Starch Synthase III genes of monocots and dicots. PLoS One 2017; 12:e0189303. [PMID: 29240782 PMCID: PMC5730167 DOI: 10.1371/journal.pone.0189303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Starch Synthase (SS) plays an important role in extending the α-1,4 glucan chains during starch biosynthesis by catalyzing the transfer of the glucosyl moiety from ADP-glucose to the non-reducing end of a pre-existing glucan chain. SS has five distinct isoforms of which SSIII is involved in the formation of longer glucan chain length. Here we report identification and detailed characterization of 'true' orthologs of the well-characterized maize SSIII (ZmSSIII), among six monocots and two dicot species. ZmSSIII orthologs have nucleotide sequence similarity ranging from 56-81%. Variation in gene size among various orthologs ranged from 5.49 kb in Arabidopsis to 11.62 kb in Brachypodium and the variation was mainly due to intron size and indels present in the exons 1 and 3. Number of exons and introns were highly conserved among all orthologs however. While the intron number was conserved, intron phase showed variation at group, genera and species level except for intron 1 and 5. Several species, genera, and class specific cis-acting regulatory elements were identified in the promoter region. The predicted protein size of the SSIII orthologs ranged from 1094 amino acid (aa) in Arabidopsis to 1688 aa in Brachypodium with sequence identity ranging from 60%-89%. The N-terminal region of the protein was highly variable whereas the C-terminal region containing the Glycosyltransferase domain was conserved with >80% sequence similarity among the orthologs. In addition to confirming the known motifs, eleven novel motifs possibly providing species, genera and group specific functions, were identified in the three carbohydrate binding domains. Despite of significant sequence variation among orthologs, most of the motifs and their relative distances are highly conserved among the orthologs. The 3-D structure of catalytic region of SSIII orthologs superimposed with higher confidence confirming the presence of similar binding sites with five unidentified conserved regions in the catalytic (glycosyltransferase) domain including the pockets involved in catalysis and binding of ligands. Homeologs of wheat SSIII gene showed tissue and developmental stage specific expression pattern with the highest expression recorded in developing grains.
Collapse
Affiliation(s)
- Bhavya Priyadarshini Mishra
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Rajeev Kumar
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Amita Mohan
- Department of Crops and Soil Sciences, Washington State University, Pullman, United States of America
| | - Kulvinder S. Gill
- Department of Crops and Soil Sciences, Washington State University, Pullman, United States of America
- * E-mail:
| |
Collapse
|
18
|
Batra R, Saripalli G, Mohan A, Gupta S, Gill KS, Varadwaj PK, Balyan HS, Gupta PK. Comparative Analysis of AGPase Genes and Encoded Proteins in Eight Monocots and Three Dicots with Emphasis on Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:19. [PMID: 28174576 PMCID: PMC5259687 DOI: 10.3389/fpls.2017.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/04/2017] [Indexed: 05/11/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a heterotetrameric enzyme with two large subunits (LS) and two small subunits (SS). It plays a critical role in starch biosynthesis. We are reporting here detailed structure, function and evolution of the genes encoding the LS and the SS among monocots and dicots. "True" orthologs of maize Sh2 (AGPase LS) and Bt2 (AGPase SS) were identified in seven other monocots and three dicots; structure of the enzyme at protein level was also studied. Novel findings of the current study include the following: (i) at the DNA level, the genes controlling the SS are more conserved than those controlling the LS; the variation in both is mainly due to intron number, intron length and intron phase distribution; (ii) at protein level, the SS genes are more conserved relative to those for LS; (iii) "QTCL" motif present in SS showed evolutionary differences in AGPase belonging to wheat 7BS, T. urartu, rice and sorghum, while "LGGG" motif in LS was present in all species except T. urartu and chickpea; SS provides thermostability to AGPase, while LS is involved in regulation of AGPase activity; (iv) heterotetrameric structure of AGPase was predicted and analyzed in real time environment through molecular dynamics simulation for all the species; (v) several cis-acting regulatory elements were identified in the AGPase promoters with their possible role in regulating spatial and temporal expression (endosperm and leaf tissue) and also the expression, in response to abiotic stresses; and (vi) expression analysis revealed downregulation of both subunits under conditions of heat and drought stress. The results of the present study have allowed better understanding of structure and evolution of the genes and the encoded proteins and provided clues for exploitation of variability in these genes for engineering thermostable AGPase.
Collapse
Affiliation(s)
- Ritu Batra
- Bioinformatics Infrastructure Facility (BIF) Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
| | - Gautam Saripalli
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
| | - Amita Mohan
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
| | - Saurabh Gupta
- Department of Bioinformatics, Indian Institute of Information Technology-AllahabadAllahabad, India
| | - Kulvinder S. Gill
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
- *Correspondence: Kulvinder S. Gill
| | - Pritish K. Varadwaj
- Department of Bioinformatics, Indian Institute of Information Technology-AllahabadAllahabad, India
| | - Harindra S. Balyan
- Bioinformatics Infrastructure Facility (BIF) Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
| | - Pushpendra K. Gupta
- Bioinformatics Infrastructure Facility (BIF) Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
| |
Collapse
|
19
|
Sethi S, Saini JS, Mohan A, Brar NK, Verma S, Sarao NK, Gill KS. Comparative and evolutionary analysis of α-amylase gene across monocots and dicots. Funct Integr Genomics 2016; 16:545-55. [PMID: 27481351 DOI: 10.1007/s10142-016-0505-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
α-amylase is an important enzyme involved in starch degradation to provide energy to the germinating seedling. The present study was conducted to reveal structural and functional evolution of this gene among higher plants. Discounting polyploidy, most plant species showed only a single copy of the gene making multiple isoforms in different tissues and developmental stages. Genomic length of the gene ranged from 1472 bp in wheat to 2369 bp in soybean, and the size variation was mainly due to differences in the number and size of introns. In spite of this variation, the intron phase distribution and insertion sites were mostly conserved. The predicted protein size ranged from 414 amino acid (aa) in soybean to 449aa in Brachypodium. Overall, the protein sequence similarity among orthologs ranged from 56.4 to 97.4 %. Key motifs and domains along with their relative distances were conserved among plants although several species, genera, and class specific motifs were identified. The glycosyl hydrolase superfamily domain length varied from 342aa in soybean to 384aa in maize and sorghum while length of the C-terminal β-sheet domain was highly conserved with 61aa in all monocots and Arabidopsis but was 59aa in soybean and Medicago. Compared to rice, 3D structure of the proteins showed 89.8 to 91.3 % similarity among the monocots and 72.7 to 75.8 % among the dicots. Sequence and relative location of the five key aa required for the ligand binding were highly conserved in all species except rice.
Collapse
Affiliation(s)
- Sorabh Sethi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Johar S Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Amita Mohan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Navreet K Brar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Shabda Verma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Navraj K Sarao
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|