1
|
Cao Z, Qu Y, Song Y, Xin P. Comparative genomics and phylogenetic analysis of chloroplast genomes of Asian Caryodaphnopsis taxa (Lauraceae). Gene 2024; 907:148259. [PMID: 38346458 DOI: 10.1016/j.gene.2024.148259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
The genus Caryodaphnopsis, a member of the Lauraceae family, is characterized by seeds that are rich in oil, as well as highly exploitable fruits and wood. The Asian taxa within this genus exhibit complex morphological variations, posing challenges to their accurate classification and impeding their effective use and development as a resource. In this study, we sequenced the chloroplast genomes of 31 individuals representing nine Asian taxa within the Caryodaphnopsis genus. Our primary objectives were to reveal structural variations in these chloroplast genomes through comparative analyses and to infer the species' phylogenetic relationships. Our findings revealed that all chloroplast genomes had a tetrad structure, ranged in length from 148,828 to 154,946 bp, and harbored 128-131 genes. Notably, contraction of the IR region led to the absence of some genes in eight taxa. A comprehensive analysis identified 1267 long repetitive sequences and 2176 SSRs, 286 SNPs, and 135 indels across the 31 chloroplast genomes. The Ka/Ks ratio analysis indicated potential positive selection on the matK, rpl22, and rpoC2 genes. Furthermore, we identified six variable regions as promising barcode regions. Phylogenetic analysis grouped the nine Asian taxa into six branches, with C. henryi forming the basal group from which three distinct complexes emerged. This study contributes significantly to the current understanding of the evolutionary dynamics and phylogenetic relationships within the genus Caryodaphnopsis. Furthermore, the identified molecular markers hold potential for molecular barcoding applications in population genetics, providing valuable tools for future research and conservation efforts within this diverse genus.
Collapse
Affiliation(s)
- Zhengying Cao
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China; Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yaya Qu
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China; Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education), Guangxi Normal University, Guilin, Guangxi, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China.
| | - Peiyao Xin
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China; Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China.
| |
Collapse
|
2
|
Shi Y, Chen Z, Jiang J, Li X, Zeng W. Comparative Analysis of Chloroplast Genomes of "Tiantai Wu-Yao" ( Lindera aggregata) and Taxa of the Same Genus and Different Genera. Genes (Basel) 2024; 15:263. [PMID: 38540322 PMCID: PMC10970223 DOI: 10.3390/genes15030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 06/15/2024] Open
Abstract
Lindera aggregata is a species of the Lauraceae family, which has important medicinal, economic and ornamental values. In this study, we sequenced, assembled and annotated the chloroplast genome of L. aggregata and reannotated and corrected eight unverified annotations in the same genus. The chloroplast genomes taxa from Lindera and from different genera of Lauraceae were compared and analyzed, and their phylogenetic relationship and divergence time were speculated. All the 36 chloroplast genomes had typical quadripartite structures that ranged from 150,749 to 154,736 bp in total length. These genomes encoded 111-112 unique genes, including 78-79 protein-coding genes, 29-30 tRNA and 4 rRNA. Furthermore, there were 78-97 SSRs loci in these genomes, in which mononucleotide repeats were the most abundant; there were 24-49 interspersed repeats, and forward repeat types were the most frequent. The codon bias patterns of all species tended to use codons ending with A or U. Five and six highly variable regions were identified within genus and between genera, respectively, and three common regions (ycf1, ndhF-rpl32 and rpl32-trnL) were identified, which can be used as important DNA markers for phylogeny and species identification. According to the evaluation of the Ka/Ks ratio, most of the genes were under purifying selection, and only 10 genes were under positive selection. Finally, through the construction of the evolutionary tree of 39 chloroplast genomes, the phylogenetic relationship of Lauraceae was clarified and the evolutionary relationship of Lindera was revealed. The species of genus Lindera experienced rapid adaptive radiation from Miocene to Pleistocene. The results provided valuable insights for the study of chloroplast genomes in the Lauraceae family, especially in the genus Lindera.
Collapse
Affiliation(s)
- Yujie Shi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.)
| | - Zhen Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.)
| | - Jingyong Jiang
- Institute of Horticulture, Taizhou Academy of Agricultural Sciences, Linhai 317000, China;
| | - Xiaobai Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Wei Zeng
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou 318000, China; (Y.S.); (Z.C.)
| |
Collapse
|
3
|
Yu QF, Tan YH, Yu WB, Yang ST, Huang JP, Caraballo-Ortiz MA, Liu C, Song Y. Comparative analyses of eight complete plastid genomes of two hemiparasitic Cassytha vines in the family Lauraceae. Front Genet 2023; 14:1192170. [PMID: 38155711 PMCID: PMC10753772 DOI: 10.3389/fgene.2023.1192170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/06/2023] [Indexed: 12/30/2023] Open
Abstract
Cassytha is the sole genus of hemiparasitic vines (ca. 20 spp.) belonging to the Cassytheae tribe of the Lauraceae family. It is extensively distributed in tropical and subtropical regions. In this study, we determined the complete plastid genome sequences of C. filiformis and C. larsenii, which do not possess the typical quadripartite structure. The length of C. filiformis plastomes ranged from 114,215 to 114,618 bp, whereas that of C. larsenii plastomes ranged from 114,900 to 114,988 bp. Comparative genomic analysis revealed 1,013 mutation sites, four large intragenomic deletions, and five highly variable regions in the eight plastome sequences. Phylogenetic analyses based on 61 complete plastomes of Laurales species, 19 ITS sequences, and trnK barcodes from 91 individuals of Cassytha spp. confirmed a non-basal group comprising individuals of C. filiformis, C. larsenii, and C. pubescens in the family Lauraceae and proposed a sister relationship between C. filiformis and C. larsenii. Further morphological comparisons indicated that the presence or absence of hairs on the haustoria and the shape or size of fruits were useful traits for differentiating C. filiformis and C. larsenii.
Collapse
Affiliation(s)
- Qun-Fei Yu
- Center for Integrative Conservation and Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun-Hong Tan
- Center for Integrative Conservation and Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Wen-Bin Yu
- Center for Integrative Conservation and Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Shi-Ting Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) and Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Jie-Peng Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) and Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Marcos A. Caraballo-Ortiz
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Chao Liu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) and Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
4
|
He H, Wang T, Tang C, Cao Z, Pu X, Li Y, Li X. Complete Chloroplast Genomes of Saussurea katochaete, Saussurea superba, and Saussurea stella: Genome Structures and Comparative and Phylogenetic Analyses. Genes (Basel) 2023; 14:2002. [PMID: 38002945 PMCID: PMC10670953 DOI: 10.3390/genes14112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Saussurea plants are widely distributed in Asia and Europe; however, their complex phylogenetic relationships have led to many difficulties in phylogenetic studies and interspecific identification. In this study, we assembled, annotated, and analyzed the chloroplast genomes of three Saussurea plants: Saussurea katochaete, Saussurea superba, and Saussurea stella. The results showed that the full-length sequences of the three Saussurea plants were 152,561 bp, 151,452 bp, and 152,293 bp, respectively, which represent the typical quadripartite structure, and the genomes were relatively conserved. The gene annotation results showed that the chloroplast genomes of S. katochaete, S. superba, and S. stella were annotated with 128, 124, and 127 unique genes, respectively, which included 83, 80, and 83 protein-coding genes (PCGs), respectively, 37, 36, and 36 tRNA genes, respectively, and 8 rRNA genes. Moreover, 46, 45, and 43 SSR loci, respectively, and nine highly variable regions (rpl32-trnL-UAG, rpl32, ndhF-rpl32, ycf1, trnC-GCA-petN, trnC-GCA, rpcL, psbE-petL, and rpl16-trnG-UUG) were identified and could be used as potential molecular markers for population identification and phylogenetic study of Saussurea plants. Phylogenetic analyses strongly support the sisterhood of S. katochaete with S. superba and S. stella, and are all clustered with S. depsagensis, S. inversa, S. medusa, and S. gossipihora, of which S. gossipiphora is most closely related. Additionally, the phylogenetic results indicate a high frequency of differentiation among different species of Saussurea plants, and many different species or genera are morphologically very different from each other, which may be related to certain genetic material in the chloroplasts. This study provides an important reference for the identification of Saussurea plants and studies their evolution and phylogenetics.
Collapse
Affiliation(s)
- Hui He
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Tao Wang
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Chuyu Tang
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Zhengfei Cao
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Xiaojian Pu
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Yuling Li
- Qinghai Academy of Animal and Veterinary Science, Xining 810016, China; (H.H.); (T.W.); (C.T.); (Z.C.); (X.P.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| |
Collapse
|
5
|
Ma D, Ding Q, Zhao Z, Han X, Zheng HL. Chloroplast genome analysis of three Acanthus species reveal the adaptation of mangrove to intertidal habitats. Gene 2023; 873:147479. [PMID: 37182557 DOI: 10.1016/j.gene.2023.147479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Acanthus is a distinctive genus that covers three species with different ecological niches including Acanthus mollis (arid terrestrial), Acanthus leucostachyus (damp forest) and Acanthus ilicifolius (coastal intertidal). It is an intriguing question how these species evolved from terrestrial to coastal intertidal. In the present study, we assembled chloroplast genomes of A. ilicifolius, A. leucostachyus and A. mollis, which exhibited typical quadripartite structures. The sizes were 150,758, 154,686 and 150,339 bp that comprised a large single copy (LSC, 82,963, 86,461 and 82,612 bp), a small single copy (SSC, 17,191, 17,511 and 17,019 bp), and a pair of inverted repeats (IRs, 25,302, 25,357 and 25,354 bp), respectively. Gene annotation revealed that A. ilicifolius, A. leucostachyus and A. mollis contained 113, 112 and 108 unique genes, each of which contained 79, 79 and 74 protein-coding genes, 30, 29 and 30 tRNAs, and 4 rRNA genes, respectively. Differential gene analysis revealed plenty of ndhs gene deletions in the terrestrial plant A. mollis. Nucleotide diversity analysis showed that the psbK, ycf1, ndhG, and rpl22 have the highest nucleotide variability. Compared to A. leucostachyus and A. mollis, seven genes in A. ilicifolius underwent positive selection. Among them, the atpF gene showed a strong positive selection throughout terrestrial to marine evolution and was important for adaptation to coastal intertidal habitats. Phylogenetic analysis indicated that A. ilicifolius has a closer genetic relationship with A. leucostachyus than A. mollis which further confirmed the evolutionary direction of Acanthus going from terrestrial to coastal intertidal zones.
Collapse
Affiliation(s)
- Dongna Ma
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Qiansu Ding
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Zhizhu Zhao
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
The Complete Chloroplast Genome Sequence of Machilus chuanchienensis (Lauraceae): Genome Structure and Phylogenetic Analysis. Genes (Basel) 2022; 13:genes13122402. [PMID: 36553669 PMCID: PMC9778441 DOI: 10.3390/genes13122402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Machilus chuanchienensis is an ecological tree distributed in southwestern China. It has a significant valuation with making Hawk tea using its leaves, an ethnic traditional tea-like beverage with a long history in Chinese tea culture. The whole chloroplast (cp) genome is an ideal model for the phylogenetic study of Lauraceae because of its simple structure and highly conserved features. There have been numerous reports of complete cp genome sequences in Lauraceae, but little is known about M. chuanchienensis. Here, the next-generation sequencing (NGS) was used to sequence the M. chuanchienensis cp genome. Then, a comprehensive comparative genome analysis was performed. The results revealed that the M. chuanchienensis's cp genome measured 152,748 base pairs (bp) with a GC content of 39.15% and coded 126 genes annotated, including comprising eight ribosomal RNA (rRNA), 36 transporter RNA (tRNA), and 82 protein-coding genes. In addition, the cp genome presented a typical quadripartite structure comprising a large single-copy (LSC; 93,811) region, a small single-copy (SSC; 18,803) region, and the inverted repeats (IRs; 20,067) region and contained 92 simple sequence repeat (SSR) locus in total. Phylogenetic relationships of 37 species indicated that M. chuanchienensis was a sister to M. balansae, M. melanophylla, and M. minutiflora. Further research on this crucial species may benefit significantly from these findings.
Collapse
|
7
|
Francisconi AF, Cauz-Santos LA, Morales Marroquín JA, van den Berg C, Alves-Pereira A, Delmondes de Alencar L, Picanço-Rodrigues D, Zanello CA, Ferreira Costa M, Gomes Lopes MT, Veasey EA, Zucchi MI. Complete chloroplast genomes and phylogeny in three Euterpe palms (E. edulis, E. oleracea and E. precatoria) from different Brazilian biomes. PLoS One 2022; 17:e0266304. [PMID: 35901127 PMCID: PMC9333295 DOI: 10.1371/journal.pone.0266304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The Brazilian palm fruits and hearts-of-palm of Euterpe edulis, E. oleracea and E. precatoria are an important source for agro-industrial production, due to overexploitation, conservation strategies are required to maintain genetic diversity. Chloroplast genomes have conserved sequences, which are useful to explore evolutionary questions. Besides the plastid DNA, genome skimming allows the identification of other genomic resources, such as single nucleotide polymorphisms (SNPs), providing information about the genetic diversity of species. We sequenced the chloroplast genome and identified gene content in the three Euterpe species. We performed comparative analyses, described the polymorphisms among the chloroplast genome sequences (repeats, indels and SNPs) and performed a phylogenomic inference based on 55 palm species chloroplast genomes. Finally, using the remaining data from genome skimming, the nuclear and mitochondrial reads, we identified SNPs and estimated the genetic diversity among these Euterpe species. The Euterpe chloroplast genomes varied from 159,232 to 159,275 bp and presented a conserved quadripartite structure with high synteny with other palms. In a pairwise comparison, we found a greater number of insertions/deletions (indels = 93 and 103) and SNPs (284 and 254) between E. edulis/E. oleracea and E. edulis/E. precatoria when compared to E. oleracea/E. precatoria (58 indels and 114 SNPs). Also, the phylogeny indicated a closer relationship between E. oleracea/E. precatoria. The nuclear and mitochondrial genome analyses identified 1,077 SNPs and high divergence among species (FST = 0.77), especially between E. edulis and E. precatoria (FST = 0.86). These results showed that, despite the few structural differences among the chloroplast genomes of these Euterpe palms, a differentiation between E. edulis and the other Euterpe species can be identified by point mutations. This study not only brings new knowledge about the evolution of Euterpe chloroplast genomes, but also these new resources open the way for future phylogenomic inferences and comparative analyses within Arecaceae.
Collapse
Affiliation(s)
- Ana Flávia Francisconi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- * E-mail: (MIZ); (AFF)
| | | | | | - Cássio van den Berg
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
- Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brasil
| | - Alessandro Alves-Pereira
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Luciano Delmondes de Alencar
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | | | - Cesar Augusto Zanello
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Marcones Ferreira Costa
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- Campus Amílcar Ferreira Sobral, Universidade Federal do Piauí, Floriano, Piauí, Brasil
| | - Maria Teresa Gomes Lopes
- Departamento de Produção Animal e Vegetal, Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brasil
| | - Maria Imaculada Zucchi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- Agência Paulista de Tecnologia dos Agronegócios, Piracicaba, São Paulo, Brasil
- * E-mail: (MIZ); (AFF)
| |
Collapse
|
8
|
Dong Z, Zhang R, Shi M, Song Y, Xin Y, Li F, Ma J, Xin P. The complete plastid genome of the endangered shrub Brassaiopsis angustifolia (Araliaceae): Comparative genetic and phylogenetic analysis. PLoS One 2022; 17:e0269819. [PMID: 35771795 PMCID: PMC9246242 DOI: 10.1371/journal.pone.0269819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
Brassaiopsis angustifolia K.M. Feng belongs to the family Araliaceae, and is an endangered shrub species in southwest China. Despite the importance of this species, the plastid genome has not been sequenced and analyzed. In this study, the complete plastid genome of B. angustifolia was sequenced, analyzed, and compared to the eight species in the Araliaceae family. Our study reveals that the complete plastid genome of B. angustifolia is 156,534 bp long, with an overall GC content of 37.9%. The chloroplast genome (cp) encodes 133 genes, including 88 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. All protein-coding genes consisted of 21,582 codons. Among the nine species of Araliaceae, simple sequence repeats (SSRs) and five large repeat sequences were identified with total numbers ranging from 37 to 46 and 66 to 78, respectively. Five highly divergent regions were successfully identified that could be used as potential genetic markers of Brassaiopsis and Asian Palmate group. Phylogenetic analysis of 47 plastomes, representing 19 genera of Araliaceae and two related families, was performed to reconstruct highly supported relationships for the Araliaceae, which highlight four well-supported clades of the Hydrocotyle group, Greater Raukaua group, Aralia-Panax group, and Asian Palmate group. The genus Brassaiopsis can be divided into four groups using internal transcribed spacer (ITS) data. The results indicate that plastome and ITS data can contribute to investigations of the taxonomy, and phylogeny of B. angustifolia. This study provides a theoretical basis for species identification and future biological research on resources of the genus Brassaiopsis.
Collapse
Affiliation(s)
- Zhanghong Dong
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Ruli Zhang
- Sympodial Bamboos Technological and Engineering Research Center, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Ming Shi
- Sympodial Bamboos Technological and Engineering Research Center, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education), Guangxi Normal University, Guilin, China
| | - Yaxuan Xin
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Feng Li
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
| | - Jianzhong Ma
- Yunnan Academy of Forestry and Grassland, Kunming, China
- * E-mail: (JM); (PX)
| | - Peiyao Xin
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, China
- * E-mail: (JM); (PX)
| |
Collapse
|
9
|
Cay SB, Cinar YU, Kuralay SC, Inal B, Zararsiz G, Ciftci A, Mollman R, Obut O, Eldem V, Bakir Y, Erol O. Genome skimming approach reveals the gene arrangements in the chloroplast genomes of the highly endangered Crocus L. species: Crocus istanbulensis (B.Mathew) Rukšāns. PLoS One 2022; 17:e0269747. [PMID: 35704623 PMCID: PMC9200356 DOI: 10.1371/journal.pone.0269747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Crocus istanbulensis (B.Mathew) Rukšāns is one of the most endangered Crocus species in the world and has an extremely limited distribution range in Istanbul. Our recent field work indicates that no more than one hundred individuals remain in the wild. In the present study, we used genome skimming to determine the complete chloroplast (cp) genome sequences of six C. istanbulensis individuals collected from the locus classicus. The cp genome of C. istanbulensis has 151,199 base pairs (bp), with a large single-copy (LSC) (81,197 bp), small single copy (SSC) (17,524 bp) and two inverted repeat (IR) regions of 26,236 bp each. The cp genome contains 132 genes, of which 86 are protein-coding (PCGs), 8 are rRNA and 38 are tRNA genes. Most of the repeats are found in intergenic spacers of Crocus species. Mononucleotide repeats were most abundant, accounting for over 80% of total repeats. The cp genome contained four palindrome repeats and one forward repeat. Comparative analyses among other Iridaceae species identified one inversion in the terminal positions of LSC region and three different gene (psbA, rps3 and rpl22) arrangements in C. istanbulensis that were not reported previously. To measure selective pressure in the exons of chloroplast coding sequences, we performed a sequence analysis of plastome-encoded genes. A total of seven genes (accD, rpoC2, psbK, rps12, ccsA, clpP and ycf2) were detected under positive selection in the cp genome. Alignment-free sequence comparison showed an extremely low sequence diversity across naturally occurring C. istanbulensis specimens. All six sequenced individuals shared the same cp haplotype. In summary, this study will aid further research on the molecular evolution and development of ex situ conservation strategies of C. istanbulensis.
Collapse
Affiliation(s)
- Selahattin Baris Cay
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Yusuf Ulas Cinar
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Selim Can Kuralay
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Behcet Inal
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Siirt, Siirt, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Almila Ciftci
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Rachel Mollman
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Onur Obut
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
- * E-mail:
| | - Yakup Bakir
- Department of Plant Bioactive Metabolites, ACTV Biotechnology, Inc., Istanbul, Turkey
| | - Osman Erol
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Trofimov D, Cadar D, Schmidt-Chanasit J, Rodrigues de Moraes PL, Rohwer JG. A comparative analysis of complete chloroplast genomes of seven Ocotea species (Lauraceae) confirms low sequence divergence within the Ocotea complex. Sci Rep 2022; 12:1120. [PMID: 35064146 PMCID: PMC8782842 DOI: 10.1038/s41598-021-04635-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
The genus Ocotea (Lauraceae) includes about 450 species, of which about 90% are Neotropical, while the rest is from Macaronesia, Africa and Madagascar. In this study we present the first complete chloroplast genome sequences of seven Ocotea species, six Neotropical and one from Macaronesia. Genome sizes range from 152,630 (O. porosa) to 152,685 bp (O. aciphylla). All seven plastomes contain a total of 131 (114 unique) genes, among which 87 (80 unique) encode proteins. The order of genes (if present) is the same in all Lauraceae examined so far. Two hypervariable loci were found in the LSC region (psbA-trnH, ycf2), three in the SSC region (ycf1, ndhH, trnL(UAG)-ndhF). The pairwise cp genomic alignment between the taxa showed that the LSC and SSC regions are more variable compared to the IR regions. The protein coding regions comprise 25,503-25,520 codons in the Ocotea plastomes examined. The most frequent amino acids encoded in the plastomes were leucine, isoleucine, and serine. SSRs were found to be more frequent in the two dioecious Neotropical Ocotea species than in the four bisexual species and the gynodioecious species examined (87 vs. 75-84 SSRs). A preliminary phylogenetic analysis based on 69 complete plastomes of Lauraceae species shows the seven Ocotea species as sister group to Cinnamomum sensu lato. Sequence divergence among the Ocotea species appears to be much lower than among species of the most closely related, likewise species-rich genera Cinnamomum, Lindera and Litsea.
Collapse
Affiliation(s)
- Dimitrij Trofimov
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany.
- Institute of Ecology and Evolution, Universität Jena, Philosophenweg 16, 07743, Jena, Germany.
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Pedro Luís Rodrigues de Moraes
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Av. 24 A 1515, Bela Vista, Rio Claro, Caixa Postal 199, São Paulo, CEP 13506-900, Brazil
| | - Jens G Rohwer
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany.
| |
Collapse
|
11
|
Biotechnological Advances in Pharmacognosy and In Vitro Manipulation of Pterocarpus marsupium Roxb. PLANTS 2022; 11:plants11030247. [PMID: 35161227 PMCID: PMC8839240 DOI: 10.3390/plants11030247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Trees are vital resources for economic, environmental, and industrial growth, supporting human life directly or indirectly through a wide variety of therapeutic compounds, commodities, and ecological services. Pterocarpus marsupium Roxb. (Fabaceae) is one of the most valuable multipurpose forest trees in India and Sri Lanka, as it is cultivated for quality wood as well as pharmaceutically bioactive compounds, especially from the stem bark and heartwood. However, propagation of the tree in natural conditions is difficult due to the low percentage of seed germination coupled with overexploitation of this species for its excellent multipurpose properties. This overexploitation has ultimately led to the inclusion of P. marsupium on the list of endangered plant species. However, recent developments in plant biotechnology may offer a solution to the overuse of such valuable species if such advances are accompanied by technology transfer in the developing world. Specifically, techniques in micropropagation, genetic manipulation, DNA barcoding, drug extraction, delivery, and targeting as well as standardization, are of substantial concern. To date, there are no comprehensive and detailed reviews of P. marsupium in terms of biotechnological research developments, specifically pharmacognosy, pharmacology, tissue culture, authentication of genuine species, and basic gene transfer studies. Thus, the present review attempts to present a comprehensive overview of the biotechnological studies centered on this species and some of the recent novel approaches for its genetic improvement.
Collapse
|
12
|
Complete Chloroplast Genome Sequence of Sonchus brachyotus Helps to Elucidate Evolutionary Relationships with Related Species of Asteraceae. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9410496. [PMID: 34901281 PMCID: PMC8654571 DOI: 10.1155/2021/9410496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
Sonchus brachyotus DC. possesses both edible and medicinal properties and is widely distributed throughout China. In this study, the complete cp genome of S. brachyotus was sequenced and assembled. The total length of the complete S. brachyotus cp genome was 151,977 bp, including an LSC region of 84,553 bp, SSC region of 18,138 bp, and IR region of 24,643 bp. Sequence analyses revealed that the cp genome encoded 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The GC content was 37.6%. One hundred mononucleotide microsatellites, 4 dinucleotide microsatellites, 67 trinucleotide microsatellites, 4 tetranucleotide microsatellites, and 1 long repeat were identified. The SSR frequency of the LSC region was significantly greater than that of the IR and SSC regions. In total, 175 SSRs and highly variable regions were recognized as potential cp markers. By analyzing the IR/LSC and IR/SSC boundaries, structural differences between S. brachyotus and 6 other species were detected. According to phylogenetic analyses, S. brachyotus was most closely related to S. arvensis and S. oleraceus. Overall, this study provides complete cp genome resources for S. brachyotus that will be beneficial for identifying potential molecular markers and evolutionary patterns of S. brachyotus and its closely related species.
Collapse
|
13
|
A Comprehensive Study of the Genus Sanguisorba (Rosaceae) Based on the Floral Micromorphology, Palynology, and Plastome Analysis. Genes (Basel) 2021; 12:genes12111764. [PMID: 34828370 PMCID: PMC8618895 DOI: 10.3390/genes12111764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Sanguisorba, commonly known as burnet, is a genus in the family Rosaceae native to the temperate regions of the Northern hemisphere. Five of its thirty species are distributed in Korea: Sanguisorba officinalis, S. stipulata, S. hakusanensis, S. longifolia, and S. tenuifolia. S. officinalis has been designated as a medicinal remedy in the Chinese and Korean Herbal Pharmacopeias. Despite being a valuable medicinal resource, the morphological and genomic information, as well as the genetic characteristics of Sanguisorba, are still elusive. Therefore, we carried out the first comprehensive study on the floral micromorphology, palynology, and complete chloroplast (cp) genome of the Sanguisorba species. The outer sepal waxes and hypanthium characters showed diagnostic value, despite a similar floral micromorphology across different species. All the studied Sanguisorba pollen were small to medium, oblate to prolate-spheroidal, and their exine ornamentation was microechinate. The orbicules, which are possibly synapomorphic, were consistently absent in this genus. Additionally, the cp genomes of S. officinalis, S. stipulata, and S. hakusanensis have been completely sequenced. The comparative analysis of the reported Sanguisorba cp genomes revealed local divergence regions. The nucleotide diversity of trnH-psbA and rps2-rpoC2, referred to as hotspot regions, revealed the highest pi values in six Sanguisorba. The ndhG indicated positive selection pressures as a species-specific variation in S. filiformis. The S. stipulata and S. tenuifolia species had psbK genes at the selected pressures. We developed new DNA barcodes that distinguish the typical S. officinalis and S. officinalis var. longifolia, important herbal medicinal plants, from other similar Sanguisorba species with species-specific distinctive markers. The phylogenetic trees showed the positions of the reported Sanguisorba species; S. officinalis, S. tenuifolia, and S. stipulata showed the nearest genetic distance. The results of our comprehensive study on micromorphology, pollen chemistry, cp genome analysis, and the development of species identification markers can provide valuable information for future studies on S. officinalis, including those highlighting it as an important medicinal resource.
Collapse
|
14
|
New Insight into the Phylogeny and Taxonomy of Cultivated and Related Species of Crataegus in China, Based on Complete Chloroplast Genome Sequencing. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7090301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hawthorns (Crataegus L.) are one of the most important processing and table fruits in China, due to their medicinal properties and health benefits. However, the interspecific relationships and evolution history of cultivated Crataegus in China remain unclear. Our previously published data showed C. bretschneideri may be derived from the hybridization of C. pinnatifida with C. maximowiczii, and that introgression occurs between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. In the present study, chloroplast sequences were used to further elucidate the phylogenetic relationships of cultivated Crataegus native to China. The chloroplast genomes of three cultivated species and one related species of Crataegus were sequenced for comparative and phylogenetic analyses. The four chloroplast genomes of Crataegus exhibited typical quadripartite structures and ranged from 159,607 bp (C. bretschneideri) to 159,875 bp (C. maximowiczii) in length. The plastomes of the four species contained 113 genes consisting of 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Six hypervariable regions (ndhC-trnV(UAC)-trnM(CAU), ndhA, atpH-atpI, ndhF, trnR(UCU)-atpA, and ndhF-rpl32), 196 repeats, and a total of 386 simple sequence repeats were detected as potential variability makers for species identification and population genetic studies. In the phylogenomic analyses, we also compared the entire chloroplast genomes of three published Crataegus species: C. hupehensis (MW201730.1), C. pinnatifida (MN102356.1), and C. marshallii (MK920293.1). Our phylogenetic analyses grouped the seven Crataegus taxa into two main clusters. One cluster included C. bretschneideri, C. maximowiczii, and C. marshallii, whereas the other included C. hupehensis, C. pinnatifida, and C. pinnatifida var. major. Taken together, our findings indicate that C. maximowiczii is the maternal origin of C. bretschneideri. This work provides further evidence of introgression between C. hupehensis, C. pinnatifida, and C. pinnatifida var. major, and suggests that C. pinnatifida var. major might have been artificially selected and domesticated from hybrid populations, rather than evolved from C. pinnatifida.
Collapse
|
15
|
Shidhi PR, Nadiya F, Biju VC, Vijayan S, Sasi A, Vipin CL, Janardhanan A, Aswathy S, Rajan VS, Nair AS. Complete chloroplast genome of the medicinal plant Evolvulus alsinoides: comparative analysis, identification of mutational hotspots and evolutionary dynamics with species of Solanales. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1867-1884. [PMID: 34539121 PMCID: PMC8405790 DOI: 10.1007/s12298-021-01051-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Evolvulus alsinoides, belonging to the family Convolvulaceae, is an important medicinal plant widely used as a nootropic in the Indian traditional medicine system. In the genus Evolvulus, no research on the chloroplast genome has been published. Hence, the present study focuses on annotation, characterization, identification of mutational hotspots, and phylogenetic analysis in the complete chloroplast genome (cp) of E. alsinoides. Genome comparison and evolutionary dynamics were performed with the species of Solanales. The cp genome has 114 genes (80 protein-coding genes, 30 transfer RNA, and 4 ribosomal RNA genes) that were unique with total genome size of 157,015 bp. The cp genome possesses 69 RNA editing sites and 44 simple sequence repeats (SSRs). Predicted SSRs were randomly selected and validated experimentally. Six divergent hotspots such as trnQ-UUG, trnF-GAA, psaI, clpP, ndhF, and ycf1 were discovered from the cp genome. These microsatellites and divergent hot spot sequences of the Taxa 'Evolvulus' could be employed as molecular markers for species identification and genetic divergence investigations. The LSC area was found to be more conserved than the SSC and IR region in genome comparison. The IR contraction and expansion studies show that nine genes rpl2, rpl23, ycf1, ycf2, ycf1, ndhF, ndhA, matK, and psbK were present in the IR-LSC and IR-SSC boundaries of the cp genome. Fifty-four protein-coding genes in the cp genome were under negative selection pressure, indicating that they were well conserved and were undergoing purifying selection. The phylogenetic analysis reveals that E. alsinoides is closely related to the genus Cressa with some divergence from the genus Ipomoea. This is the first time the chloroplast genome of the genus Evolvulus has been published. The findings of the present study and chloroplast genome data could be a valuable resource for future studies in population genetics, genetic diversity, and evolutionary relationship of the family Convolvulaceae. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01051-w.
Collapse
Affiliation(s)
- P. R. Shidhi
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala India
| | - F. Nadiya
- Department of Biotechnology, Inter University Centre for Genomics and Gene Technology, University of Kerala, Thiruvananthapuram, Kerala India
| | - V. C. Biju
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala India
| | - Sheethal Vijayan
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala India
| | - Anu Sasi
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala India
| | - C. L. Vipin
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala India
| | - Akhil Janardhanan
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala India
| | - S. Aswathy
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala India
| | - Veena S. Rajan
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala India
| | - Achuthsankar S. Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala India
| |
Collapse
|
16
|
Research Progress in Plant Molecular Systematics of Lauraceae. BIOLOGY 2021; 10:biology10050391. [PMID: 34062846 PMCID: PMC8147330 DOI: 10.3390/biology10050391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Lauraceae, as an angiosperm group with high ecological and economic value, has been widely studied. With the development of science and technology, the research of Lauraceae has changed from morphology to molecular systematics. Our paper reviewed the molecular phylogeny of Lauraceae in recent years. From the aspects of gene fragments, chloroplast genome and DNA barcodes, we mainly discussed the establishment of Cinnamomeae in the ‘Core Lauraceae’ and the tribal controversial genera (Actinodaphne, Sassafras, Caryodaphnopsis, Neocinnamomum and Cassytha). We think that the whole genome and inflorescence characteristics are the breakthrough to solve the tribal problem of Lauraceae. Using reliable molecular and morphological evidence to reconstruct the phylogenetic relationship of Lauraceae will provide an important theoretical basis for the rational utilization of Lauraceae resources, the development of potential resources and the protection of rare plants. Abstract Lauraceae is a large family of woody plants with high ecological and economic value. The tribal and generic division and phylogenetic relationship of Lauraceae have long been controversial. Based on morphological and molecular evidence, phylogenetic relationships within the Cinnamomeae, Laureae and Perseeae tribes, also called ‘the Core Lauraceae’, have arisen particular attention. In this review, we comprehensively collated the literatures on the phylogeny of Lauraceae published in recent years and summarized progress made in molecular systematic researches employing gene fragments, chloroplast genomes and DNA barcodings analyses. We clarified the phylogenetic relationships and main controversies of ‘the Core Lauraceae’, the systemic position of fuzzy genera (Neocinnamomum, Caryodaphnopsis and Cassytha) and the development of chloroplast genome and DNA barcodes. We further suggested and proposed the whole genome analysis and different inflorescence types would be possible to provide more information for further research on phylogenetic relationships and taxonomy of Lauraceae.
Collapse
|
17
|
Wen F, Wu X, Li T, Jia M, Liu X, Liao L. The complete chloroplast genome of Stauntonia chinensis and compared analysis revealed adaptive evolution of subfamily Lardizabaloideae species in China. BMC Genomics 2021; 22:161. [PMID: 33676415 PMCID: PMC7937279 DOI: 10.1186/s12864-021-07484-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stauntonia chinensis DC. belongs to subfamily Lardizabaloideae, which is widely grown throughout southern China. It has been used as a traditional herbal medicinal plant, which could synthesize a number of triterpenoid saponins with anticancer and anti-inflammatory activities. However, the wild resources of this species and its relatives were threatened by over-exploitation before the genetic diversity and evolutionary analysis were uncovered. Thus, the complete chloroplast genome sequences of Stauntonia chinensis and comparative analysis of chloroplast genomes of Lardizabaloideae species are necessary and crucial to understand the plastome evolution of this subfamily. RESULTS A series of analyses including genome structure, GC content, repeat structure, SSR component, nucleotide diversity and codon usage were performed by comparing chloroplast genomes of Stauntonia chinensis and its relatives. Although the chloroplast genomes of eight Lardizabaloideae plants were evolutionary conserved, the comparative analysis also showed several variation hotspots, which were considered as highly variable regions. Additionally, pairwise Ka/Ks analysis showed that most of the chloroplast genes of Lardizabaloideae species underwent purifying selection, whereas 25 chloroplast protein coding genes were identified with positive selection in this subfamily species by using branch-site model. Bayesian and ML phylogeny on CCG (complete chloroplast genome) and CDs (coding DNA sequences) produced a well-resolved phylogeny of Lardizabaloideae plastid lineages. CONCLUSIONS This study enhanced the understanding of the evolution of Lardizabaloideae and its relatives. All the obtained genetic resources will facilitate future studies in DNA barcode, species discrimination, the intraspecific and interspecific variability and the phylogenetic relationships of subfamily Lardizabaloideae.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinsheng Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| |
Collapse
|
18
|
Comparative analysis and phylogenetic investigation of Hong Kong Ilex chloroplast genomes. Sci Rep 2021; 11:5153. [PMID: 33664414 PMCID: PMC7933167 DOI: 10.1038/s41598-021-84705-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/19/2021] [Indexed: 11/29/2022] Open
Abstract
Ilex is a monogeneric plant group (containing approximately 600 species) in the Aquifoliaceae family and one of the most commonly used medicinal herbs. However, its taxonomy and phylogenetic relationships at the species level are debatable. Herein, we obtained the complete chloroplast genomes of all 19 Ilex types that are native to Hong Kong. The genomes are conserved in structure, gene content and arrangement. The chloroplast genomes range in size from 157,119 bp in Ilex graciliflora to 158,020 bp in Ilex kwangtungensis. All these genomes contain 125 genes, of which 88 are protein-coding and 37 are tRNA genes. Four highly varied sequences (rps16-trnQ, rpl32-trnL, ndhD-psaC and ycf1) were found. The number of repeats in the Ilex genomes is mostly conserved, but the number of repeating motifs varies. The phylogenetic relationship among the 19 Ilex genomes, together with eight other available genomes in other studies, was investigated. Most of the species could be correctly assigned to the section or even series level, consistent with previous taxonomy, except Ilex rotunda var. microcarpa, Ilex asprella var. tapuensis and Ilex chapaensis. These species were reclassified; I. rotunda was placed in the section Micrococca, while the other two were grouped with the section Pseudoaquifolium. These studies provide a better understanding of Ilex phylogeny and refine its classification.
Collapse
|
19
|
Tian X, Guo J, Zhou X, Ma K, Ma Y, Shi T, Shi Y. Comparative and Evolutionary Analyses on the Complete Plastomes of Five Kalanchoe Horticultural Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:705874. [PMID: 34512691 PMCID: PMC8429837 DOI: 10.3389/fpls.2021.705874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/02/2021] [Indexed: 05/11/2023]
Abstract
Many species of the genus Kalanchoe are important horticultural plants. They have evolved the Crassulacean acid metabolism (CAM) photosynthetic pathway to allow them to be better adapted to dry environments. Despite their importance, it is still debating whether Kalanchoe is monophyletic, and understanding the past diversification of this genus requires a tremendous amount of effort and work being devoted to the studies of morphological and molecular characters of this genus. However, molecular information, plastic sequence data, in particular, reported on Kalanchoe species is scarce, and this has posed a great challenge in trying to interpret the evolutionary history of this genus. In this study, plastomes of the five Kalanchoe species, including Kalanchoe daigremontiana, Kalanchoe delagoensis, Kalanchoe fedtschenkoi, Kalanchoe longiflora, and Kalanchoe pinnata, were sequenced and analyzed. The results indicate that the five plastomes are comparable in size, guanine-cytosine (GC) contents and the number of genes, which also demonstrate an insignificant difference in comparison with other species from the family Crassulaceae. About 224 simple sequence repeats (SSRs) and 144 long repeats were identified in the five plastomes, and most of these are distributed in the inverted repeat regions. In addition, highly divergent regions containing either single nucleotide polymorphism (SNP) or insertion or deletion (InDel) mutations are discovered, which could be potentially used for establishing phylogenetic relationships among members of the Kalanchoe genus in future studies. Furthermore, phylogenetic analyses suggest that Bryophyllum should be placed into one single genus as Kalanchoe. Further genomic analyses also reveal that several genes are undergone positive selection. Among them, 11 genes are involved in important cellular processes, such as cell survival, electron transfer, and may have played indispensable roles in the adaptive evolution of Kalanchoe to dry environments.
Collapse
Affiliation(s)
- Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojiao Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ke Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yonggui Ma
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Qinghai Normal University, Xining, China
| | - Tuansheng Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuhua Shi
| |
Collapse
|
20
|
The Complete Plastid Genome of Artocarpus camansi: A High Degree of Conservation of the Plastome Structure in the Family Moraceae. FORESTS 2020. [DOI: 10.3390/f11111179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding the plastid genome is extremely important for the interpretation of the genetic mechanisms associated with essential physiological and metabolic functions, the identification of possible marker regions for phylogenetic or phylogeographic analyses, and the elucidation of the modes through which natural selection operates in different regions of this genome. In the present study, we assembled the plastid genome of Artocarpus camansi, compared its repetitive structures with Artocarpus heterophyllus, and searched for evidence of synteny within the family Moraceae. We also constructed a phylogeny based on 56 chloroplast genes to assess the relationships among three families of the order Rosales, that is, the Moraceae, Rhamnaceae, and Cannabaceae. The plastid genome of A. camansi has 160,096 bp, and presents the typical circular quadripartite structure of the Angiosperms, comprising a large single copy (LSC) of 88,745 bp and a small single copy (SSC) of 19,883 bp, separated by a pair of inverted repeat (IR) regions each with a length of 25,734 bp. The total GC content was 36.0%, which is very similar to Artocarpus heterophyllus (36.1%) and other moraceous species. A total of 23,068 codons and 80 SSRs were identified in the A. camansi plastid genome, with the majority of the SSRs being mononucleotide (70.0%). A total of 50 repeat structures were observed in the A. camansi plastid genome, in contrast with 61 repeats in A. heterophyllus. A purifying selection signal was found in 70 of the 79 protein-coding genes, indicating that they have all been highly conserved throughout the evolutionary history of the genus. The comparative analysis of the structural characteristics of the chloroplast among different moraceous species found a high degree of similarity in the sequences, which indicates a highly conserved evolutionary model in these plastid genomes. The phylogenetic analysis also recovered a high degree of similarity between the chloroplast genes of A. camansi and A. heterophyllus, and reconfirmed the hypothesis of the intense conservation of the plastome in the family Moraceae.
Collapse
|
21
|
Amar MH. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica. J Genet Eng Biotechnol 2020; 18:42. [PMID: 32797323 PMCID: PMC7427673 DOI: 10.1186/s43141-020-00057-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022]
Abstract
Background Chloroplast genome sequencing is becoming a valuable process for developing several DNA barcodes. At present, plastid DNA barcode for systematics and evolution in flowering plant rely heavily on the use of non-coding genes. The present study was performed to verify the novelty and suitability of the two hotspot barcode plastid coding gene ycf1 and ndhF, to estimate the rate of molecular evolution in the Prunus genus at low taxonomic levels. Results Here, 25 chloroplast genomes of Prunus genus were selected for sequences annotation to search for the highly variable coding DNA barcode regions. Among them, 5 genera were of our own data, including the ornamental, cultivated, and wild haplotype, while 20 genera have been downloaded from the GenBank database. The results indicated that the two hotspot plastid gene ycf1 and ndhF were the most variable regions within the coding genes in Prunus with an average of 3268 to 3416 bp in length, which have been predicted to have the highest nucleotide diversity, with the overall transition/transversion bias (R = 1.06). The ycf1-ndhF structural domains showed a positive trend evident in structure variation among the 25 specimens tested, due to the variant overlap’s gene annotation and insertion or deletion with a broad trend of the full form of IGS sequence. As a result, the principal component analysis (PCA) and the ML tree data drew an accurate monophyletic annotations cluster in Prunus species, offering unambiguous identification without overlapping groups between peach, almond, and cherry. Conclusion To this end, we put forward the domain of the two-locus ycf1-ndhF genes as the most promising coding plastid DNA barcode in P. persica at low taxonomic levels. We believe that the discovering of further variable loci with high evolutionary rates is extremely useful and potential uses as a DNA barcode in P. persica for further phylogeny study and species identification.
Collapse
Affiliation(s)
- Mohamed Hamdy Amar
- Egyptian Deserts Gene Bank, Desert Research Center, B.O.P, Cairo, 11753, Egypt.
| |
Collapse
|
22
|
Androsiuk P, Jastrzębski JP, Paukszto Ł, Makowczenko K, Okorski A, Pszczółkowska A, Chwedorzewska KJ, Górecki R, Giełwanowska I. Evolutionary dynamics of the chloroplast genome sequences of six Colobanthus species. Sci Rep 2020; 10:11522. [PMID: 32661280 PMCID: PMC7359349 DOI: 10.1038/s41598-020-68563-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/25/2020] [Indexed: 11/08/2022] Open
Abstract
The complete plastome sequences of six species were sequenced to better understand the evolutionary relationships and mutation patterns in the chloroplast genome of the genus Colobanthus. The length of the chloroplast genome sequences of C. acicularis, C. affinis, C. lycopodioides, C. nivicola, C. pulvinatus and C. subulatus ranged from 151,050 to 151,462 bp. The quadripartite circular structure of these genome sequences has the same overall organization and gene content with 73 protein-coding genes, 30 tRNA genes, four rRNA genes and five conserved chloroplast open reading frames. A total of 153 repeat sequences were revealed. Forward repeats were dominant, whereas complementary repeats were found only in C. pulvinatus. The mononucleotide SSRs composed of A/T units were most common, and hexanucleotide SSRs were detected least often. Eleven highly variable regions which could be utilized as potential markers for phylogeny reconstruction, species identification or phylogeography were identified within Colobanthus chloroplast genomes. Seventy-three protein-coding genes were used in phylogenetic analyses. Reconstructed phylogeny was consistent with the systematic position of the studied species, and the representatives of the same genus were grouped in one clade. All studied Colobanthus species formed a single group and C. lycopodioides was least similar to the remaining species.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Karol Makowczenko
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | | | - Ryszard Górecki
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
23
|
Complete chloroplast genome sequencing of sago palm (Metroxylon sagu Rottb.): Molecular structures, comparative analysis and evolutionary significance. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Xiong Y, Xiong Y, He J, Yu Q, Zhao J, Lei X, Dong Z, Yang J, Peng Y, Zhang X, Ma X. The Complete Chloroplast Genome of Two Important Annual Clover Species, Trifolium alexandrinum and T. resupinatum: Genome Structure, Comparative Analyses and Phylogenetic Relationships with Relatives in Leguminosae. PLANTS (BASEL, SWITZERLAND) 2020; 9:E478. [PMID: 32283660 PMCID: PMC7238141 DOI: 10.3390/plants9040478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/31/2023]
Abstract
Trifolium L., which belongs to the IR lacking clade (IRLC), is one of the largest genera in the Leguminosae and contains several economically important fodder species. Here, we present whole chloroplast (cp) genome sequencing and annotation of two important annual grasses, Trifolium alexandrinum (Egyptian clover) and T. resupinatum (Persian clover). Abundant single nucleotide polymorphisms (SNPs) and insertions/deletions (In/Dels) were discovered between those two species. Global alignment of T. alexandrinum and T. resupinatum to a further thirteen Trifolium species revealed a large amount of rearrangement and repetitive events in these fifteen species. As hypothetical cp open reading frame (ORF) and RNA polymerase subunits, ycf1 and rpoC2 in the cp genomes both contain vast repetitive sequences and observed high Pi values (0.7008, 0.3982) between T. alexandrinum and T. resupinatum. Thus they could be considered as the candidate genes for phylogenetic analysis of Trifolium species. In addition, the divergence time of those IR lacking Trifolium species ranged from 84.8505 Mya to 4.7720 Mya. This study will provide insight into the evolution of Trifolium species.
Collapse
Affiliation(s)
- Yanli Xiong
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| | - Yi Xiong
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| | - Jun He
- State Key Laboratory of Exploration and Utilization of Crop Gene Resources in 10 Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in 11 Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan 12 Agricultural University, Chengdu 600031, China;
| | - Qingqing Yu
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| | - Junming Zhao
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| | - Xiong Lei
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| | - Zhixiao Dong
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| | - Jian Yang
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| | - Yan Peng
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| | - Xinquan Zhang
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| | - Xiao Ma
- College of Animal science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.X.); (Y.X.); (Q.Y.); (J.Z.); (X.L.); (Z.D.); (J.Y.); (Y.P.)
| |
Collapse
|
25
|
Hu G, Cheng L, Huang W, Cao Q, Zhou L, Jia W, Lan Y. Chloroplast genomes of seven species of Coryloideae (Betulaceae): structures and comparative analysis. Genome 2020; 63:337-348. [PMID: 32240594 DOI: 10.1139/gen-2019-0153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coryloideae is a subfamily in the family Betulaceae consisting of four extant genera: Carpinus, Corylus, Ostrya, and Ostryopsis. We sequenced the plastomes of six species of Corylus and one species of Ostryopsis for comparative and phylogenetic analyses. The plastomes are 159-160 kb long and possess typical quadripartite cp architecture. The plastomes show moderate divergence and conserved arrangement. Five mutational hotspots were identified by comparing the plastomes of seven species of Coryloideae: trnG-atpA, trnF-ndhJ, accD-psaI, ndhF-ccsA, and ycf1. We assembled the most complete phylogenomic tree for the family Betulaceae using 68 plastomes. Our cp genomic sequence phylogenetic analyses placed Carpinus, Ostrya, and Ostryopsis in a clade together and left Corylus in a separate clade. Within the genus Corylus, these analyses indicate the existence of five subclades reflecting the phylogeographical relationships among the species. The data offer significant genetic information for the identification of species of the Coryloideae, taxonomic and phylogenetic studies, and molecular breeding.
Collapse
Affiliation(s)
- Guanglong Hu
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Lili Cheng
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Wugang Huang
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Qingchang Cao
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Wenshen Jia
- Department of Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yanping Lan
- Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs/Chestnut Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China
| |
Collapse
|
26
|
Zheng G, Wei L, Ma L, Wu Z, Gu C, Chen K. Comparative analyses of chloroplast genomes from 13 Lagerstroemia (Lythraceae) species: identification of highly divergent regions and inference of phylogenetic relationships. PLANT MOLECULAR BIOLOGY 2020; 102:659-676. [PMID: 31997112 DOI: 10.1007/s11103-020-00972-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/20/2020] [Indexed: 05/11/2023]
Abstract
Seven divergence hotspots as plastid markers for DNA barcoding was selected, and the phylogeny of 13 Lagerstroemia species based on the cp genome data was reconstructed within Myrtales. The Lagerstroemia species used in this study originated in China and have high economic and ecological value. The shared interspecific morphological characteristics and intraspecific morphological variation resulting from hybridization among Lagerstroemia taxa have made resolving their classification problems and phylogenetic relationships difficult. Systematic comparative genomic analysis has been shown to resolve phylogenetic relationships. We sequenced and annotated 6 Lagerstroemia cp genomes (Lagerstroemia excelsa, Lagerstroemia limii, Lagerstroemia siamica, Lagerstroemia tomentosa, Lagerstroemia venusta, and Lagerstroemia calyculata) for the first time and combined them with previously published genomes for Lagerstroemia species. Bioinformatics was used to analyse the 13 cp genomes in terms of gene structure and organization, codon usage, contraction and expansion of inverted repeat regions, repeat structure, divergence hotspots, species pairwise Ka/Ks ratios and phylogenetic relationships. The length varied between 152,049 bp in Lagerstroemia subcostata and 152,521 bp in L. venusta. We selected seven divergence hotspots in the cp genomes that had the potential to act as plastid markers to distinguish Lagerstroemia species. The phylogenetic relationships within Myrtales inferred from the cp genomes of 13 Lagerstroemia species and 27 other Myrtales species were highly supported, which illustrated several novel relationships within Myrtales. Taken together, our results provide comprehensive chloroplast genomic resources, which can be used further for species identification and molecular breeding of Lagerstroemia species.
Collapse
Affiliation(s)
- Gang Zheng
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Lingling Wei
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- School of Humanities and social sciences, Beijing Forestry University, Beijing, 100083, China
| | - Li Ma
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Zhiqiang Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Cuihua Gu
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Kai Chen
- School of Landscape and Architecture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
27
|
Uncu AO. A trnH-psbA barcode genotyping assay for the detection of common apricot (Prunus armeniaca L.) adulteration in almond (Prunus dulcis Mill.). CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1727961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ayse Ozgur Uncu
- Department of Biotechnology, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
28
|
Valencia-D J, Murillo-A J, Orozco CI, Parra-O C, Neubig KM. -Complete plastid genome sequences of two species of the Neotropical genus Brunellia (Brunelliaceae). PeerJ 2020; 8:e8392. [PMID: 32025370 PMCID: PMC6993752 DOI: 10.7717/peerj.8392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Here we present the first two complete plastid genomes for Brunelliaceae, a Neotropical family with a single genus, Brunellia. We surveyed the entire plastid genome in order to find variable cpDNA regions for further phylogenetic analyses across the family. We sampled morphologically different species, B. antioquensis and B. trianae, and found that the plastid genomes are 157,685 and 157,775 bp in length and display the typical quadripartite structure found in angiosperms. Despite the clear morphological distinction between both species, the molecular data show a very low level of divergence. The amount of nucleotide substitutions per site is one of the lowest reported to date among published congeneric studies (π = 0.00025). The plastid genomes have gene order and content coincident with other COM (Celastrales, Oxalidales, Malpighiales) relatives. Phylogenetic analyses of selected superrosid representatives show high bootstrap support for the ((C,M)O) topology. The N-fixing clade appears as the sister group of the COM clade and Zygophyllales as the sister to the rest of the fabids group.
Collapse
Affiliation(s)
- Janice Valencia-D
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, IL, United States of America
| | - José Murillo-A
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Clara Inés Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Carlos Parra-O
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Kurt M. Neubig
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, IL, United States of America
| |
Collapse
|
29
|
Cheng C, Fan Y, Tang Y, Zhang K, Joshi DC, Jha R, Janovská D, Meglič V, Yan M, Zhou M. Fagopyrum esculentum ssp. ancestrale-A Hybrid Species Between Diploid F. cymosum and F. esculentum. FRONTIERS IN PLANT SCIENCE 2020; 11:1073. [PMID: 32765557 PMCID: PMC7378737 DOI: 10.3389/fpls.2020.01073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/30/2020] [Indexed: 05/15/2023]
Abstract
Fagopyrum cymosum is considered as most probable wild ancestor of cultivated buckwheat. However, the evolutionary route from F. cymosum to F. esculentum remains to be deciphered. We hypothesized that a hybrid species exists in natural habitats between diploid F. cymosum and F. esculentum. The aim of this research was to determine the phylogenetic position of F. esculentum ssp. ancestrale and to provide new thoughts on buckwheat evolution. Different methodologies including evaluation of morphological traits, determination of secondary metabolites, fluorescence in situ hybridization (FISH), comparative chloroplast genomics, and molecular markers were deployed to determine the phylogenetic relationship of F. esculentum ssp. ancestrale with F. cymosum and F. esculentum. The ambiguity observed in morphological pattern of genetic variation in three species revealed that F. esculentum ssp. ancestrale is closely related to F. cymosum and F. esculentum. Flavonoid analysis revealed that F. esculentum ssp. ancestrale is closely related to F. esculentum. Comparative chloroplast genome analysis further supported the close proximity of F. esculentum ssp. ancestrale with F. esculentum. Additionally, molecular marker analysis revealed that F. esculentum ssp. ancestrale exhibits co-dominance with the bands amplified by F. cymosum and F. esculentum. These finding provided supporting evidence in favor of the hypothesis that F. esculentum ssp. ancestrale is a hybrid species between F. cymosum to F. esculentum, which was probably originated by spontaneous hybridization under natural conditions.
Collapse
Affiliation(s)
- Cheng Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Tang
- Department of Tourism, Sichuan Tourism University, Chengdu, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dinesh C. Joshi
- Indian Council of Agricultural Research- Vivekananda Institute of Hill Agriculture, Almora, India
| | - Rintu Jha
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- *Correspondence: Mingli Yan, ; Meiliang Zhou,
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Mingli Yan, ; Meiliang Zhou,
| |
Collapse
|
30
|
Wang H, Park SY, Song SH, San ML, Kim YC, Ham TH, Kim DY, Kim TS, Lee J, Kwon SW. Analysis of complete chloroplast genome sequence of Korean landrace Cymbidium goeringii. 3 Biotech 2020; 10:29. [PMID: 32015946 PMCID: PMC6944737 DOI: 10.1007/s13205-019-2020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/18/2019] [Indexed: 01/16/2023] Open
Abstract
The complete chloroplast genome sequence of Korean Cymbidium goeringii acc. smg222 was analyzed. Based on a comparison with Chinese C. goeringii, losses of nine ndh subunits (ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhH, ndhJ, and ndhK), three protein-coding genes (ycf 1-like, ycf 15, and ycf 68), six transfer RNAs, and one conserved open reading frame (orf 42). In addition, 219 InDels (insertion or deletion) and 171 simple sequence repeats were observed. Twenty-Five of which InDel markers have been evaluated, that useful for distinguishing Korean and Chinese Cymbidium associations based on the polymorphisms of chloroplast genomes between Korean Cymbidium goeringii acc. smg222 and Chinese C. goeringii and evaluation of genetic diversity. Finally, the phylogenetic relationships of the 39 Korean and 22 Chinese species was constructed based on the five InDel markers of them and obtained high support, indicating that our data may be useful in resolving relationships in this genus. The information about chloroplast DNA structure and gene variants of C. goeringii acc. smg222 chloroplast genome will provide sufficient phylogenetic information for resolving evolutionary relationships. The molecular markers developed in here will contribute to further research of Cymbidium species and conservation of endemic Cymbidium species.
Collapse
Affiliation(s)
- Heng Wang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - So-Yeon Park
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Su-Hyang Song
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Mar-Lar San
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Yong-Chul Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Tae-Ho Ham
- Department of Applied Bioscience, Konkuk University, Seoul, 05029 Republic of Korea
- Department of Agricultural Science, Korea National Open University, Seoul, 03087 Republic of Korea
| | - Dong-Yong Kim
- Saemangeum BioCenter Co, 1044 Heomi-ro, Daeya-myeon, Gunsan, 54061 Republic of Korea
| | - Tae-Sung Kim
- Department of Agricultural Science, Korea National Open University, Seoul, 03087 Republic of Korea
| | - Joohyun Lee
- Department of Applied Bioscience, Konkuk University, Seoul, 05029 Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| |
Collapse
|
31
|
Jo S, Kim YK, Cheon SH, Fan Q, Kim KJ. Characterization of 20 complete plastomes from the tribe Laureae (Lauraceae) and distribution of small inversions. PLoS One 2019; 14:e0224622. [PMID: 31675370 PMCID: PMC6824564 DOI: 10.1371/journal.pone.0224622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/17/2019] [Indexed: 01/24/2023] Open
Abstract
Lindera Thunb. (Lauraceae) consists of approximately 100 species, mainly distributed in the temperate and tropical regions of East Asia. In this study, we report 20 new, complete plastome sequences including 17 Lindera species and three related species, Actinodaphne lancifolia, Litsea japonica and Sassafras tzumu. The complete plastomes of Lindera range from 152,502 bp (L. neesiana) to 154,314 bp (L. erythrocarpa) in length. Eleven small inversion (SI) sites are documented among the plastomes. Six of the 11 SI sites are newly reported and they locate in rpoB-trnC, psbC-trnS, petA-psbJ, rpoA and ycf2 regions. The distribution patterns of SIs are useful for species identification. An average of 83 simple sequence repeats (SSRs) were detected in each plastome. The mono-SSRs accounted for 72.7% of total SSRs, followed by di- (12.4%), tetra- (9.4%), tri- (4.2%), and penta-SSRs (1.3%). Of these SSRs, 64.6% were distributed in an intergenic spacer (IGS) region. In addition, 79.8% of the SSRs are located in a large single copy (LSC) region. In contrast, almost no SSRs are distributed in inverted repeat (IR) regions. The SSR loci are useful to identifying species but the phylogenetic value is low because the majority of them show autapomorphic status or highly homoplastic characteristics. The nucleotide diversity (Pi) values also indicated the conserved nature of the IR region compared to LSC and small single copy (SSC) regions. Five spacer regions with high Pi values, trnH-psbA, petA-psbJ and ndhF-rpl32, rpl32-trnL and Ψycf1-ndhF, have a potential use for the molecular identification study of Lindera and related species. Lindera species form a paraphyletic group in the plastome tree because of the inclusion of related genera such as Actinodaphne, Laurus, Litsea and Neolitsea. A former member of tribe Laureae, Sassafras, forms a clade with the tribe Cinnamomeae. The SIs do not affect the phylogenetic relationship of Laureae. This result indicated that ancient plastome captures may have contribute to the mixed intergeneric relationship of Laureae. Alternatively, the result may indicate that the morphological characters defined the genera of Lauraceae originated for several times.
Collapse
Affiliation(s)
- Sangjin Jo
- School of Life Sciences, Korea University, Seoul, Korea
| | - Young-Kee Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Se-Hwan Cheon
- School of Life Sciences, Korea University, Seoul, Korea
| | - Qiang Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
32
|
Zhu R, Song Y, Zhao G, Yang J, Wang X. The plastid genome of a tropical tree Alseodaphne petiolaris (Lauraceae). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:3544-3545. [PMID: 33366078 PMCID: PMC7707275 DOI: 10.1080/23802359.2019.1676178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alseodaphne petiolaris Hook.f. is a valuable timber tree of the genus Alseodaphne Nees in the family Lauraceae. To better determine its phylogenetic location with respect to the other Alseodaphne species, the complete plastid genome of A. petiolaris was sequenced. The whole plastome is 152,986 bp in length, consisting of a pair of inverted repeat (IR) regions of 20,108 bp, one large single copy (LSC) region of 93,863 bp, and one small single copy (SSC) region of 18,907 bp. The overall GC content of the whole plastome is 39.1%. Further, maximum-likelihood phylogenetic analyse was conducted using 15 complete plastomes of the Lauraceae, which support the close relationship between A. petiolaris and the species of Machilus and Phoebe.
Collapse
Affiliation(s)
- Rongjie Zhu
- Institute of Vegetable Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Guanfei Zhao
- Institute of Vegetable Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet, China
| | - Jie Yang
- Institute of Vegetable Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet, China
| | - Xilong Wang
- Tibet Science and Technology Department, Tibet Plateau Institute of Biology, Tibet, China
| |
Collapse
|
33
|
Tian X, Ye J, Song Y. Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae. PeerJ 2019; 7:e7662. [PMID: 31608166 PMCID: PMC6786250 DOI: 10.7717/peerj.7662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
Lindera is a genus (c. 100 spp.) of trees belonging to the “core Laureae” group in the family Lauraceae. It is often confused with Litsea, and the systematics of the genus is unclear. Here, total 10 complete plastomes from nine trinerved Lindera species and another species Lindera obtusiloba (sect. Palminerviae Meissn.) were sequenced. Nine highly variable regions, trnH-GUG/psbA, psbM/trnD-GUC, petA/psbL, ndhF, trnL-UAG/ndhD, and ycf1, were identified among the 10 Lindera species. In addition, a total of 1,836 mutation events including six micro-inversions, 156 indels, and 1,674 substitutions, were also summarized. Comparing our sequences with other available plastomes in the “core Laureae,” we put forward that six hypervariable loci, trnH-GUG/psbA, ndhF, ndhF/rpl32, trl32/trnL-UAG, ndhD, and ycf1, could potentially be used as plastid barcode candidates for species identification. Further phylogenetic analyses were conducted using 49 complete Lauraceae plastomes. The results supported a close relationship among trinerved Lindera species and suggested an improved trinerved group comprising species of trinerved Lindera species and Iteadaphne caudate.
Collapse
Affiliation(s)
- Xiangyu Tian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Junwei Ye
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| |
Collapse
|
34
|
Ge Y, Dong X, Wu B, Wang N, Chen D, Chen H, Zou M, Xu Z, Tan L, Zhan R. Evolutionary analysis of six chloroplast genomes from three Persea americana ecological races: Insights into sequence divergences and phylogenetic relationships. PLoS One 2019; 14:e0221827. [PMID: 31532782 PMCID: PMC6750585 DOI: 10.1371/journal.pone.0221827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/15/2019] [Indexed: 11/19/2022] Open
Abstract
Chloroplasts significantly influence species phylogenies because of their maternal inheritance and the moderate evolutionary rate of their genomes. Avocado, which is a member of the family Lauraceae, has received considerable attention from botanists, likely because of its position as a basal angiosperm. However, there is relatively little avocado genomic information currently available. In this study, six complete avocado chloroplast genomes from three ecological races were assembled to examine the sequence diversity among the three avocado ecological races. A comparative genomic analysis revealed that 515 simple sequence repeat loci and 176 repeats belonging to four other types were polymorphic across the six chloroplast genomes. Three highly variable regions (trnC-GCA-petN, petN-psbM, and petA-psbJ) were identified as highly informative markers. A phylogenetic analysis based on 79 common protein-coding genes indicated that the six examined avocado accessions from three ecological races form a monophyletic clade. The other three genera belonging to the Persea group clustered to form a sister clade with a high bootstrap value. These chloroplast genomes provide important genetic information for future attempts at identifying avocado races and for the related biological research.
Collapse
Affiliation(s)
- Yu Ge
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiangshu Dong
- College of Agriculture, Yunnan University, Yunnan, China
| | - Bin Wu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Nan Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Di Chen
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haihong Chen
- College of Agriculture, Guangxi Vocational and Technical College, Nanning, China
| | - Minghong Zou
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zining Xu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lin Tan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
35
|
Abdullah, Shahzadi I, Mehmood F, Ali Z, Malik MS, Waseem S, Mirza B, Ahmed I, Waheed MT. Comparative analyses of chloroplast genomes among three Firmiana species: Identification of mutational hotspots and phylogenetic relationship with other species of Malvaceae. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Xu F, He L, Gao S, Su Y, Li F, Xu L. Comparative Analysis of two Sugarcane Ancestors Saccharum officinarum and S. spontaneum based on Complete Chloroplast Genome Sequences and Photosynthetic Ability in Cold Stress. Int J Mol Sci 2019; 20:E3828. [PMID: 31387284 PMCID: PMC6696253 DOI: 10.3390/ijms20153828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/11/2023] Open
Abstract
Polyploid Saccharum with complex genomes hindered the progress of sugarcane improvement, while their chloroplast genomes are much smaller and simpler. Chloroplast (cp), the vital organelle, is the site of plant photosynthesis, which also evolves other functions, such as tolerance to environmental stresses. In this study, the cp genome of two sugarcane ancestors Saccharum officinarum and S. spontaneum were sequenced, and genome comparative analysis between these two species was carried out, together with the photosynthetic ability. The length is 141,187 bp for S. officinarum and that is 7 bp longer than S. spontaneum, with the same GC content (38.44%) and annotated gene number (134), 13 with introns among them. There is a typical tetrad structure, including LSC, SSC, IRb and IRa. Of them, LSC and IRa/IRb are 18 bp longer and 6 bp shorter than those in S. spontaneum (83,047 bp and 22,795 bp), respectively, while the size of SSC is same (12,544 bp). Five genes exhibit contraction and expansion at the IR junctions, but only one gene ndhF with 29 bp expansion at the border of IRb/SSC. Nucleotide diversity (Pi) based on sliding window analysis showed that the single copy and noncoding regions were more divergent than IR- and coding regions, and the variant hotspots trnG-trnM, psbM-petN, trnR-rps14, ndhC-trnV and petA-psbJ in the LSC and trnL-ccsA in the SSC regions were detected, and petA-psbJ with the highest divergent value of 0.01500. Genetic distances of 65 protein genes vary from 0.00000 to 0.00288 between two species, and the selective pressure on them indicated that only petB was subjected to positive selection, while more genes including rpoC2, rps3, ccsA, ndhA, ndhA, psbI, atpH and psaC were subjected to purifying or very strong purifying selection. There are larger number of codons in S. spontaneum than that in S. officinarum, while both species have obvious codon preference and the codons with highest-(AUG) and lowest frequency (AUA) are same. Whilst, the most abundant amino acid is leucine in both S. officinarum and S. spontaneum, with number of 2175 (10.88% of total) and 2228 (10.90% of total) codons, respectively, and the lowest number is cysteine, with only 221 (1.105%) and 224 (1.096%), respectively. Protein collinearity analysis showed the high collinearity though several divergences were present in cp genomes, and identification of simple sequence repeats (SSRs) were included in this study. In addition, in order to compare cold tolerance and explore the expanding function of this environmental stress, the chlorophyll relative content (SPAD) and chlorophyll fluorescence Fv/Fm were measured. The significantly higher SPAD were observed in S. spontaneum than those in S. officinarum, no matter what the control conditions, exposure to low temperature or during recovery, and so was for Fv/Fm under exposure to low temperature, together with higher level of SPAD in S. spontaneum in each measurement. Aforementioned results suggest much stronger photosynthetic ability and cold tolerance in S. spontaneum. Our findings build a foundation to investigate the biological mechanism of two sugarcane ancestor chloroplasts and retrieve reliable molecular resources for phylogenetic and evolutionary studies, and will be conducive to genetic improvement of photosynthetic ability and cold resistance in modern sugarcane.
Collapse
Affiliation(s)
- Fu Xu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lilian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fusheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China.
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
37
|
Li W, Zhang C, Guo X, Liu Q, Wang K. Complete chloroplast genome of Camellia japonica genome structures, comparative and phylogenetic analysis. PLoS One 2019; 14:e0216645. [PMID: 31071159 PMCID: PMC6508735 DOI: 10.1371/journal.pone.0216645] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/26/2019] [Indexed: 11/19/2022] Open
Abstract
Camellia is an economically, ecologically and phylogenetically valuable genus in the family Theaceae. The frequent interspecific hybridization and polyploidization makes this genus phylogenetically and taxonomically under controversial and require detailed investigation. Chloroplast (cp) genome sequences have been used for cpDNA marker development and genetic diversity evaluation. Our research newly sequenced the chloroplast genome of Camellia japonica using Illumina HiSeq X Ten platform, and retrieved five other chloroplast genomes of Camellia previously published for comparative analyses, thereby shedding lights on a deeper understanding of the applicability of chloroplast information. The chloroplast genome sizes ranged in length from 156,607 to 157,166 bp, and their gene structure resembled those of other higher plants. There were four categories of SSRs detected in six Camellia cpDNA sequences, with the lengths ranging from 10 to 17bp. The Camellia species exhibited different evolutionary routes that lhbA and orf188, followed by orf42 and psbZ, were readily lost during evolution. Obvious codon preferences were also shown in almost all protein-coding cpDNA and amino acid sequences. Selection pressure analysis revealed the influence of different environmental pressures on different Camellia chloroplast genomes during long-term evolution. All Camellia species, except C. crapnelliana, presented the identical rate of amplification in the IR region. The datasets obtained from the chloroplast genomes are highly supportive in inferring the phylogenetic relationships of the Camellia taxa, indicating that chloroplast genome can be used for classifying interspecific relationships in this genus.
Collapse
Affiliation(s)
- Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Cuiping Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Qinghua Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Kuiling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
38
|
Xie DF, Yu HX, Price M, Xie C, Deng YQ, Chen JP, Yu Y, Zhou SD, He XJ. Phylogeny of Chinese Allium Species in Section Daghestanica and Adaptive Evolution of Allium (Amaryllidaceae, Allioideae) Species Revealed by the Chloroplast Complete Genome. FRONTIERS IN PLANT SCIENCE 2019; 10:460. [PMID: 31114591 PMCID: PMC6503222 DOI: 10.3389/fpls.2019.00460] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/27/2019] [Indexed: 05/25/2023]
Abstract
The genus Allium (Amaryllidaceae, Allioideae) is one of the largest monocotyledonous genera and it includes many economically important crops that are cultivated for consumption or medicinal uses. Recent advances in molecular phylogenetics have revolutionized our understanding of Allium taxonomy and evolution. However, the phylogenetic relationships in some Allium sections (such as the Allium section Daghestanica) and the genetic bases of adaptative evolution, remain poorly understood. Here, we newly assembled six chloroplast genomes from Chinese endemic species in Allium section Daghestanica and by combining these genomes with another 35 allied species, we performed a series of analyses including genome structure, GC content, species pairwise Ka/Ks ratios, and the SSR component, nucleotide diversity and codon usage. Positively selected genes (PSGs) were detected in the Allium lineage using the branch-site model. Comparison analysis of Bayesian and ML phylogeny on CCG (complete chloroplast genome), SCG (single copy genes) and CDS (coding DNA sequences) produced a well-resolved phylogeny of Allioideae plastid lineages, which illustrated several novel relationships with the section Daghestanica. In addition, six species in section Daghestanica showed highly conserved structures. The GC content and the GC3s content in Allioideae species exhibited lower values than studied non-Allioideae species, along with elevated pairwise Ka/Ks ratios. The rps2 gene was lost in all examined Allioideae species, and 10 genes with significant posterior probabilities for codon sites were identified in the positive selection analysis, seven of them are associated with photosynthesis. Our study uncovered a new species relationship in section Daghestanica and suggested that the selective pressure has played an important role in Allium adaptation and evolution, these results will facilitate our further understanding of evolution and adaptation of species in the genus Allium.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huan-Xi Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi-Qi Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jun-Pei Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Zong D, Zhou A, Zhang Y, Zou X, Li D, Duan A, He C. Characterization of the complete chloroplast genomes of five Populus species from the western Sichuan plateau, southwest China: comparative and phylogenetic analyses. PeerJ 2019; 7:e6386. [PMID: 30809432 PMCID: PMC6387583 DOI: 10.7717/peerj.6386] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
Species of the genus Populus, which is widely distributed in the northern hemisphere from subtropical to boreal forests, are among the most commercially exploited groups of forest trees. In this study, the complete chloroplast genomes of five Populus species (Populus cathayana, P. kangdingensis, P. pseudoglauca, P. schneideri, and P. xiangchengensis) were compared. The chloroplast genomes of the five Populus species are very similar. The total chloroplast genome sequence lengths for the five plastomes were 156,789, 156,523, 156,512, 156,513, and 156,465 bp, respectively. A total of 130 genes were identified in each genome, including 85 protein-coding genes, 37 tRNA genes and eight rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. The GC content was 36.7% for all plastomes. We analyzed nucleotide substitutions, small inversions, simple sequence repeats and long repeats in the chloroplast genomes and found nine divergence hotspots (ccsA+ccsA-ndhD, ndhC-trnV, psbZ-trnfM, trnG-atpA, trnL-ndhJ, trnR-trnN, ycf4-cemA, ycf1, and trnR-trnN), which could be useful molecular genetic markers for future population genetic and phylogenetic studies. We also observed that two genes (rpoC2 and rbcL) were subject to positive selection. Phylogenetic analysis based on whole cp genomes showed that P. schneideri had a close relationship with P. kangdingensis and P. pseudoglauca, while P. xiangchengensis was a sister to P. cathayana.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, China
| | - Anpei Zhou
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, China
| | - Yao Zhang
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, China
| | - Xinlian Zou
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, China
| | - Dan Li
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan, China
| | - Anan Duan
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
40
|
Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis. Molecules 2019; 24:molecules24030474. [PMID: 30699955 PMCID: PMC6385120 DOI: 10.3390/molecules24030474] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/17/2023] Open
Abstract
Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.
Collapse
|
41
|
Comparative analysis of complete chloroplast genome sequences of four major Amorphophallus species. Sci Rep 2019; 9:809. [PMID: 30692573 PMCID: PMC6349887 DOI: 10.1038/s41598-018-37456-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Amorphophallus (Araceae) contains more than 170 species that are mainly distributed in Asia and Africa. Because the bulbs of Amorphophallus are rich in glucomannan, they have been widely used in food, medicine, the chemical industry and so on. To better understand the evolutionary relationships and mutation patterns in the chloroplast genome of Amorphophallus, the complete chloroplast genomes of four species were sequenced. The chloroplast genome sequences of A. albus, A. bulbifer, A. konjac and A. muelleri ranged from 162,853 bp to 167,424 bp. The A. albus chloroplast (cp) genome contains 113 genes, including 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The A. bulbifer cp genome contains 111 genes, including 78 protein-coding genes, 29 tRNA genes and 4 rRNA genes. A. muelleri contains 111 and 113 genes, comprising 78 and 80 protein-coding genes, respectively, 29 tRNA genes and 4 rRNA genes. The IR (inverted repeat) region/LSC (long single copy) region and IR/SSC (short single copy) region borders of the four Amorphophallus cp genomes were compared. In addition to some genes being deleted, variations in the copy numbers and intron numbers existed in some genes in the four cp genomes. One hundred thirty-four to 164 SSRs (simple sequence repeats) were detected in the four cp genomes. In addition, the highest mononucleotide SSRs were composed of A and T repeat units, and the majority of dinucleotides were composed of AT and TA. SNPs (single nucleotide polymorphisms) and indels (insertion-deletions) were calculated from coding genes and noncoding genes, respectively. These divergences comprising SSRs, SNPs and indel markers will be useful in testing the maternal inheritance of the chloroplast genome, identifying species differentiation and even in breeding programs. Furthermore, the regression of ndhK was detected from four Amorphophallus cp genomes in our study. Complete cp genome sequences of four Amorphophallus species and other plants were used to perform phylogenetic analyses. The results showed that Amorphophallus was clustered in Araceae, and Amorphophallus was divided into two clades; A. albus and A. konjac were clustered in one clade, and A. bulbifer and A. muelleri were clustered in another clade. Phylogenetic analysis among the Amorphophallus genus was conducted based on matK and rbcL. The phylogenetic trees showed that the relationships among the Amorphophallus species were consistent with their geographical locations. The complete chloroplast genome sequence information for the four Amorphophallus species will be helpful for elucidating Amorphophallus phylogenetic relationships.
Collapse
|
42
|
Zong D, Gan P, Zhou A, Zhang Y, Zou X, Duan A, Song Y, He C. Plastome Sequences Help to Resolve Deep-Level Relationships of Populus in the Family Salicaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:5. [PMID: 30723484 PMCID: PMC6349946 DOI: 10.3389/fpls.2019.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/07/2019] [Indexed: 05/30/2023]
Abstract
Populus, a core genus of Salicaceae, plays a significant ecological role as a source of pioneer species in boreal forests. However, interspecific hybridization and high levels of morphological variation among poplars have resulted in great difficulty in classifying species for systematic and comparative evolutionary studies. Here, we present phylogenetic analyses of 24 newly sequenced Populus plastomes and 36 plastomes from GenBank, which represent seven genera of Salicaceae, in combination with a matrix of eighteen morphological characters of 40 Populus taxa to reconstruct highly supported relationships of genus Populus. Relationships among the 60 taxa of Salicaceae strongly supported two monophyletic genera: Populus and Salix. Chosenia was nested within the genus Salix, and five clades within Populus were divided. Clade I included the three taxa P. euphratica, P. pruinosa, and P. ilicifolia. Clade II contained thirteen taxa [P. adenopoda, P. alba, P. bolleana, P. davidiana, P. hopeiensis, P. nigra, P. qiongdaoensis, P. rotundifolia, P. rotundifolia var. duclouxiana, P. tremula, P. tremula × alba, P. tomentosa, and P. tomentosa (NC)]. Clade III included the ten taxa P. haoana, P. kangdingensis, P. lasiocarpa, P. pseudoglauca, P. qamdoensis, P. schneideri, P. simonii, P. szechuanica, P. szechuanica var. tibetica, and P. yunnanensis. Clade IV included P. cathayana, P. gonggaensis, P. koreana, P. laurifolia, P. trinervis, P. wilsonii, and P. xiangchengensis. The last clade comprised P. angustifolia, P. balsamifera, P. deltoides, P. deltoides × nigra, P. fremontii, P. mexicana, and P. trichocarpa. This phylogeny is also supported by morphological traits, including bark smoothness, bud size, petiole shape, leaf inflorescence, male anther length and male anther tip.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Anpei Zhou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Yao Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Xinlian Zou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Anan Duan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw, Myanmar
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
43
|
Song Y, Gan Y, Liu L, Corlett RT. The floral transcriptome of Machilus yunnanensis, a tree in the magnoliid family Lauraceae. Comput Biol Chem 2018; 77:456-465. [DOI: 10.1016/j.compbiolchem.2018.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/25/2023]
|
44
|
Liao Q, Ye T, Song Y. Complete chloroplast genome sequence of a subtropical tree, Parasassafras confertiflorum (Lauranceae). MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:1216-1217. [PMID: 33474469 PMCID: PMC7799558 DOI: 10.1080/23802359.2018.1532331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasassafras confertiflorum (Meisn.) D.G. Long is the single tree species of the genus Parasassafras D.G. Long in the family Lauraceae. To better determine its phylogenetic location with respect to the related Lauraceae species, the complete chloroplast genome of P. confertiflorum was sequenced. The whole plastome is 152,555 bp in length, consisting of a pair of inverted repeat (IR) regions of 20,079 bp, one large single copy (LSC) region of 93,604 bp, and one small single copy (SSC) region of 18,793 bp. The genome contains 127 genes, including 83 protein-coding genes, 8 ribosomal RNA genes, and 36 transfer RNA genes. The overall GC content of the whole plastome is 39.1%. Further, maximum likelihoodphylogenetic analyses were conducted using 34 complete plastomes of the Lauraceae, which support close relationships between P. confertiflorum and Actinodaphne trichocarpa, Lindera benzoin, L. latifolia, L. metcalfiana, L. robusta, and Neolitsea sericea rather than Laurus nobilis or Sinosassafras flavinervium.
Collapse
Affiliation(s)
- Qiong Liao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Science, Yezin, Nay Pyi Taw, Myanmar
| |
Collapse
|
45
|
Nowicki M, Boggess SL, Saxton AM, Hadziabdic D, Xiang QYJ, Molnar T, Huff ML, Staton ME, Zhao Y, Trigiano RN. Haplotyping of Cornus florida and C. kousa chloroplasts: Insights into species-level differences and patterns of plastic DNA variation in cultivars. PLoS One 2018; 13:e0205407. [PMID: 30352068 PMCID: PMC6198962 DOI: 10.1371/journal.pone.0205407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
Chloroplast DNA is a part of plant non-nuclear genome, and is of particular interest for lineage studies. Moreover, the non-coding regions of cpDNA display higher mutation rates than the conserved coding cpDNA, which has been employed for phylogenetic and population research. We analyzed the cpDNA of 332 gDNA samples from collections of Cornus florida and C. kousa (commercial cultivars, breeding selections, and wild kousa accessions from Asia), using the chlorotyping system developed on North America-native, wild accessions of C. florida. Our results indicated significant differences in chlorotype frequencies between the two species. Cornus florida samples were represented by all major chlorotypes previously described, whereas all C. kousa samples analyzed had only one of the chlorotype patterns shown by C. florida. The chlorotyping analytic panel was then expanded by sequencing the targeted three non-coding cpDNA regions. Results indicated a major difference in the maternally-inherited cpDNA between the two closely related Big-Bracted Cornus species. Chlorotype diversity and differences in the proportion of informative sites in the cpDNA regions of focus emphasized the importance of proper loci choice for cpDNA-based comparative studies between the closely related dogwood species. Phylogenetic analyses of the retrieved sequences for the other species of Cornus provided information on the relative utility of the cpDNA regions studied and helped delineate the groups (Big-Bracted, Cornelian Cherries, Blue/White-Fruited) within the genus. Genealogical relationships based on the cpDNA sequences and the inferred chlorotype networks indicated the need for continued analyses across further non-coding cpDNA regions to improve the phylogenetic resolution of dogwoods.
Collapse
Affiliation(s)
- Marcin Nowicki
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, United States of America
| | - Sarah L. Boggess
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, United States of America
| | - Arnold M. Saxton
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States of America
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, United States of America
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University Raleigh, NC, United States of America
| | - Thomas Molnar
- Department of Plant Biology Rutgers, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Matthew L. Huff
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, United States of America
| | - Margaret E. Staton
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, United States of America
| | - Yichen Zhao
- Guizhou Key Laboratory of Agro-Bioengineering, Guizhou University, Huaxi, Guiyang, PRC
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
46
|
Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Sci Rep 2018; 8:8844. [PMID: 29891996 PMCID: PMC5995902 DOI: 10.1038/s41598-018-27090-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
Lindera, a core genus of the Lauraceae family, has important economic uses in eastern Asia and North America. However, its historical diversification has not been clarified. In this study, we report nine newly sequenced Lindera plastomes. The plastomes of these nine Lindera species range from 152,211 (L. nacusua) to 152,968 bp (L. metcalfiana) in length, similar to that of another Lauraceae species, Litsea glutinosa (152,618 bp). The length variation of these plastomes derived from the length variation in the loci ycf1, ycf2, ψycf1, and ndhF-ψycf1. Comparing our sequences with other available plastomes in the Lauraceae indicated that eight hypervariable loci, ihbA-trnG, ndhA, ndhF-rpl32, petA-psbJ, psbK-psbI, rps16, trnS-trnG, and ycf1, could serve as DNA barcodes for species delineation, and that the inverted repeats (IRs) showed contraction/expansion. Further phylogenetic analyses were performed using 32 complete plastomes of Lauraceae and seven barcodes from 14 additional species of Lindera and related species in the core Lauraceae. The results showed that these Lindera species grouped into two or four sub-clades, and that two Litsea species and Laurus nobilis were located in the same sub-clade as five Lindera species. These data support a close relationship between the genera Laurus, Lindera, and Litsea, and suggest that Lindera is polyphyletic.
Collapse
|
47
|
Song Y, Yu WB, Tan Y, Liu B, Yao X, Jin J, Padmanaba M, Yang JB, Corlett RT. Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights into Loss Events in the Magnoliids. Genome Biol Evol 2018; 9:2354-2364. [PMID: 28957463 PMCID: PMC5610729 DOI: 10.1093/gbe/evx180] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Available plastomes of the Lauraceae show similar structure and varied size, but there has been no systematic comparison across the family. In order to understand the variation in plastome size and structure in the Lauraceae and related families of magnoliids, we here compare 47 plastomes, 15 newly sequenced, from 27 representative genera. We reveal that the two shortest plastomes are in the parasitic Lauraceae genus Cassytha, with lengths of 114,623 (C. filiformis) and 114,963 bp (C. capillaris), and that they have lost NADH dehydrogenase (ndh) genes in the large single-copy region and one entire copy of the inverted repeat (IR) region. The plastomes of the core Lauraceae group, with lengths from 150,749 bp (Nectandra angustifolia) to 152,739 bp (Actinodaphne trichocarpa), have lost trnI-CAU, rpl23, rpl2, a fragment of ycf2, and their intergenic regions in IRb region, whereas the plastomes of the basal Lauraceae group, with lengths from 157,577 bp (Eusideroxylon zwageri) to 158,530 bp (Beilschmiedia tungfangensis), have lost rpl2 in IRa region. The plastomes of Calycanthus (Calycanthaceae, Laurales) have lost rpl2 in IRb region, but the plastome of Caryodaphnopsis henryi (Lauraceae) remain intact, as do those of the nonLaurales magnoliid genera Piper, Liriodendron, and Magnolia. On the basis of our phylogenetic analysis and structural comparisons, different loss events occurred in different lineages of the Laurales, and fragment loss events in the IR regions have largely driven the contraction of the plastome in the Lauraceae. These results provide new insights into the evolution of the Lauraceae as well as the magnoliids as a whole.
Collapse
Affiliation(s)
- Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Yunhong Tan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xin Yao
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jianjun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Michael Padmanaba
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| |
Collapse
|
48
|
Su Y, Huang L, Wang Z, Wang T. Comparative chloroplast genomics between the invasive weed Mikania micrantha and its indigenous congener Mikania cordata: Structure variation, identification of highly divergent regions, divergence time estimation, and phylogenetic analysis. Mol Phylogenet Evol 2018; 126:181-195. [PMID: 29684597 DOI: 10.1016/j.ympev.2018.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 11/27/2022]
Abstract
Mikania micrantha and Mikania cordata are the only two species in genus Mikania (Asteraceae) in China. They share very similar morphological and life-history characteristics but occupy quite different habitats. Most importantly, they generate totally different ecological consequences. While M. micrantha has become an exotic invasive weed, M. cordata exists as an indigenous species with no harmful effects on native plants or habitats. As a continuous study of our previously reported M. micrantha chloroplast (cp) genome, in this study we have further sequenced the M. cordata cp genome to (1) conduct a comparative genome analysis to gain insights into the mechanism of invasiveness; (2) develop cp markers to examine the population genetic adaptation of M. micrantha; and (3) screen variable genome regions of phylogenetic utility. The M. cordata chloroplast genome is 151,984 bp in length and displays a typical quadripartite structure. The number and distribution of protein coding genes, tRNA genes, and rRNA genes of M. cordata are identical to those of M. micrantha. The main difference lays in that the pseudogenization of ndhF and a 118-bp palindromic repeat only arises in M. cordata. Fourteen highly divergent regions, 235 base substitutions, and 58 indels were identified between the two cp genomes. Phylogenetic inferences revealed a sister relationship between M. micrantha and M. cordata whose divergence was estimated to occur around 1.78 million years ago (MYA). Twelve cpSSR loci were detected to be polymorphic and adopted to survey the genetic adaptation of M. micrantha populations. No cpSSR loci were found to undergo selection. Our results build a foundation to examine the invasive mechanism of Mikania weed.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Lu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
49
|
Chen H, Shao J, Zhang H, Jiang M, Huang L, Zhang Z, Yang D, He M, Ronaghi M, Luo X, Sun B, Wu W, Liu C. Sequencing and Analysis of Strobilanthes cusia (Nees) Kuntze Chloroplast Genome Revealed the Rare Simultaneous Contraction and Expansion of the Inverted Repeat Region in Angiosperm. FRONTIERS IN PLANT SCIENCE 2018; 9:324. [PMID: 29593773 PMCID: PMC5861152 DOI: 10.3389/fpls.2018.00324] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/27/2018] [Indexed: 05/06/2023]
Abstract
Ban-Lan-Gen, the root tissues derived from several morphologically indistinguishable plant species, have been used widely in traditional Chinese medicines for numerous years. The identification of reliable markers to distinguish various source plant species is critical for the effective and safe use of products containing Ban-Lan-Gen. Here, we analyzed and characterized the complete chloroplast (cp) genome sequence of Strobilanthes cusia (Nees) Kuntze to identify high-resolution markers for the species determination of Southern Ban-Lan-Gen. Total DNA was extracted and subjected to next-generation sequencing. The cp genome was then assembled, and the gaps were filled using PCR amplification and Sanger sequencing. Genome annotation was conducted using CpGAVAS web server. The genome was 144,133 bp in length, presenting a typical quadripartite structure of large (LSC; 91,666 bp) and small (SSC; 17,328 bp) single-copy regions separated by a pair of inverted repeats (IRs; 17,811 bp). The genome encodes 113 unique genes, including 79 protein-coding, 30 transfer RNA, and 4 ribosomal RNA genes. A total of 20 tandem, 2 forward, and 6 palindromic repeats were detected in the genome. A phylogenetic analysis based on 65 protein-coding genes showed that S. cusia was closely related to Andrographis paniculata and Ruellia breedlovei, which belong to the same family, Acanthaceae. One interesting feature is that the IR regions apparently undergo simultaneous contraction and expansion, resulting in the presence of single copies of rps19, rpl2, rpl23, and ycf2 in the LSC region and the duplication of psbA and trnH genes in the IRs. This study provides the first complete cp genome in the genus Strobilanthes, containing critical information for the classification of various Strobilanthes species in the future. This study also provides the foundation for precisely determining the plant sources of Ban-Lan-Gen.
Collapse
Affiliation(s)
- Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junjie Shao
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linfang Huang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Molly He
- Illumina, Inc., San Diego, CA, United States
| | | | - Xi Luo
- Illumina, Inc., San Diego, CA, United States
| | - Botao Sun
- Illumina, Inc., San Diego, CA, United States
| | - Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Jiao L, Yu M, Wiedenhoeft AC, He T, Li J, Liu B, Jiang X, Yin Y. DNA Barcode Authentication and Library Development for the Wood of Six Commercial Pterocarpus Species: the Critical Role of Xylarium Specimens. Sci Rep 2018; 8:1945. [PMID: 29386565 PMCID: PMC5792460 DOI: 10.1038/s41598-018-20381-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/17/2018] [Indexed: 11/12/2022] Open
Abstract
DNA barcoding has been proposed as a useful tool for forensic wood identification and development of a reliable DNA reference library is an essential first step. Xylaria (wood collections) are potentially enormous data repositories if DNA information could be extracted from wood specimens. In this study, 31 xylarium wood specimens and 8 leaf specimens of six important commercial species of Pterocarpus were selected to investigate the reliability of DNA barcodes for authentication at the species level and to determine the feasibility of building wood DNA barcode reference libraries from xylarium specimens. Four DNA barcodes (ITS2, matK, ndhF-rpl32 and rbcL) and their combination were tested to evaluate their discrimination ability for Pterocarpus species with both TaxonDNA and tree-based analytical methods. The results indicated that the combination barcode of matK + ndhF-rpl32 + ITS2 yielded the best discrimination for the Pterocarpus species studied. The mini-barcode ndhF-rpl32 (167-173 bps) performed well distinguishing P. santalinus from its wood anatomically inseparable species P. tinctorius. Results from this study verified not only the feasibility of building DNA barcode libraries using xylarium wood specimens, but the importance of using wood rather than leaves as the source tissue, when wood is the botanical material to be identified.
Collapse
Affiliation(s)
- Lichao Jiao
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Min Yu
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Alex C Wiedenhoeft
- Center for Wood Anatomy Research, USDA Forest Service, Forest Products Laboratory, Madison, WI, 53726, USA
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
- Ciências Biológicas (Botânica), Univesida de Estadual Paulista - Botucatu, Botucatu, São Paulo, Brazil
| | - Tuo He
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianing Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Hainan, 571737, China
| | - Bo Liu
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaomei Jiang
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China.
- Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing, 100091, China.
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|