1
|
Yang Y, Guo Y, Wang J, Cheng W, Lyu M, Wang Q, Wu J, Hua M, Zhang W, Sun D, Ge X, Yao X, Chen R. Genome-wide association study and selective sweep analysis uncover candidate genes controlling curd branch length in cauliflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:209. [PMID: 39196430 DOI: 10.1007/s00122-024-04719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Cauliflower is a distinct subspecies of the Brassica oleracea plants due to its specialized and edible floral organ. Cauliflower curd is composed of enlarged inflorescence meristems that developed by a series of precise molecular regulations. Based solely on the curd solidity, cauliflower is generally classified into two groups (compact-curd and loose-curd), where curd branch length acts as a crucial parameter to determine the curd morphological difference. Herein, to understand the genetic basis of curd branch development, we utilized a total of 298 inbred lines representing two groups of cauliflower to comprehensively investigate the causal genes and regulatory mechanisms. Phylogenetic and population structure analyses revealed that two subgroups could be further categorized into the compact-curd and the loose-curd groups, respectively. Integrating the genotype and phenotype data, we conducted a genome-wide association study for the length of the outermost branch (LOB) and secondary branch (LSB) of the curd. Sixty-four significant loci were identified that are highly associated with curd branch development. Evidence from genome-wide selective sweep analysis (FST and XP-EHH) narrowed down the major signal on chromosome 8 into an approximately 79 kb region which encodes eleven protein-coding genes. After further analysis of haplotypes, transcriptome profiling, and gene expression validation, we finally inferred that BOB08G028680, as a homologous counterpart of AtARR9, might be the causal gene for simultaneously regulating LOB and LSB traits in cauliflower. This result provides valuable information for improving curd solidity in future cauliflower breeding.
Collapse
Affiliation(s)
- Yingxia Yang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutong Guo
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Mingjie Lyu
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Qian Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Jianjin Wu
- Tianjin Agricultural Development Service Center, Tianjin, 300061, China
| | - Mingyan Hua
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Weihua Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwei Yao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Rui Chen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| |
Collapse
|
2
|
Shuang LS, Cuevas H, Lemke C, Kim C, Shehzad T, Paterson AH. Genetic dissection of morphological variation between cauliflower and a rapid cycling Brassica oleracea line. G3 (BETHESDA, MD.) 2023; 13:jkad163. [PMID: 37506262 PMCID: PMC10627287 DOI: 10.1093/g3journal/jkad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/10/2022] [Accepted: 03/14/2023] [Indexed: 07/30/2023]
Abstract
To improve resolution to small genomic regions and sensitivity to small-effect loci in the identification of genetic factors conferring the enlarged inflorescence and other traits of cauliflower while also expediting further genetic dissection, 104 near-isogenic introgression lines (NIILs) covering 78.56% of the cauliflower genome, were selected from an advanced backcross population using cauliflower [Brassica oleracea var. botrytis L., mutant for Orange gene (ORG)] as the donor parent and a rapid cycling line (TO1434) as recurrent parent. Subsets of the advanced backcross population and NIILs were planted in the field for 8 seasons, finding 141 marker-trait associations for 15 leaf-, stem-, and flower-traits. Exemplifying the usefulness of these lines, we delineated the previously known flower color gene to a 4.5 MB interval on C3; a gene for small plant size to a 3.4 MB region on C8; and a gene for large plant size and flowering time to a 6.1 MB region on C9. This approach unmasked closely linked QTL alleles with opposing effects (on chr. 8) and revealed both alleles with expected phenotypic effects and effects opposite the parental phenotypes. Selected B. oleracea NIILs with short generation time add new value to widely used research and teaching materials.
Collapse
Affiliation(s)
- Lan Shuan Shuang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Hugo Cuevas
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Cornelia Lemke
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, Gahlaut V, Bhatt A, Thakur AK, Kumar R, Bhardwaj V, Kumar V, Singh B, Singh R, Kumar D. A comprehensive and conceptual overview of omics-based approaches for enhancing the resilience of vegetable crops against abiotic stresses. PLANTA 2023; 257:80. [PMID: 36913037 DOI: 10.1007/s00425-023-04111-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Abiotic stresses adversely affect the productivity and production of vegetable crops. The increasing number of crop genomes that have been sequenced or re-sequenced provides a set of computationally anticipated abiotic stress-related responsive genes on which further research may be focused. Knowledge of omics approaches and other advanced molecular tools have all been employed to understand the complex biology of these abiotic stresses. A vegetable can be defined as any component of a plant that is eaten for food. These plant parts may be celery stems, spinach leaves, radish roots, potato tubers, garlic bulbs, immature cauliflower flowers, cucumber fruits, and pea seeds. Abiotic stresses, such as deficient or excessive water, high temperature, cold, salinity, oxidative, heavy metals, and osmotic stress, are responsible for the adverse activity in plants and, ultimately major concern for decreasing yield in many vegetable crops. At the morphological level, altered leaf, shoot and root growth, altered life cycle duration and fewer or smaller organs can be observed. Likewise different physiological and biochemical/molecular processes are also affected in response to these abiotic stresses. In order to adapt and survive in a variety of stressful situations, plants have evolved physiological, biochemical, and molecular response mechanisms. A comprehensive understanding of the vegetable's response to different abiotic stresses and the identification of tolerant genotypes are essential to strengthening each vegetable's breeding program. The advances in genomics and next-generation sequencing have enabled the sequencing of many plant genomes over the last twenty years. A combination of modern genomics (MAS, GWAS, genomic selection, transgenic breeding, and gene editing), transcriptomics, and proteomics along with next-generation sequencing provides an array of new powerful approaches to the study of vegetable crops. This review examines the overall impact of major abiotic stresses on vegetables, adaptive mechanisms and functional genomic, transcriptomic, and proteomic processes used by researchers to minimize these challenges. The current status of genomics technologies for developing adaptable vegetable cultivars that will perform better in future climates is also examined.
Collapse
Affiliation(s)
- Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India.
| | | | - Salej Sood
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vijay Gahlaut
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Department of Biotechnology and University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
| | | | - Ajay Kumar Thakur
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajender Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Devendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
4
|
Mengistu G, Shimelis H, Assefa E, Lule D. Genome-wide association analysis of anthracnose resistance in sorghum [Sorghum bicolor (L.) Moench]. PLoS One 2021; 16:e0261461. [PMID: 34929013 PMCID: PMC8687563 DOI: 10.1371/journal.pone.0261461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
In warm-humid ago-ecologies of the world, sorghum [Sorghum bicolor (L.) Moench] production is severely affected by anthracnose disease caused by Colletotrichum sublineolum Henn. New sources of anthracnose resistance should be identified to introgress novel genes into susceptible varieties in resistance breeding programs. The objective of this study was to determine genome-wide association of Diversity Arrays Technology Sequencing (DArTseq) based single nucleotide polymorphisms (SNP) markers and anthracnose resistance genes in diverse sorghum populations for resistance breeding. Three hundred sixty-six sorghum populations were assessed for anthracnose resistance in three seasons in western Ethiopia using artificial inoculation. Data on anthracnose severity and the relative area under the disease progress curve were computed. Furthermore, the test populations were genotyped using SNP markers with DArTseq protocol. Population structure analysis and genome-wide association mapping were undertaken based on 11,643 SNPs with <10% missing data. The evaluated population was grouped into eight distinct genetic clusters. A total of eight significant (P < 0.001) marker-trait associations (MTAs) were detected, explaining 4.86–15.9% of the phenotypic variation for anthracnose resistance. Out of which the four markers were above the cutoff point. The significant MTAs in the assessed sorghum population are useful for marker-assisted selection (MAS) in anthracnose resistance breeding programs and for gene and quantitative trait loci (QTL) mapping.
Collapse
Affiliation(s)
- Girma Mengistu
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
- Oromia Agricultural Research Institute, Addis Ababa, Ethiopia
- * E-mail:
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Ermias Assefa
- Ethiopian Biotechnology Institute, Bioinformatics and Genomics Research Directorate (BGRD), Addis Ababa, Ethiopia
| | - Dagnachew Lule
- Oromia Agricultural Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Rakshita KN, Singh S, Verma VK, Sharma BB, Saini N, Iquebal MA, Behera TK. Understanding population structure and detection of QTLs for curding-related traits in Indian cauliflower by genotyping by sequencing analysis. Funct Integr Genomics 2021; 21:679-693. [PMID: 34664160 DOI: 10.1007/s10142-021-00811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Curd initiation and development are complex traits and highly responsive for different temperature ranges in cauliflower. The present study was aimed to identify QTLs for eight traits associated with curding behaviour in diverse germplasm of Indian cauliflower. For this, 92 genotypes of cauliflower and 2 each of tropical broccoli and cabbage were genotyped through genotyping by sequencing (GBS). It generated ≈302 million reads (9.1226E + 10 bp) and identified 35,381 SNPs, maximum from chromosome 3 (4735) with a mean value of 3981.1 SNPs. Ts/Tv ratio was 1.74, suggesting transition bias. STRUCTURE analysis revealed delta value of K = 4 and four subpopulations and prominence of population admixture. In total, 121 significant SNPs were detected for eight traits, 38 for Delhi (North Indian plain) and 83 for Barapani (North-East India). Twelve QTLs were detected for traits associated with regulation of curd formation and development, five of which were for marketable curd length, curd width, days to 50% curd harvest and marketable curd weight from Delhi region and seven for curd length, curd width, days to 50% curd harvest, gross plant weight, leaf length, marketable/net curd weight and number of leaves per plant for Barapani area of North East India. The SNPs identified will be useful for development of markers for curding-related traits and their use in breeding varieties with wider curding plasticity.
Collapse
Affiliation(s)
- K N Rakshita
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shrawan Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | | | - Brij Bihari Sharma
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Navinder Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Stansell Z, Björkman T. From landrace to modern hybrid broccoli: the genomic and morphological domestication syndrome within a diverse B. oleracea collection. HORTICULTURE RESEARCH 2020; 7:159. [PMID: 33082966 PMCID: PMC7528014 DOI: 10.1038/s41438-020-00375-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/12/2020] [Accepted: 08/01/2020] [Indexed: 05/03/2023]
Abstract
Worldwide, broccoli (Brassica oleracea var. italica) is among the most economically important, nutritionally rich, and widely-grown vegetable crops. To explore the genomic basis of the dramatic changes in broccoli morphology in the last century, we evaluated 109 broccoli or broccoli/cauliflower intermediates for 24 horticultural traits. Genotype-by-sequencing markers were used to determine four subpopulations within italica: Calabrese broccoli landraces and hybrids, sprouting broccoli, and violet cauliflower, and to evaluate between and within group relatedness and diversity. While overall horticultural quality and harvest index of improved hybrid broccoli germplasm has increased by year of cultivar release, this improvement has been accompanied by a considerable reduction in allelic diversity when compared to the larger pool of germplasm. Two landraces are the most likely founding source of modern broccoli hybrids, and within these modern hybrids, we identified 13 reduction-in-diversity genomic regions, 53 selective sweeps, and 30 (>1 Mbp) runs of homozygosity. Landrace accessions collected in southern Italy contained 4.8-fold greater unique alleles per accessions compared to modern hybrids and provide a valuable resource in subsequent improvement efforts. This work broadens the understanding of broccoli germplasm, informs conservation efforts, and enables breeding for complex quality traits and regionally adapted cultivars.
Collapse
Affiliation(s)
- Zachary Stansell
- Cornell University, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA
- Cornell AgriTech, Cornell University, Geneva, NY 14456 USA
| | - Thomas Björkman
- Cornell University, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850 USA
- Cornell AgriTech, Cornell University, Geneva, NY 14456 USA
| |
Collapse
|
7
|
Population structure and genetic diversity in red clover (Trifolium pratense L.) germplasm. Sci Rep 2020; 10:8364. [PMID: 32433569 PMCID: PMC7239897 DOI: 10.1038/s41598-020-64989-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/22/2020] [Indexed: 01/29/2023] Open
Abstract
Red clover (Trifolium pratense L.) is a highly adaptable forage crop for temperate livestock agriculture. Genetic variation can be identified, via molecular techniques, and used to assess diversity among populations that may otherwise be indistinguishable. Here we have used genotyping by sequencing (GBS) to determine the genetic variation and population structure in red clover natural populations from Europe and Asia, and varieties or synthetic populations. Cluster analysis differentiated the collection into four large regional groups: Asia, Iberia, UK, and Central Europe. The five varieties clustered with the geographical area from which they were derived. Two methods (BayeScan and Samβada) were used to search for outlier loci indicating signatures of selection. A total of 60 loci were identified by both methods, but no specific genomic region was highlighted. The rate of decay in linkage disequilibrium was fast, and no significant evidence of any bottlenecks was found. Phenotypic analysis showed that a more prostrate and spreading growth habit was predominantly found among populations from Iberia and the UK. A genome wide association study identified a single nucleotide polymorphism (SNP) located in a homologue of the VEG2 gene from pea, associated with flowering time. The identification of genetic variation within the natural populations is likely to be useful for enhancing the breeding of red clover in the future.
Collapse
|
8
|
Stansell Z, Farnham M, Björkman T. Complex Horticultural Quality Traits in Broccoli Are Illuminated by Evaluation of the Immortal BolTBDH Mapping Population. FRONTIERS IN PLANT SCIENCE 2019; 10:1104. [PMID: 31620146 PMCID: PMC6759917 DOI: 10.3389/fpls.2019.01104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/12/2019] [Indexed: 05/19/2023]
Abstract
Improving horticultural quality in regionally adapted broccoli (Brassica oleracea var. italica) and other B. oleracea crops is challenging due to complex genetic control of traits affecting morphology, development, and yield. Mapping horticultural quality traits to genomic loci is an essential step in these improvement efforts. Understanding the mechanisms underlying horticultural quality enables multi-trait marker-assisted selection for improved, resilient, and regionally adapted B. oleracea germplasm. The publicly-available biparental double-haploid BolTBDH mapping population (Chinese kale × broccoli; N = 175) was evaluated for 25 horticultural traits in six trait classes (architecture, biomass, phenology, leaf morphology, floral morphology, and head quality) by multiple quantitative trait loci mapping using 1,881 genotype-by-sequencing derived single nucleotide polymorphisms. The physical locations of 56 single and 41 epistatic quantitative trait locus (QTL) were identified. Four head quality QTL (OQ_C03@57.0, OQ_C04@33.3, OQ_CC08@25.5, and OQ_C09@49.7) explain a cumulative 81.9% of phenotypic variance in the broccoli heading phenotype, contain the FLOWERING LOCUS C (FLC) homologs Bo9g173400 and Bo9g173370, and exhibit epistatic effects. Three key genomic hotspots associated with pleiotropic control of the broccoli heading phenotype were identified. One phenology hotspot reduces days to flowering by 7.0 days and includes an additional FLC homolog Bo3g024250 that does not exhibit epistatic effects with the three horticultural quality hotspots. Strong candidates for other horticultural traits were identified: BoLMI1 (Bo3g002560) associated with serrated leaf margins and leaf apex shape, BoCCD4 (Bo3g158650) implicated in flower color, and BoAP2 (Bo1g004960) implicated in the hooked sepal horticultural trait. The BolTBDH population provides a framework for B. oleracea improvement by targeting key genomic loci contributing to high horticultural quality broccoli and enabling de novo mapping of currently unexplored traits.
Collapse
Affiliation(s)
- Zachary Stansell
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Cornell Agritech, Cornell University, Geneva, NY, United States
- *Correspondence: Zachary Stansell,
| | - Mark Farnham
- USDA-ARS Vegetable Laboratory, Department of Horticulture, Charleston, SC, United States
| | - Thomas Björkman
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Cornell Agritech, Cornell University, Geneva, NY, United States
| |
Collapse
|
9
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
10
|
Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Sci Rep 2018; 8:13609. [PMID: 30206285 PMCID: PMC6134136 DOI: 10.1038/s41598-018-31987-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/28/2018] [Indexed: 11/08/2022] Open
Abstract
While many tropical plants have been adapted to temperate cultivation, few temperate plants have been adapted to the tropics. Originating in Western Europe, Brassica oleracea vernalization requires a period of low temperature and BoFLC2 regulates the transition to floral development. In B. oleracea germplasm selected in Taiwan, a non-vernalization pathway involving BoFLC3 rather than BoFLC2 regulates curd induction. In 112 subtropical breeding lines, specific haplotype combinations of BoFLC3 and PAN (involved in floral organ identity and a positional candidate for additional curd induction variation) adapt B. oleracea to high ambient temperature and short daylength. Duplicated genes permitted evolution of alternative pathways for control of flowering in temperate and tropical environments, a principle that might be utilized via natural or engineered approaches in other plants. New insight into regulation of Brassica flowering exemplifies translational agriculture, tapping knowledge of botanical models to improve food security under projected climate change scenarios.
Collapse
|
11
|
Rosen A, Hasan Y, Briggs W, Uptmoor R. Genome-Based Prediction of Time to Curd Induction in Cauliflower. FRONTIERS IN PLANT SCIENCE 2018; 9:78. [PMID: 29467774 PMCID: PMC5807883 DOI: 10.3389/fpls.2018.00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/15/2018] [Indexed: 05/21/2023]
Abstract
The development of cauliflower (Brassica oleracea var. botrytis) is highly dependent on temperature due to vernalization requirements, which often causes delay and unevenness in maturity during months with warm temperatures. Integrating quantitative genetic analyses with phenology modeling was suggested to accelerate breeding strategies toward wide-adaptation cauliflower. The present study aims at establishing a genome-based model simulating the development of doubled haploid (DH) cauliflower lines to predict time to curd induction of DH lines not used for model parameterization and test hybrids derived from the bi-parental cross. Leaf appearance rate and the relation between temperature and thermal time to curd induction were examined in greenhouse trials on 180 DH lines at seven temperatures. Quantitative trait loci (QTL) analyses carried out on model parameters revealed ten QTL for leaf appearance rate (LAR), five for the slope and two for the intercept of linear temperature-response functions. Results of the QTL-based phenology model were compared to a genomic selection (GS) model. Model validation was carried out on data comprising four field trials with 72 independent DH lines, 160 hybrids derived from the parameterization set, and 34 hybrids derived from independent lines of the population. The QTL model resulted in a moderately accurate prediction of time to curd induction (R2 = 0.42-0.51) while the GS model generated slightly better results (R2 = 0.52-0.61). Predictions of time to curd induction of test hybrids from independent DH lines were less precise with R2 = 0.40 for the QTL and R2 = 0.48 for the GS model. Implementation of juvenile-to-adult phase transition is proposed for model improvement.
Collapse
Affiliation(s)
- Arne Rosen
- Faculty of Agriculture and Environmental Science, University of Rostock, Rostock, Germany
| | - Yaser Hasan
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | | | - Ralf Uptmoor
- Faculty of Agriculture and Environmental Science, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Thorwarth P, Yousef EAA, Schmid KJ. Genomic Prediction and Association Mapping of Curd-Related Traits in Gene Bank Accessions of Cauliflower. G3 (BETHESDA, MD.) 2018; 8:707-718. [PMID: 29255118 PMCID: PMC5919744 DOI: 10.1534/g3.117.300199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Genetic resources are an important source of genetic variation for plant breeding. Genome-wide association studies (GWAS) and genomic prediction greatly facilitate the analysis and utilization of useful genetic diversity for improving complex phenotypic traits in crop plants. We explored the potential of GWAS and genomic prediction for improving curd-related traits in cauliflower (Brassica oleracea var. botrytis) by combining 174 randomly selected cauliflower gene bank accessions from two different gene banks. The collection was genotyped with genotyping-by-sequencing (GBS) and phenotyped for six curd-related traits at two locations and three growing seasons. A GWAS analysis based on 120,693 single-nucleotide polymorphisms identified a total of 24 significant associations for curd-related traits. The potential for genomic prediction was assessed with a genomic best linear unbiased prediction model and BayesB. Prediction abilities ranged from 0.10 to 0.66 for different traits and did not differ between prediction methods. Imputation of missing genotypes only slightly improved prediction ability. Our results demonstrate that GWAS and genomic prediction in combination with GBS and phenotyping of highly heritable traits can be used to identify useful quantitative trait loci and genotypes among genetically diverse gene bank material for subsequent utilization as genetic resources in cauliflower breeding.
Collapse
Affiliation(s)
- Patrick Thorwarth
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Eltohamy A A Yousef
- Department of Horticulture, Faculty of Agriculture, University of Suez Canal, Ismailia 41522, Egypt
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
13
|
Chanroj V, Rattanawong R, Phumichai T, Tangphatsornruang S, Ukoskit K. Genome-wide association mapping of latex yield and girth in Amazonian accessions of Hevea brasiliensis grown in a suboptimal climate zone. Genomics 2017; 109:475-484. [PMID: 28751185 DOI: 10.1016/j.ygeno.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/07/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
Latex yield and growth are the key complex traits in commercial rubber production. The present study is the first to report genome-wide association mapping of latex yield and girth, for 170 Amazonian accessions grown in a suboptimal area characterized by limited rainfall and a lengthy dry season. Targeted sequence enrichment to capture gene transcripts generated 14,155 high quality filtered single nucleotide polymorphisms (SNPs) of which 94.3% resided in coding regions. The rapid decay of linkage disequilibrium over physical and genetic distance found in the accessions was comparable to those previously reported for several outcrossing species. A mixed linear model detected three significant SNPs in three candidate genes involved in plant adaptation to drought stress, individually explaining 12.7-15.7% of the phenotypic variance. The SNPs identified in the study will help to extend understanding, and to support genetic improvement of rubber trees grown in drought-affected regions.
Collapse
Affiliation(s)
- Vipavee Chanroj
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathumtani 12121, Thailand
| | - Ratchanee Rattanawong
- Nong Khai Rubber Research Center, Rubber Research Institute of Thailand, Rattanawapi District, Nong Khai, 43120, Thailand
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, 113 Phaholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathumtani 12121, Thailand.
| |
Collapse
|
14
|
Lawson LP, Petren K. The adaptive genomic landscape of beak morphology in Darwin's finches. Mol Ecol 2017; 26:4978-4989. [DOI: 10.1111/mec.14166] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Lucinda P. Lawson
- Department of Biological Sciences; University of Cincinnati; Cincinnati OH USA
| | - Kenneth Petren
- Department of Biological Sciences; University of Cincinnati; Cincinnati OH USA
| |
Collapse
|
15
|
Mwadzingeni L, Shimelis H, Rees DJG, Tsilo TJ. Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS One 2017; 12:e0171692. [PMID: 28234945 PMCID: PMC5325217 DOI: 10.1371/journal.pone.0171692] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/24/2017] [Indexed: 12/03/2022] Open
Abstract
This study determined the population structure and genome-wide marker-trait association of agronomic traits of wheat for drought-tolerance breeding. Ninety-three diverse bread wheat genotypes were genotyped using the Diversity Arrays Technology sequencing (DArTseq) protocol. The number of days-to-heading (DTH), number of days-to-maturity (DTM), plant height (PHT), spike length (SPL), number of kernels per spike (KPS), thousand kernel weight (TKW) and grain yield (GYLD), assessed under drought-stressed and non-stressed conditions, were considered for the study. Population structure analysis and genome-wide association mapping were undertaken based on 16,383 silico DArTs loci with < 10% missing data. The population evaluated was grouped into nine distinct genetic structures. Inter-chromosomal linkage disequilibrium showed the existence of linkage decay as physical distance increased. A total of 62 significant (P < 0.001) marker-trait associations (MTAs) were detected explaining more than 20% of the phenotypic variation observed under both drought-stressed and non-stressed conditions. Significant (P < 0.001) MTA event(s) were observed for DTH, PHT, SPL, SPS, and KPS; under both stressed and non-stressed conditions, while additional significant (P < 0.05) associations were observed for TKW, DTM and GYLD under non-stressed condition. The MTAs reported in this population could be useful to initiate marker-assisted selection (MAS) and targeted trait introgression of wheat under drought-stressed and non-stressed conditions, and for fine mapping and cloning of the underlying genes and QTL.
Collapse
Affiliation(s)
- Learnmore Mwadzingeni
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Agricultural Research Council-Small Grain Institute (ARC-SGI), Bethlehem, South Africa
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - D. Jasper G. Rees
- Agricultural Research Council-Biotechnology Platform, Pretoria, South Africa
| | - Toi J. Tsilo
- Agricultural Research Council-Small Grain Institute (ARC-SGI), Bethlehem, South Africa
| |
Collapse
|
16
|
Hasan Y, Briggs W, Matschegewski C, Ordon F, Stützel H, Zetzsche H, Groen S, Uptmoor R. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1273-1288. [PMID: 26993486 DOI: 10.1007/s00122-016-2702-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/05/2016] [Indexed: 05/19/2023]
Abstract
QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.
Collapse
Affiliation(s)
- Yaser Hasan
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - William Briggs
- Syngenta Seeds BV, Westeinde 62, BK 1601, Enkhuizen, The Netherlands
| | - Claudia Matschegewski
- Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Frank Ordon
- Julius Kuehn-Institute, Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Zetzsche
- Julius Kuehn-Institute, Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Simon Groen
- Syngenta Seeds BV, Westeinde 62, BK 1601, Enkhuizen, The Netherlands
| | - Ralf Uptmoor
- Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.
| |
Collapse
|