1
|
He M, Ge L, Hui X, Li W, Ding J, Siemann E. Chlorophyll fluorescence characteristics and H 2O 2 contents of Chinese tallow tree are dependent on population origin, nutrients and salinity. AOB PLANTS 2024; 16:plae024. [PMID: 39077392 PMCID: PMC11285151 DOI: 10.1093/aobpla/plae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/01/2024] [Indexed: 07/31/2024]
Abstract
Plants from invasive populations often have higher growth rates than conspecifics from native populations due to better environmental adaptability. However, the roles of improved chlorophyll fluorescence or antioxidant defenses in helping them to grow better under adverse situations are insufficient, even though this is a key physiological question for elucidating mechanisms of plant invasion. Here, we conducted experiments with eight native (China) and eight introduced (USA) populations of Chinese tallow tree (Triadica sebifera). We tested how salinity, nutrients (overall amount or N:P in two separate experiments) and their interaction affected T. sebifera aboveground biomass, leaf area, chlorophyll fluorescence and antioxidant defenses. Plants from introduced populations were larger than those from native populations, but salinity and nutrient shortage (low nutrients or high N:P) reduced this advantage, possibly reflecting differences in chlorophyll fluorescence based on their higher PSII maximum photochemical efficiency (F v/F m) and PSI maximum photo-oxidizable P700 in higher nutrient conditions. Native population plants had lower F v/F m with saline. Except in high nutrients/N:P with salinity, introduced population plants had lower electron transfer rate and photochemical quantum yield. There were no differences in antioxidant defenses between introduced and native populations except accumulation of hydrogen peroxide (H2O2), which was lower for introduced populations. Low nutrients and higher N:P or salinity increased total antioxidant capacity and H2O2. Our results indicate that nutrients and salinity induce differences in H2O2 contents and chlorophyll fluorescence characteristics between introduced and native populations of an invasive plant, illuminating adaptive mechanisms using photosynthetic physiological descriptors in order to predict invasions.
Collapse
Affiliation(s)
- Mengyue He
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Lihong Ge
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Xue Hui
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Wenrao Li
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Jianqing Ding
- School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
2
|
Li Z, Jiang E, Liu M, Sun Q, Gao Z, Du Y. Effects of Coverlys TF150 ® on the Photosynthetic Characteristics of Grape. Int J Mol Sci 2023; 24:16659. [PMID: 38068982 PMCID: PMC10706710 DOI: 10.3390/ijms242316659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Grape rain-shelter cultivation is a widely employed practice in China. At present, the most commonly used rain shelter film materials are polyvinyl chloride (PVC), polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), and polyolefin (PO). Coverlys TF150® is a woven fabric with an internal antifoggy PE coating that has not yet been popularized as a rain shelter film for grapes in China. To investigate the effects of Coverlys TF150® on grapes, we measured the microdomain environment, leaf development, and photosynthetic characteristics of 'Miguang' (Vitis vinifera × V. labrusca) under rain-shelter cultivation and performed transcriptome analysis. The results showed that Coverlys TF150® significantly reduced (p < 0.05) the light intensity, temperature, and humidity compared with PO film, increased the chlorophyll content and leaf thickness (particularly palisade tissue thickness), and increased stomatal density and stomatal opening from 10:00 to 14:00. Coverlys TF150® was observed to improve the maximum efficiency of photosystem II (Fv/Fm), photochemical quenching (qP), the electron transfer rate (ETR), and the actual photochemical efficiency (ΦPSII) from 10:00 to 14:00. Moreover, the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration rate (Tr) of grape leaves significantly increased (p < 0.05) from 10:00 to 14:00. RNA-Seq analysis of the grape leaves at 8:00, 10:00, and 12:00 revealed 1388, 1562, and 1436 differential genes at these points in time, respectively. KEGG enrichment analysis showed the occurrence of protein processing in the endoplasmic reticulum. Plant hormone signal transduction and plant-pathogen interaction were identified as the metabolic pathways with the highest differential gene expression enrichment. The psbA encoding D1 protein was significantly up-regulated in both CO10vsPO10 and CO12vsPO12, while the sHSPs family genes were significantly down-regulated in all time periods, and thus may play an important role in the maintenance of the photosystem II (PSII) activity in grape leaves under Coverlys TF150®. Compared with PO film, the PSI-related gene psaB was up-regulated, indicating the ability of Coverlys TF150® to better maintain PSI activity. Compared with PO film, the abolic acid receptacle-associated gene PYL1 was down-regulated at all time periods under the Coverlys TF150® treatment, while PP2C47 was significantly up-regulated in CO10vsPO10 and CO12vsPO12, inducing stomatal closure. The results reveal that Coverlys TF150® alleviates the stress of high temperature and strong light compared with PO film, improves the photosynthetic capacity of grape leaves, and reduces the midday depression of photosynthesis.
Collapse
Affiliation(s)
- Zhonghan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Enshun Jiang
- Shandong Institute of Pomology, Tai’an 271000, China;
| | - Minghui Liu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Qinghua Sun
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Zhen Gao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| | - Yuanpeng Du
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Z.L.); (M.L.); (Q.S.)
| |
Collapse
|
3
|
Cun Z, Xu XZ, Zhang JY, Shuang SP, Wu HM, An TX, Chen JW. Responses of photosystem to long-term light stress in a typically shade-tolerant species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2023; 13:1095726. [PMID: 36714733 PMCID: PMC9878349 DOI: 10.3389/fpls.2022.1095726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Photosynthetic adaptive strategies vary with the growth irradiance. The potential photosynthetic adaptive strategies of shade-tolerant species Panax notoginseng (Burkill) F. H. Chen to long-term high light and low light remains unclear. Photosynthetic performance, photosynthesis-related pigments, leaves anatomical characteristics and antioxidant enzyme activities were comparatively determined in P. notoginseng grown under different light regimes. The thickness of the upper epidermis, palisade tissue, and lower epidermis were declined with increasing growth irradiance. Low-light-grown leaves were declined in transpiration rate (Tr) and stomatal conductance (Cond), but intercellular CO2 concentration (C i) and net photosynthesis rate (P n) had opposite trends. The maximum photo-oxidation P 700 + (P m) was greatly reduced in 29.8% full sunlight (FL) plants; The maximum quantum yield of photosystem II (F v/F m) in 0.2% FL plants was significantly lowest. Electron transport, thermal dissipation, and the effective quantum yield of PSI [Y(I)] and PSII [Y(II)] were declined in low-light-grown plants compared with high-light-grown P. notoginseng. The minimum value of non-regulated energy dissipation of PSII [Y(NO)] was recorded in 0.2% FL P. notoginseng. OJIP kinetic curve showed that relative variable fluorescence at J-phase (V J) and the ratio of variable fluorescent F K occupying the F J-F O amplitude (W k) were significantly increased in 0.2% FL plants. However, the increase in W k was lower than the increase in V J. In conclusion, PSI photoinhibition is the underlying sensitivity of the typically shade-tolerant species P. notoginseng to high light, and the photodamage to PSII acceptor side might cause the typically shade-tolerant plants to be unsuitable for long-term low light stress.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xiang-Zeng Xu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- Research Center for Collection and Utilization of Tropical Crop Resources, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Tong-Xin An
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Sunoj V, Wen Y, Jajoo A, Short A, Zeng W, Elsheery N, Cao K. Moderate photoinhibition of PSII and oxidation of P700 contribute to chilling tolerance of tropical tree species in subtropics of China. PHOTOSYNTHETICA 2022; 61:177-189. [PMID: 39650675 PMCID: PMC11515820 DOI: 10.32615/ps.2022.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2024]
Abstract
In the subtropics, a few tropical tree species are distributed and planted for ornamental and horticultural purposes; however, the photosynthesis of these species can be impaired by chilling. This study aimed to understand how these species respond to chilling. Light-dependent and CO2 assimilation reactions of six tropical tree species from geographically diverse areas, but grown at a lower subtropical site in China, were monitored during a chilling (≤ 10°C). Chilling induced stomatal and nonstomatal effects and moderate photoinhibition of PSII, with severe effect in Ixora chinensis. Woodfordia fruticosa was little affected by chilling, with negligible reduction of photosynthesis and PSII activity, higher cyclic electron flow (CEF), and oxidation state of P700 (P700+). Photoinhibition of PSII thus reduced electron flow to P700, while active CEF reduced oxidative damage of PSI and maintained photosynthesis during chilling. Studied parameters revealed that coupling between light-dependent and CO2 assimilation reactions was enhanced under chilling.
Collapse
Affiliation(s)
- V.S.J. Sunoj
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - Y. Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - A. Jajoo
- School of Life Science, Devi Ahilya University, 452017 Indore, India
| | - A.W. Short
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - W.H. Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - N.I. Elsheery
- Department of Agricultural Botany, Tanta University, 72513 Tanta, Egypt
| | - K.F. Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| |
Collapse
|
5
|
Shuang SP, Zhang JY, Cun Z, Wu HM, Hong J, Chen JW. A Comparison of Photoprotective Mechanism in Different Light-Demanding Plants Under Dynamic Light Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:819843. [PMID: 35463455 PMCID: PMC9019478 DOI: 10.3389/fpls.2022.819843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Light intensity is highly heterogeneous in nature, and plants have evolved a series of strategies to acclimate to dynamic light due to their immobile lifestyles. However, it is still unknown whether there are differences in photoprotective mechanisms among different light-demanding plants in response to dynamic light, and thus the role of non-photochemical quenching (NPQ), electron transport, and light energy allocation of photosystems in photoprotection needs to be further understood in different light-demanding plants. The activities of photosystem II (PSII) and photosystem I (PSI) in shade-tolerant species Panax notoginseng, intermediate species Polygonatum kingianum, and sun-demanding species Erigeron breviscapus were comparatively measured to elucidate photoprotection mechanisms in different light-demanding plants under dynamic light. The results showed that the NPQ and PSII maximum efficiency (F v'/F m') of E. breviscapus were higher than the other two species under dynamic high light. Meanwhile, cyclic electron flow (CEF) of sun plants is larger under transient high light conditions since the slope of post-illumination, P700 dark reduction rate, and plastoquinone (PQ) pool were greater. NPQ was more active and CEF was initiated more readily in shade plants than the two other species under transient light. Moreover, sun plants processed higher quantum yield of PSII photochemistry (ΦPSII), quantum yield of photochemical energy conversion [Y(I)], and quantum yield of non-photochemical energy dissipation due to acceptor side limitation (Y(NA), while the constitutive thermal dissipation and fluorescence (Φf,d) and quantum yield of non-photochemical energy dissipation due to donor side limitation [Y(ND)] of PSI were higher in shade plants. These results suggest that sun plants had higher NPQ and CEF for photoprotection under transient high light and mainly allocated light energy through ΦPSII and ΦNPQ, while shade plants had a higher Φf,d and a larger heat dissipation efficiency of PSI donor. Overall, it has been demonstrated that the photochemical efficiency and photoprotective capacity are greater in sun plants under transient dynamic light, while shade plants are more sensitive to transient dynamic light.
Collapse
Affiliation(s)
- Sheng-Pu Shuang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jin-Yan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Zhu Cun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jie Hong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Zhang JY, Zhang QH, Shuang SP, Cun Z, Wu HM, Chen JW. The Responses of Light Reaction of Photosynthesis to Dynamic Sunflecks in a Typically Shade-Tolerant Species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2021; 12:718981. [PMID: 34721452 PMCID: PMC8548386 DOI: 10.3389/fpls.2021.718981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Light is highly heterogeneous in natural conditions, and plants need to evolve a series of strategies to acclimate the dynamic light since it is immobile. The present study aimed to elucidate the response of light reaction of photosynthesis to dynamic sunflecks in a shade-tolerant species Panax notoginseng and to examine the regulatory mechanisms involved in an adaptation to the simulated sunflecks. When P. notoginseng was exposed to the simulated sunflecks, non-photochemical quenching (NPQ) increased rapidly to the maximum value. Moreover, in response to the simulated sunflecks, there was a rapid increase in light-dependent heat dissipation quantum efficiency of photosystem II (PSII) (ΦNPQ), while the maximum quantum yield of PSII under light (F v'/F m') declined. The relatively high fluorescence and constitutive heat dissipation quantum efficiency of PSII (Φf,d) in the plants exposed to transient high light (400, 800, and 1,600 μmol m-2 s-1) was accompanied by the low effective photochemical quantum yield of PSII (ΦPSII) after the dark recovery for 15 min, whereas the plants exposed to transient low light (50 μmol m-2 s-1) has been shown to lead to significant elevation in ΦPSII after darkness recovery. Furthermore, PSII fluorescence and constitutive heat dissipation electron transfer rate (J f,d) was increased with the intensity of the simulated sunflecks, the residual absorbed energy used for the non-net carboxylative processes (J NC) was decreased when the response of electron transfer rate of NPQ pathway of PSII (J NPQ) to transient low light is restricted. In addition, the acceptor-side limitation of PSI [Y(NA)] was increased, while the donor-side limitation of photosystems I (PSI) [Y(ND)] was decreased at transient high light conditions accompanied with active cyclic electron flow (CEF). Meanwhile, when the leaves were exposed to transient high light, the xanthophyll cycle (V cycle) was activated and subsequently, the J NPQ began to increase. The de-epoxidation state [(Z + A)/(V + A + Z)] was strongly correlated with NPQ in response to the sunflecks. In the present study, a rapid engagement of lutein epoxide (Lx) after the low intensity of sunfleck together with the lower NPQ contributed to an elevation in the maximum photochemical quantum efficiency of PSII under the light. The analysis based on the correlation between the CEF and electron flow devoted to Ribulose-1, 5-bisphosphate (RuBP) oxygenation (J O) indicated that at a high light intensity of sunflecks, the electron flow largely devoted to RuBP oxygenation would contribute to the operation of the CEF. Overall, photorespiration plays an important role in regulating the CEF of the shade-tolerant species, such as P. notoginseng in response to transient high light, whereas active Lx cycle together with the decelerated NPQ may be an effective mechanism of elevating the maximum photochemical quantum efficiency of PSII under light exposure to transient low light.
Collapse
Affiliation(s)
- Jin-Yan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Qiang-Hao Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Zhu Cun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Elsheery NI, Sunoj VSJ, Wen Y, Zhu JJ, Muralidharan G, Cao KF. Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:50-60. [PMID: 32035252 DOI: 10.1016/j.plaphy.2020.01.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Chilling is one of the main abiotic stresses that adversely affect the productivity of sugarcane, in marginal tropical regions where chilling incidence occurs with seasonal changes. However, nanoparticles (NPs) have been tested as a mitigation strategy against diverse abiotic stresses. In this study, NPs such as silicon dioxide (nSiO2; 5-15 nm), zinc oxide (nZnO; <100 nm), selenium (nSe; 100 mesh), graphene (graphene nanoribbons [GNRs] alkyl functionalized; 2-15 μm × 40-250 nm) were applied as foliar sprays on sugarcane leaves to understand the amelioration effect of NPs against negative impact of chilling stress on photosynthesis and photoprotection. To this end, seedlings of moderately chilling tolerant sugarcane variety Guitang 49 was used for current study and spilt plot was used as statistical design. The changes in the level chilling tolerance after the application of NPs on Guitang 49 were compared with tolerance level of chilling tolerant variety Guitang 28. NPs treatments reduced the adverse effects of chilling by maintaining the maximum photochemical efficiency of PSII (Fv/Fm), maximum photo-oxidizable PSI (Pm), and photosynthetic gas exchange. Furthermore, application of NPs increased the content of light harvesting pigments (chlorophylls and cartinoids) in NPs treated seedlings. Higher carotenoid accumulation in leaves of NPs treated seedlings enhanced the nonphotochemical quenching (NPQ) of PSII. Among the NPs, nSiO2 showed higher amelioration effects and it can be used alone or in combination with other NPs to mitigate chilling stress in sugarcane.
Collapse
Affiliation(s)
- Nabil I Elsheery
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China; Department of Agricultural Botany, Tanta University, Tanta, 72513, Egypt
| | - V S J Sunoj
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Y Wen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - J J Zhu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - G Muralidharan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - K F Cao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China.
| |
Collapse
|
8
|
Shimakawa G, Miyake C. Oxidation of P700 Ensures Robust Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:1617. [PMID: 30459798 PMCID: PMC6232666 DOI: 10.3389/fpls.2018.01617] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
In the light, photosynthetic cells can potentially suffer from oxidative damage derived from reactive oxygen species. Nevertheless, a variety of oxygenic photoautotrophs, including cyanobacteria, algae, and plants, manage their photosynthetic systems successfully. In the present article, we review previous research on how these photoautotrophs safely utilize light energy for photosynthesis without photo-oxidative damage to photosystem I (PSI). The reaction center chlorophyll of PSI, P700, is kept in an oxidized state in response to excess light, under high light and low CO2 conditions, to tune the light utilization and dissipate the excess photo-excitation energy in PSI. Oxidation of P700 is co-operatively regulated by a number of molecular mechanisms on both the electron donor and acceptor sides of PSI. The strategies to keep P700 oxidized are diverse among a variety of photoautotrophs, which are evolutionarily optimized for their ecological niche.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
9
|
Huang W, Suorsa M, Zhang SB. In vivo regulation of thylakoid proton motive force in immature leaves. PHOTOSYNTHESIS RESEARCH 2018; 138:207-218. [PMID: 30056561 DOI: 10.1007/s11120-018-0565-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
In chloroplast, proton motive force (pmf) is critical for ATP synthesis and photoprotection. To prevent photoinhibition of photosynthetic apparatus, proton gradient (ΔpH) across the thylakoid membranes needs to be built up to minimize the production of reactive oxygen species (ROS) in thylakoid membranes. However, the regulation of thylakoid pmf in immature leaves is little known. In this study, we compared photosynthetic electron sinks, P700 redox state, non-photochemical quenching (NPQ), and electrochromic shift (ECS) signal in immature and mature leaves of a cultivar of Camellia. The immature leaves displayed lower linear electron flow and cyclic electron flow, but higher levels of NPQ and P700 oxidation ratio under high light. Meanwhile, we found that pmf and ΔpH were higher in the immature leaves. Furthermore, the immature leaves showed significantly lower thylakoid proton conductivity than mature leaves. These results strongly indicated that immature leaves can build up enough ΔpH by modulating proton efflux from the lumenal side to the stromal side of thylakoid membranes, which is essential to prevent photoinhibition via thermal energy dissipation and photosynthetic control of electron transfer. This study highlights that the activity of chloroplast ATP synthase is a key safety valve for photoprotection in immature leaves.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | | | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
10
|
Huang W, Tikkanen M, Cai YF, Wang JH, Zhang SB. Chloroplastic ATP synthase optimizes the trade-off between photosynthetic CO2 assimilation and photoprotection during leaf maturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1067-1074. [DOI: 10.1016/j.bbabio.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 11/24/2022]
|
11
|
Huang W, Tikkanen M, Zhang SB. Photoinhibition of photosystem I in Nephrolepis falciformis depends on reactive oxygen species generated in the chloroplast stroma. PHOTOSYNTHESIS RESEARCH 2018; 137:129-140. [PMID: 29357086 DOI: 10.1007/s11120-018-0484-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/17/2018] [Indexed: 05/26/2023]
Abstract
We studied how high light causes photoinhibition of photosystem I (PSI) in the shade-demanding fern Nephrolepis falciformis, in an attempt to understand the mechanism of PSI photoinhibition under natural field conditions. Intact leaves were treated with constant high light and fluctuating light. Detached leaves were treated with constant high light in the presence and absence of methyl viologen (MV). Chlorophyll fluorescence and P700 signal were determined to estimate photoinhibition. PSI was highly oxidized under high light before treatments. N. falciformis showed significantly stronger photoinhibition of PSI and PSII under constant high light than fluctuating light. These results suggest that high levels of P700 oxidation ratio cannot prevent PSI photoinhibition under high light in N. falciformis. Furthermore, photoinhibition of PSI in N. falciformis was largely accelerated in the presence of MV that promotes the production of superoxide anion radicals in the chloroplast stroma by accepting electrons from PSI. From these results, we propose that photoinhibition of PSI in N. falciformis is mainly caused by superoxide radicals generated in the chloroplast stroma, which is different from the mechanism of PSI photoinhibition in Arabidopsis thaliana and spinach. Here, we provide some new insights into the PSI photoinhibition under natural field conditions.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Mikko Tikkanen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
12
|
Huang W, Zhang SB, Liu T. Moderate Photoinhibition of Photosystem II Significantly Affects Linear Electron Flow in the Shade-Demanding Plant Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2018; 9:637. [PMID: 29868090 PMCID: PMC5962726 DOI: 10.3389/fpls.2018.00637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/25/2018] [Indexed: 05/17/2023]
Abstract
Although photoinhibition of photosystem II (PSII) frequently occurs under natural growing conditions, knowledge about the effect of moderate photoinhibition on linear electron flow (LEF) remains controversial. Furthermore, mechanisms underlying the decrease in LEF upon PSII photoinhibition are not well clarified. We examined how selective PSII photoinhibition influenced LEF in the attached leaves of shade-demanding plant Panax notoginseng. After leaves were exposed to a high level of light (2258 μmol photons m-2 s-1) for 30 and 60 min, the maximum quantum yield of PSII (Fv/Fm) decreased by 17 and 23%, respectively, whereas the maximum photo-oxidizable P700 (Pm) remained stable. Therefore, this species displayed selective PSII photodamage under strong illumination. After these treatments, LEF was significantly decreased under all light levels but acidification of the thylakoid lumen changed only slightly. Furthermore, the decrease in LEF under low light was positively correlated with the extent of PSII photoinhibition. Thus, the decline in LEF was not caused by the enhancement of lumenal acidification, but was induced by a decrease in PSII activity. These results indicate that residual PSII activity is an important determinant of LEF in this shade-adapted species, and they provide new insight into how strong illumination affects the growth of shade-demanding plants.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Liu
- National Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Straka L, Rittmann BE. Light-dependent kinetic model for microalgae experiencing photoacclimation, photodamage, and photodamage repair. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Huang W, Yang YJ, Zhang SB, Liu T. Cyclic Electron Flow around Photosystem I Promotes ATP Synthesis Possibly Helping the Rapid Repair of Photodamaged Photosystem II at Low Light. FRONTIERS IN PLANT SCIENCE 2018; 9:239. [PMID: 29535751 PMCID: PMC5834426 DOI: 10.3389/fpls.2018.00239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/09/2018] [Indexed: 05/03/2023]
Abstract
In higher plants, moderate photoinhibition of photosystem II (PSII) leads to a stimulation of cyclic electron flow (CEF) at low light, which is accompanied by an increase in the P700 oxidation ratio. However, the specific role of CEF stimulation at low light is not well known. Furthermore, the mechanism underlying this increase in P700 oxidation ratio at low light is unclear. To address these questions, intact leaves of the shade-adapted plant Panax notoginseng were treated at 2258 μmol photons m-2 s-1 for 30 min to induce PSII photoinhibition. Before and after this high-light treatment, PSI and PSII activity, the energy quenching in PSII, the redox state of PSI and proton motive force (pmf) at a low light of 54 μmol photons m-2 s-1 were determined at the steady state. After high-light treatment, electron flow through PSII (ETRII) significantly decreased but CEF was remarkably stimulated. The P700 oxidation ratio significantly increased but non-photochemical quenching changed negligibly. Concomitantly, the total pmf decreased significantly and the proton gradient (ΔpH) across the thylakoid membrane remained stable. Furthermore, the P700 oxidation ratio was negatively correlated with the value of ETRII. These results suggest that upon PSII photoinhibition, CEF is stimulated to increase the ATP synthesis, facilitating the rapid repair of photodamaged PSII. The increase in P700 oxidation ratio at low light cannot be explained by the change in pmf, but is primarily controlled by electron transfer from PSII.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Liu
- National-Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
15
|
Huang W, Yang YJ, Zhang JL, Hu H, Zhang SB. Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi. PHOTOSYNTHESIS RESEARCH 2017; 132:293-303. [PMID: 28432538 DOI: 10.1007/s11120-017-0389-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/15/2017] [Indexed: 05/07/2023]
Abstract
Our previous studies indicated that high light induced significant photoinhibition of photosystem I (PSI) in the shade-establishing tree species Psychotria henryi. However, the underlying mechanism has not been fully clarified. In the present study, in order to investigate the mechanism of PSI photoinhibition in P. henryi, we treated detached leaves with constant high light in the presence of methyl viologen (MV) or a soluble α-tocopherol analog, 2,2,5,7,8-pentamethyl-6-chromanol (PMC). We found that MV significantly depressed photochemical quantum yields in PSI and PSII when compared to PMC. On condition that no PSI photoinhibition happened, although cyclic electron flow (CEF) was abolished in the MV-treated samples, P700 oxidation ratio was maintain at higher levels than the PMC-treated samples. In the presence of PMC, PSI photoinhibition little changed but PSII photoinhibition was significantly alleviated. Importantly, PSI photoinhibition was largely accelerated in the presence of MV, which stimulates the production of superoxide and subsequently other reactive oxygen species at the chloroplast stroma by accepting electrons from PSI. Furthermore, MV largely aggravated PSII photoinhibition when compared to control. These results suggest that high P700 oxidation ratio cannot prevent PSI photoinhibition in P. henryi. Furthermore, the superoxide produced in the chloroplast stroma is critical for PSI photoinhibition in the higher plant P. henryi, which is opposite to the mechanism underlying PSI photoinhibition in Arabidopsis thaliana and spinach. These findings highlight a new mechanism of PSI photoinhibition in higher plants.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
16
|
Lu T, Meng Z, Zhang G, Qi M, Sun Z, Liu Y, Li T. Sub-high Temperature and High Light Intensity Induced Irreversible Inhibition on Photosynthesis System of Tomato Plant ( Solanum lycopersicum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:365. [PMID: 28360922 PMCID: PMC5352666 DOI: 10.3389/fpls.2017.00365] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/01/2017] [Indexed: 05/18/2023]
Abstract
High temperature and high light intensity is a common environment posing a great risk to organisms. This study aimed to elucidate the effects of sub-high temperature and high light intensity stress (HH, 35°C, 1000 μmol⋅m-2⋅s-1) and recovery on the photosynthetic mechanism, photoinhibiton of photosystem II (PSII) and photosystem I (PSI), and reactive oxygen (ROS) metabolism of tomato seedlings. The results showed that with prolonged stress time, net photosynthetic rate (Pn), Rubisco activity, maximal photochemistry efficiency (Fv/Fm), efficient quantum yield and electron transport of PSII [Y(II) and ETR(II)] and PSI [Y(I) and ETR(I)] decreased significantly whereas yield of non-regulated and regulated energy dissipation of PSII [Y(NO) and Y(NPQ)] increased sharply. The donor side limitation of PSI [Y(ND)] increased but the acceptor side limitation of PSI [Y(NA)] decreased. Content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were increased while activity of superoxide dismutase (SOD) and peroxidase (POD) were significantly inhibited compared with control. HH exposure affected photosynthetic carbon assimilation, multiple sites in PSII and PSI, ROS accumulation and elimination of Solanum lycopersicum L.
Collapse
Affiliation(s)
- Tao Lu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Zhaojuan Meng
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Guoxian Zhang
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Zhouping Sun
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
- *Correspondence: Yufeng Liu, Tianlai Li,
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
- *Correspondence: Yufeng Liu, Tianlai Li,
| |
Collapse
|
17
|
Yao X, Zhou H, Zhu Q, Li C, Zhang H, Wu JJ, Xie F. Photosynthetic Response of Soybean Leaf to Wide Light-Fluctuation in Maize-Soybean Intercropping System. FRONTIERS IN PLANT SCIENCE 2017; 8:1695. [PMID: 29033967 PMCID: PMC5625008 DOI: 10.3389/fpls.2017.01695] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/14/2017] [Indexed: 05/20/2023]
Abstract
In maize-soybean intercropping system, soybean plants will be affected by the wide light-fluctuation, which resulted from the shading by maize plants, as the shading of maize the light is not enough for soybean in the early morning and late afternoon, but at noon, the light is strong as the maize shading disappeared. The objective of this study is to evaluate the photosynthetic response of soybean leaf to the wide light-fluctuation. The data of diurnal variation of photosynthetic characters showed that the photosynthetic rate of intercropped soybean was weaker than that of monocropped soybean. The chlorophyll content, ratio of chlorophyll a/b, and AQE (apparent quantum efficiency) were increased and Rd (dark respiration rate) was decreased for the more efficient interception and absorption of light and carbon gain in intercropping. δRo (The efficiency/probability with which an electron from the intersystem electron carriers was transferred to reduce end electron acceptors at the PSI acceptor side) and φRo (the quantum yield for the reduction of the end electron acceptors at the PSI acceptor side) in intercropped soybean leaf were lower compared to those in monocropped one, which showed that the acceptor side of PSI might be inhibited, and also it was the main reason that soybean plants showed a low photosynthetic capacity in intercropping. ψEo (the efficiency/probability with an electron moves further than QA-) in monocropping and intercropping decreased 5.8, and 35.7%, respectively, while φEo (quantum yield for electron transport) decreased 27.7 and 45.3% under the high radiation at noon, which suggested that the acceptor side of PSII was inhibited, while the NPQ became higher. These were beneficial to dissipate excess excitation energy in time, and protect the photosynthetic apparatus against photo-damage. The higher performance index on the absorption basis (PIABS) and lower δRo, φRo, ψEo, and φEo of intercropped soybeans compared to monocropping under high radiation indicated that the electron transfer of intercropped soybean was inhibited more seriously and intercropped soybean adjusted the electron transport between PSII to PSI to adapt the light-fluctuation. Higher NPQ capacity of intercropped soybeans played a key role in keeping the leaf with a better physiological flexibility under the high radiation.
Collapse
Affiliation(s)
- Xingdong Yao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Hongli Zhou
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Qian Zhu
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Chunhong Li
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Huijun Zhang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jun-Jiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Futi Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Futi Xie,
| |
Collapse
|
18
|
Huang W, Yang YJ, Hu H, Zhang SB. Responses of Photosystem I Compared with Photosystem II to Fluctuating Light in the Shade-Establishing Tropical Tree Species Psychotria henryi. FRONTIERS IN PLANT SCIENCE 2016; 7:1549. [PMID: 27799937 PMCID: PMC5065958 DOI: 10.3389/fpls.2016.01549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/03/2016] [Indexed: 05/07/2023]
Abstract
Shade-establishing plants growing in the forest understory are exposed to constant high light or fluctuating light when gaps are created by fallen trees. Our previous studies indicate that photosystem I (PSI) is sensitive to constant high light in shade-establishing tree species, however, the effects of fluctuating light on PSI and photosystem II (PSII) in shade-establishing species are little known. In the present study, we examined the responses of PSI and PSII to fluctuating light in comparison to constant high light in the shade-establishing species Psychotria henryi. Accompanying with significant activation of cyclic electron flow (CEF), the P700 oxidation ratio was maintained at high levels when exposed to strong light either under fluctuating light or constant high light. Under moderate fluctuating light, PSI and PSII activities were remained stable in P. henryi. Interestingly, PSI was insusceptible to fluctuating light but sensitive to constant high light in P. henryi. Furthermore, both PSI and PSII were more sensitive to constant high light than fluctuating light. These results suggest that CEF is essential for photoprotection of PSI under fluctuating light in P. henryi. Furthermore, photoinhibition of PSI under high light in P. henryi is more related to the accumulation of reactive oxygen species rather than to P700 redox state, which is different from the mechanisms of PSI photoinhibition in Arabidopsis thaliana and rice. Taking together, PSI is a key determiner of photosynthetic responses to fluctuating light and constant high light in the shade-establishing species P. henryi.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesYunnan, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| |
Collapse
|
19
|
Huang W, Yang YJ, Zhang JL, Hu H, Zhang SB. PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in Psychotria rubra. PHOTOSYNTHESIS RESEARCH 2016; 129:85-92. [PMID: 27236700 DOI: 10.1007/s11120-016-0275-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/14/2016] [Indexed: 05/07/2023]
Abstract
Although it has been believed that wild-type plants are capable of protecting photosystem I (PSI) under high light, our previous study indicates that PSI is sensitive to high light in the shade-established tree species Psychotria rubra. However, the underlying physiological mechanisms are unclear. In this study, we examined the roles of electron transfer from PSII to PSI and PSI redox state in PSI photoinhibition in P. rubra by treatments with lincomycin (Lin), diuron (DCMU), and methyl viologen (MV). After exposure to 2000 μmol photons m(-2) s(-1) for 2 h, PSI activity decreased by 35, 29, 3, and 49 % in samples treated with H2O, Lin, DCMU, and MV, respectively. Meanwhile, the MV-treated samples showed higher P700 oxidation ratio than the H2O-treated samples, suggesting the PSI photoinhibition under high light was accompanied by high levels of P700 oxidation ratio. PSI photoinhibition was alleviated in the DCMU-treated samples but was accelerated in the MV-treated samples, suggesting that PSI photoinhibition in P. rubra was mainly controlled by electron transfer from PSII to PSI. Taking together, PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in P. rubra, which is different from the mechanisms of PSI photoinhibition in Arabidopsis thaliana and cucumber.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Hong Hu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|