1
|
Riaz M, Rafiq M, Nawaz HH, Miao W. Bridging Molecular Insights and Agronomic Innovations: Cutting-Edge Strategies for Overcoming Boron Deficiency in Sustainable Rapeseed Cultivation. PLANTS (BASEL, SWITZERLAND) 2025; 14:995. [PMID: 40219062 PMCID: PMC11990839 DOI: 10.3390/plants14070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
Boron (B) is an essential micronutrient for the growth, development, and maintenance of cellular integrity in vascular plants, and is especially important in cell wall synthesis and reproductive development. Rapeseed (Brassica napus L.), one of the dominant oil crops globally, has a high boron demand and its yield is dramatically decreased under B-deficiency conditions. Rapeseed, which is very sensitive to boron deficiency, suffers from reduced growth and reproductive development, ultimately causing severe yield losses. Here, we reviewed the present state of knowledge on the physiological function of boron in rapeseed, mechanisms of boron uptake and transport, specific effects of boron deficiency in rapeseed, and approaches to alleviate boron deficiency in rapeseed at the agronomical and molecular levels. A specific focus is given to recent molecular breakthroughs and agronomic approaches that may improve boron efficiency. The review focuses on practices that may alleviate the problems caused by boron-deficient soils by investigating the genetic and physiological mechanisms of boron tolerance. In summary, this review describes the integration of molecular information with practical agronomy as an important aspect of breeding future nutrient-efficient rapeseed cultivars that can sustain increasing yields while being cultivated in regions with boron-deficient soils.
Collapse
Affiliation(s)
- Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Muhammad Rafiq
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China;
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Hafiz Husnain Nawaz
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen Bolzano, 39100 Bozen-Bolzano, Italy;
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Dazhou 571737, China
| |
Collapse
|
2
|
Jiang Z, Liu L, Wang S, Ye X, Liu Z, Xu F. Transcriptional Analysis Reveals the Differences in Response of Floral Buds to Boron Deficiency Between Two Contrasting Brassica napus Varieties. PLANTS (BASEL, SWITZERLAND) 2025; 14:859. [PMID: 40265801 PMCID: PMC11944869 DOI: 10.3390/plants14060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Boron (B) is an essential micronutrient for the development of crops, and its reproductive stage is particularly sensitive to B deficiency. Brassica napus L., as an important oil-crop species, is extremely vulnerable to B deficiency. The typical B-deficient symptom of "flowering without seed setting" usually results in severe yield loss. However, few studies have focused on the response of the reproductive organs to B deficiency. In this study, the B-efficient variety "Zhongshuang 11" (ZS11) and the B-inefficient variety "Westar 10" (W10) of Brassica napus were selected to be cultivated at the developmental stage (BBCH15) in a pot experiment, both with and without B supply. Clear phenotype differences in B deficiency between the two varieties' flowers appeared only at the reproductive stage, and only W10 showed symptoms of delayed flower opening, stigma exsertion, and resulted in abortion. Transcriptome analysis for the early buds of both varieties between B supply (+B) and free (-B) treatments revealed that W10 had more differentially expressed genes (DEGs) corresponding to its greater susceptibility to -B. As two potential mechanisms to improve B-efficient utilization, we focused on analyzing the expression profiles of B transporter-related genes and phytohormone metabolism-related genes. BnaC05.NIP7;1, BnaC08.NIP3;1, and BnaBOR2s were identified as the key genes which could enhance the capacity of B translocation to buds of ZS11. Additionally, combined with a phytohormone concentration measurement, we showed that a significant increase in IAA and a drastic decrease in JA could predominantly lead to the abnormal development of W10's buds. BnaC02.NIT2 (Nitrilase 2) and BnaKAT5s (3-Ketoacyl-CoA Thiolase 5), which are IAA and JA biosynthesis genes, respectively, could be the key genes responsible for the changes in IAA and JA concentrations in W10's buds under -B. These candidate genes may regulate the genotype differences in the response of the rapeseed reproductive stage to -B between different B-efficient varieties. It also has potential to breed rapeseed varieties with B-efficient utilization in the reproductive stage, which would improve the seed yield under -B condition.
Collapse
Affiliation(s)
- Zhexuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Lan Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Xiangsheng Ye
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| | - Zhaojun Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; (Z.J.)
| |
Collapse
|
3
|
Jiang Z, Yao J, Wang S, Liu L, Shi L, Xu F, Liu Z. Transcriptome and phytohormone profiling of stamen and pistil in Brassica napus under boron deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109393. [PMID: 39721193 DOI: 10.1016/j.plaphy.2024.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Plant reproduction is a fundamental requirement for plants to sustain genetic inheritance. In the perspective of plant nutrition, such process is strongly influenced by boron deficiency (-B) and as documented about a century ago. To date, little is known about the mechanism of boron deficiency-induced fertility reduction. In this study, we successfully established a cultivation system for Brassica napus to precisely manipulate boron supply when the generative stage initiates. We dissected the stamen and pistil of early-developing Brassica napus flower buds for transcriptome and phytohormone analysis, and demonstrated pistil and stamen showed distinct responding processes to -B. In addition, we revealed that auxin (IAA)-related compounds and several IAA-biosynthesis genes may play important roles in reproductive organ responding to -B, suggesting the IAA metabolism pathway seems to play a crucial role in -B induced reproductive organ abortion process. Taken together, we created a reliable system to study boron deficiency induced fertility reduction, by which generated the first transcriptome result for dissected stamen and pistil under different boron regimes, and suggested IAA metabolism pathway deserves as important target for further study in such regimes.
Collapse
Affiliation(s)
- Zhexuan Jiang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinliang Yao
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhaojun Liu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| |
Collapse
|
4
|
He Y, He K, Mai J, Ou M, Chen L, Li Y, Wan T, Gu L, Shabala S, Li X, Li Y, Yu M. Boron controls apical dominance in Pea (Pisum sativum) via promoting polar auxin transport. PHYSIOLOGIA PLANTARUM 2025; 177:e70056. [PMID: 39815973 DOI: 10.1111/ppl.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport. Adopting an all-buds phenotyping methodology and employing several complementary approaches, we found that boron deficiency inhibited plant growth and changed the shoot architecture, resulting in the outgrowth of axillary buds at nodes 1-3. This was related to the auxin accumulation in shoot apical parts buds under B deficiency. Applying N-1-naphthylphthalamic acid to inhibit auxin transport from the shoot apex promoted the outgrowth of axillary buds in boron-sufficient (+B) plants. In decapitated plants, the application of exogenous auxin to the shoot apex only inhibited the outgrowth of axillary buds in +B plants. At higher auxin doses, the toxic effect of IAA was observed in the lower part of the shoot, which was more severe in +B plants than in B-deprived (-B) plants. Furthermore, the expression of PsPIN3 was significantly downregulated under -B conditions. These results indicate that B deficiency inhibits PAT from the apical bud through the main stem to the lower parts, leading to an increase of auxin level in the apical bud, which inhibits the growth of apical buds while stimulating the outgrowth of axillary buds.
Collapse
Affiliation(s)
- Yutong He
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Keren He
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Jingwen Mai
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Meiyin Ou
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Laibin Chen
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Yuanyuan Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Tao Wan
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Luping Gu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
- School of Biology, the University of Western Australia, Perth, Australia
| | - Xuewen Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Yalin Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| |
Collapse
|
5
|
Zhou T, Zhang L, Wu P, Feng Y, Hua Y. Salicylic Acid Is Involved in the Growth Inhibition Caused by Excessive Ammonium in Oilseed Rape ( Brassica napus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14419-14432. [PMID: 38869198 DOI: 10.1021/acs.jafc.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Rapeseed (Brassica napus L.) is extremely sensitive to excessive NH4+ toxicity. There remains incomplete knowledge of the causal factors behind the growth suppression in NH4+-nourished plants, with limited studies conducted specifically on field crop plants. In this study, we found that NH4+ toxicity significantly increased salicylic acid (SA) accumulation by accelerating the conversion of SA precursors. Moreover, exogenous SA application significantly aggravated NH4+ toxicity symptoms in the rapeseed shoots. Genome-wide differential transcriptomic analysis showed that NH4+ toxicity increased the expression of genes involved in the biosynthesis, transport, signaling transduction, and conversion of SA. SA treatment significantly increased shoot NH4+ concentrations by reducing the activities of glutamine synthase and glutamate synthase in NH4+-treated rapeseed plants. The application of an SA biosynthesis inhibitor, ABT, alleviated NH4+ toxicity symptoms. Furthermore, SA induced putrescine (Put) accumulation, resulting in an elevated ratio of Put to [spermidine (Spd) + spermine (Spm)] in the NH4+-treated plants, while the opposite was true for ABT. The application of exogenous Put and its biosynthesis inhibitor DFMA induced opposite effects on NH4+ toxicity in rapeseed shoots. These results indicated that the increased endogenous SA contributed noticeably to the toxicity caused by the sole NH4+-N supply in rapeseed shoots. This study provided fresh perspectives on the mechanism underlying excessive NH4+-induced toxicity and the corresponding alleviating strategies in plants.
Collapse
Affiliation(s)
- Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| | - Lu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| | - Pengjia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| | - Yingna Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| | - Yingpeng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
- Zhengzhou Key Laboratory of Quality Improvement and Efficient Nutrient Use for Main Economic Crops, Zhengzhou 450001, China
| |
Collapse
|
6
|
Lilay GH, Thiébaut N, du Mee D, Assunção AGL, Schjoerring JK, Husted S, Persson DP. Linking the key physiological functions of essential micronutrients to their deficiency symptoms in plants. THE NEW PHYTOLOGIST 2024; 242:881-902. [PMID: 38433319 DOI: 10.1111/nph.19645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
In this review, we untangle the physiological key functions of the essential micronutrients and link them to the deficiency responses in plants. Knowledge of these responses at the mechanistic level, and the resulting deficiency symptoms, have improved over the last decade and it appears timely to review recent insights for each of them. A proper understanding of the links between function and symptom is indispensable for an accurate and timely identification of nutritional disorders, thereby informing the design and development of sustainable fertilization strategies. Similarly, improved knowledge of the molecular and physiological functions of micronutrients will be important for breeding programmes aiming to develop new crop genotypes with improved nutrient-use efficiency and resilience in the face of changing soil and climate conditions.
Collapse
Affiliation(s)
- Grmay Hailu Lilay
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Noémie Thiébaut
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
- Earth and Life Institute, Faculty of Bioscience Engineering, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Dorine du Mee
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Ana G L Assunção
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
7
|
Zou J, Zhang Q, Amoako FK, Ackah M, Li H, Shi Y, Li J, Jiang Z, Zhao W. Genome-wide transcriptome profiling of mulberry (Morus alba) response to boron deficiency and toxicity reveal candidate genes associated with boron tolerance in leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108316. [PMID: 38176189 DOI: 10.1016/j.plaphy.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Mulberry (Morus alba) is an essential plant with countless economic benefits; however, its growth and metabolic processes are hampered by boron (B) stresses. Very little research has been performed to elucidate boron tolerance and detoxification mechanisms in this species. The M. alba cultivar, Yu-711, was exposed to five different concentrations of boric acid (H3BO3), including deficient (T1; 0 mM) moderate B deficiency (T2; 0.02 mM), sufficient (CK; 0.1 mM) and toxic (T3 and T4; 0.5 and 1 mM) levels for 18 days of growth in pots experiment. Transcriptome analysis of B deficiency and toxicity treatments was performed on mulberry leaves. The transcriptome data reveal that a total of 6114 genes were differentially expressed (DEGs), of which 3830 were up-regulated and 2284 were down-regulated. A comparative analysis between treatment groups CK-vs-T1 (deficiency) and CK-vs-T4 (toxicity) indicates that 590 and 1383 genes were down-regulated in both deficiency and B toxicity, respectively. The results show that 206 genes were differentially expressed in all treatments. B deficiency and toxicity significantly altered the expression of the key aquaporins (PIP2-1, PIP2-7, PIP2-4 and NIP3-1) and high-affinity boron transporter genes (BOR1 and BOR7). In addition, boron stress also altered the expression of antioxidants and photosynthesis-related genes. B stresses were found to alter several transcription factors including ERF1B, which is associated with the regulation of boron uptake and the synthesis and signaling of phytohormones. Unravelling the mechanisms of B tolerance and detoxification is important and would give us further insight into how B stresses affect mulberry plants.
Collapse
Affiliation(s)
- Jincheng Zou
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Qiaonan Zhang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, Kiel, 24118, Germany
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China.
| | - Haonan Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Jianbin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Zijie Jiang
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, People's Republic of China.
| |
Collapse
|
8
|
Verwaaijen B, Alcock TD, Spitzer C, Liu Z, Fiebig A, Bienert MD, Bräutigam A, Bienert GP. The Brassica napus boron deficient inflorescence transcriptome resembles a wounding and infection response. PHYSIOLOGIA PLANTARUM 2023; 175:e14088. [PMID: 38148205 DOI: 10.1111/ppl.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023]
Abstract
Oilseed rape and other crops of Brassica napus have a high demand for boron (B). Boron deficiencies result in the inhibition of root growth, and eventually premature flower abortion. Understanding the genetic mechanisms underlying flower abortion in B-limiting conditions could provide the basis to enhance B-efficiency and prevent B-deficiency-related yield losses. In this study, we assessed transcriptomic responses to B-deficiency in diverse inflorescence tissues at multiple time points of soil-grown plants that were phenotypically unaffected by B-deficiency until early flowering. Whilst transcript levels of known B transporters were higher in B-deficient samples, these remained remarkably stable as the duration of B-deficiency increased. Meanwhile, GO-term enrichment analysis indicated a growing response resembling that of a pathogen or pest attack, escalating to a huge transcriptome response in shoot heads at mid-flowering. Grouping differentially expressed genes within this tissue into MapMan functional bins indicated enrichment of genes related to wounding, jasmonic acid and WRKY transcription factors. Individual candidate genes for controlling the "flowering-without-seed-setting" phenotype from within MapMan biotic stress bins include those of the metacaspase family, which have been implicated in orchestrating programmed cell death. Overall temporal expression patterns observed here imply a dynamic response to B-deficiency, first increasing expression of B transporters before recruiting various biotic stress-related pathways to coordinate targeted cell death, likely in response to as yet unidentified B-deficiency induced damage-associated molecular patterns (DAMPs). This response indicates new pathways to target and dissect to control B-deficiency-induced flower abortion and to develop more B-efficient crops.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Computational Biology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
- Center of Biotechnology, Bielefeld University, Bielefeld, Germany
- Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas David Alcock
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| | - Christoph Spitzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Zhaojun Liu
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Manuela Désirée Bienert
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
| | - Andrea Bräutigam
- Computational Biology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
- Center of Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Gerd Patrick Bienert
- Crop Physiology, School of Life Sciences, Technical University of Munich, Freising, Germany
- HEF World Agricultural Systems Center, Technical University of Munich, Freising, Germany
| |
Collapse
|
9
|
Wang X, Song B, Wu Z, Zhao X, Song X, Adil MF, Riaz M, Lal MK, Huang W. Insights into physiological and molecular mechanisms underlying efficient utilization of boron in different boron efficient Beta vulgaris L. varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107619. [PMID: 36931121 DOI: 10.1016/j.plaphy.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Boron (B) deficiency and consequent limitation of plant yield and quality, particularly of sugar beet (Beta vulgaris L.) has emerged as a maior problem,which is exacerbating due to cultivar dependent variability in B deficiency tolerance. Pertinently, the current study was designed to elucidate the physiological and molecular mechanisms of B deficiency tolerance of sugar beet varieties KWS1197 (B-efficient variety) and KWS0143 (B-inefficient variety). A hydroponic experiment was conducted employing two B levels B0.1 (0.1 μM L-1 H3BO3, deficiency) and B50 (50 μM L-1 H3BO3, adequacy). Boron deficiency greatly inhibited root elongation and dry matter accumulation; however, formation of lateral roots stimulated and average root diameter was increased. Results exhibited that by up-regulating the expression of NIP5-1, NIP6-1, and BOR2, and suppressing the expression of BOR4, cultivar KWS1197, in contrast to KWS0143, managed to transfer sufficient amount of B to the aboveground plant parts, facilitating its effective absorption and utilization. Accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) was also mellowed in KWS1197, as well as the oxidative damage to root cells via preservation of the antioxidant enzyme system. Additionally, the expression of essential enzymes for biosynthesis of phytohormone (PYR/PYL) and lignin (COMT, POX, and CCoAOMT) were found to be highly up-regulated in KWS1197. Deductively, through effective B absorption and transportation, balanced nutrient accumulation, and an activated antioxidant enzyme system, B-efficient cultivars may cope with B deficiency while retaining a superior cellular structure to enable root development.
Collapse
Affiliation(s)
- Xiangling Wang
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Baiquan Song
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Zhenzhen Wu
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Xiaoyu Zhao
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Xin Song
- Sugar Beet Engineering Research Center of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resources, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Wengong Huang
- Heilongjiang Academy of Agricultural Sciences, Safety and Quality Institute of Agricultural Products, Harbin, 150086, China
| |
Collapse
|
10
|
Liu J, Chen T, Wang CL, Liu X. Transcriptome Analysis in Pyrus betulaefolia Roots in Response to Short-Term Boron Deficiency. Genes (Basel) 2023; 14:genes14040817. [PMID: 37107575 PMCID: PMC10137548 DOI: 10.3390/genes14040817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Boron (B) deficiency stress is frequently observed in pear orchards and causes a considerable loss of productivity and fruit quality. Pyrus betulaefolia is one of the most important rootstocks that has been widely used in pear production. The present study confirmed that the boron form of different tissues showed various changes, and the free boron content was significantly decreased under the short-term B deficiency condition. Moreover, the ABA and JA content also significantly accumulated in the root after short-term B deficiency treatment. A comprehensive transcriptome analysis of 24 h B deficiency treatment P. betulaefolia root was performed in this study. Transcriptome results revealed a total of 1230 up-regulated and 642 down-regulated differentially expressed genes (DEGs), respectively. B deficiency significantly increased the expression of the key aquaporin gene NIP5-1. In addition, B deficiency also increased the expression of ABA (ZEP and NCED) and JA (LOX, AOS and OPR) synthesis genes. Several MYB, WRKY, bHLH and ERF transcription factors were induced by B deficiency stress, which may relate to the regulation of B uptake and plant hormone synthesis. Overall, these findings suggested that P. betulaefolia root had adaptive responses to short-term B deficiency stress by improved boron absorption ability and hormone (JA and ABA) synthesis. The transcriptome analysis provided further information for understanding the mechanism of the pear rootstock responses to B deficiency stress.
Collapse
|
11
|
Hua YP, Zhang YF, Zhang TY, Chen JF, Song HL, Wu PJ, Yue CP, Huang JY, Feng YN, Zhou T. Low iron ameliorates the salinity-induced growth cessation of seminal roots in wheat seedlings. PLANT, CELL & ENVIRONMENT 2023; 46:567-591. [PMID: 36358019 DOI: 10.1111/pce.14486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Wheat plants are ubiquitously simultaneously exposed to salinity and limited iron availability caused by soil saline-alkalisation. Through this study, we found that both low Fe and NaCl severely inhibited the growth of seminal roots in wheat seedlings; however, sufficient Fe caused greater growth cessation of seminal roots than low Fe under salt stress. Low Fe improved the root meristematic division activity, not altering the mature cell sizes compared with sufficient Fe under salt stress. Foliar Fe spray and split-root experiments showed that low Fe-alleviating the salinity-induced growth cessation of seminal roots was dependent on local low Fe signals in the roots. Ionomics combined with TEM/X-ray few differences in the root Na+ uptake and vacuolar Na+ sequestration between two Fe levels under salt stress. Phytohormone profiling and metabolomics revealed salinity-induced overaccumulation of ACC/ethylene and tryptophan/auxin in the roots under sufficient Fe than under low Fe. Differential gene expression, pharmacological inhibitor addition and the root growth performance of transgenic wheat plants revealed that the rootward auxin efflux and was responsible for the low Fe-mediated amelioration of the salinity-induced growth cessation of seminal roots. Our findings will provide novel insights into the modulation of crop root growth under salt stress.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yi-Fan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Hua YP, Chen JF, Zhou T, Zhang TY, Shen DD, Feng YN, Guan PF, Huang SM, Zhou ZF, Huang JY, Yue CP. Multiomics reveals an essential role of long-distance translocation in regulating plant cadmium resistance and grain accumulation in allohexaploid wheat (Triticum aestivum). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7516-7537. [PMID: 36063365 DOI: 10.1093/jxb/erac364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that readily enters cereals, such as wheat, via the roots and is translocated to the shoots and grains, thereby posing high risks to human health. However, the vast and complex genome of allohexaploid wheat makes it challenging to understand Cd resistance and accumulation. In this study, a Cd-resistant cultivar of wheat, 'ZM1860', and a Cd-sensitive cultivar, 'ZM32', selected from a panel of 442 accessions, exhibited significantly different plant resistance and grain accumulation. We performed an integrated comparative analysis of the morpho-physiological traits, ionomic and phytohormone profiles, genomic variations, transcriptomic landscapes, and gene functionality in order to identify the mechanisms underlying these differences. Under Cd toxicity, 'ZM1860' outperformed 'ZM32', which showed more severe leaf chlorosis, poorer root architecture, higher accumulation of reactive oxygen species, and disordered phytohormone homeostasis. Ionomics showed that 'ZM32' had a higher root-to-shoot translocation coefficient of Cd and accumulated more Cd in the grains than 'ZM1860'. Whole-genome re-sequencing (WGS) and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in abiotic stress responses and ion transport between the two genotypes. Combined ionomics, transcriptomics, and functional gene analysis identified the plasma membrane-localized heavy metal ATPase TaHMA2b-7A as a crucial Cd exporter regulating long-distance Cd translocation in wheat. WGS- and PCR-based analysis of sequence polymorphisms revealed a 25-bp InDel site in the promoter region of TaHMA2b-7A, and this was probably responsible for the differential expression. Our multiomics approach thus enabled the identification of a core transporter involved in long-distance Cd translocation in wheat, and it may provide an elite genetic resource for improving plant Cd resistance and reducing grain Cd accumulation in wheat and other cereal crops.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dan-Dan Shen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pan-Feng Guan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shao-Min Huang
- Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zheng-Fu Zhou
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Chen JF, Liu Y, Zhang TY, Zhou ZF, Huang JY, Zhou T, Hua YP. Integrated physiological and transcriptional dissection reveals the core genes involving nutrient transport and osmoregulatory substance biosynthesis in allohexaploid wheat seedlings under salt stress. BMC PLANT BIOLOGY 2022; 22:502. [PMID: 36289462 PMCID: PMC9608917 DOI: 10.1186/s12870-022-03887-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soil salinization has become a global problem restricting the seed yield and quality of crops, including wheat (Triticum aestivum L.). Salinity significantly alters plant morphology and severely disrupts physiological homeostasis. Salt tolerance of wheat has been widely studied whereas core ion transporters responsive to salt stress remain elusive. RESULTS In this study, the wheat seedlings were subjected to salinity toxicity for morpho-physiological and transcriptomic analysis of wheat salt tolerance. There was a inversely proportional relationship between salt concentrations and morpho-physiological parameters. Under the condition of 100 mM NaCl, the H2O2, O2-, MDA content and membrane permeability were significantly increased whereas the chlorophyll content was markedly decreased. Under salt stress, a larger proportion of Na+ was partitioned in the roots than in the shoots, which had a lower Na+/K+ ratio and proline content. Salt stress also obviously affected the homeostasis of other cations. Genome-wide transcriptomic analysis showed that a total of 2,807 and 5,570 differentially expressed genes (DEGs) were identified in the shoots and roots, respectively. Functionality analysis showed that these DEGs were mainly enriched in the KEGG pathways related to carbon metabolism, phenylalanine, and amino acid biosynthesis, and were primarily enriched in the GO terms involving proline metabolism and redox processes. The Na+ transporter genes were upregulated under salt stress, which repressed the gene expression of the K+ transporters. Salt stress also significantly elevated the expression of the genes involved in osmoregulation substances biosynthesis, and obviously affected the expression profiling of other cation transporters. Co-expression network analysis identified TaNHX6-D5/TaNHX4-B7 and TaP5CS2-B3 potentially as core members regulating wheat salt tolerance. CONCLUSIONS These results might help us fully understand the morpho-physiological and molecular responses of wheat seedlings to salt stress, and provide elite genetic resources for the genetic modification of wheat salt tolerance.
Collapse
Affiliation(s)
- Jun-fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Tian-yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Zheng-fu Zhou
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
14
|
Pommerrenig B, Faber M, Hajirezaei MR, von Wirén N, Bienert GP. Cytokinins as boron deficiency signals to sustain shoot development in boron-efficient oilseed rape. PHYSIOLOGIA PLANTARUM 2022; 174:e13776. [PMID: 36066313 DOI: 10.1111/ppl.13776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Boron (B) deficiency is a highly prominent nutrient disorder. While B-efficient accessions have recently been identified in the highly B-demanding crop oilseed rape, it remained unclear which physiological processes underlie B efficiency and which signaling pathways trigger an efficient B-deficiency response. Here, we compared, under three different B supply conditions, two Brassica napus accessions with contrasting B efficiency. Shoot biomass formation, B distribution patterns and metabolic dynamics of different phytohormone species were studied using a combination of mass spectrometry-based analyses and physiological measurements. Our results show that the B-efficient accession CR2267 does not differ from the B-inefficient accession CR2262 in terms of B accumulation and subcellular B-partitioning, although it displays no morphological B-deficiency symptoms under severe B-deficient conditions. Investigating phytohormone metabolism revealed a strong accumulation of cytokinins in CR2267 at a developmental stage when striking B-dependent differences in biomass and organ formation emerge in the two B. napus accessions. In contrast, elevated levels of the stress hormone abscisic acid as well as bioactive auxins, representing functional antagonists of cytokinins in shoots, were detected only in CR2262. Our results indicate that superior B efficiency in CR2267 relies on a higher B utilization efficiency that builds on an earlier and higher cytokinin biosynthesis required for the maintenance of the shoot meristem activity and proper leaf development. We further conclude that an elevated abundance of cytokinins is not a consequence of better plant growth but rather a presumption for better plant growth under low-B conditions.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Plant Physiology, University Kaiserslautern, Kaiserslautern, Germany
| | - Maximilian Faber
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gerd Patrick Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
15
|
Huang Y, Wang S, Wang C, Ding G, Cai H, Shi L, Xu F. Induction of jasmonic acid biosynthetic genes inhibits Arabidopsis growth in response to low boron. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:937-948. [PMID: 33289292 PMCID: PMC8252524 DOI: 10.1111/jipb.13048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 05/31/2023]
Abstract
The essential micronutrient boron (B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid (JA) in plant growth inhibition under B deficiency remains unclear. Here, we report that low B elevates JA biosynthesis in Arabidopsis thaliana by inducing the expression of JA biosynthesis genes. Treatment with JA inhibited plant growth and, a JA biosynthesis inhibitor enhanced plant growth, indicating that the JA induced by B deficiency affects plant growth. Furthermore, examination of the JA signaling mutants jasmonate resistant1, coronatine insensitive1-2, and myc2 showed that JA signaling negatively regulates plant growth under B deficiency. We identified a low-B responsive transcription factor, ERF018, and used yeast one-hybrid assays and transient activation assays in Nicotiana benthamiana leaf cells to demonstrate that ERF018 activates the expression of JA biosynthesis genes. ERF018 overexpression (OE) lines displayed stunted growth and up-regulation of JA biosynthesis genes under normal B conditions, compared to Col-0 and the difference between ERF018 OE lines and Col-0 diminished under low B. These results suggest that ERF018 enhances JA biosynthesis and thus negatively regulates plant growth. Taken together, our results highlight the importance of JA in the effect of low B on plant growth.
Collapse
Affiliation(s)
- Yupu Huang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Chuang Wang
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Lei Shi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Microelement Research Center, College of Resources & EnvironmentHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
16
|
Huang Y, Wang S, Shi L, Xu F. JASMONATE RESISTANT 1 negatively regulates root growth under boron deficiency in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3108-3121. [PMID: 33530106 DOI: 10.1093/jxb/erab041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential micronutrient for plant growth and development. Jasmonic acid (JA) plays pivotal roles in plant growth, but the underlying molecular mechanism of JA involvement in B-deficiency-induced root growth inhibition is yet to be explored. In this study, we investigated the response of JA to B deficiency and the mechanism of JAR1-dependent JA signaling in root growth inhibition under B deficiency in Arabidopsis. B deficiency enhanced JA signaling in roots, and root growth inhibition was partially restored by JA biosynthesis inhibition. The jar1-1 (jasmonate-resistant 1, JAR1) mutant, and mutants of coronatine-insensitive 1 (coi1-2) and myc2 defective in JA signaling showed insensitivity to B deficiency. The ethylene-overproduction mutant eto1 and ethylene-insensitive mutant etr1 showed sensitivity and insensitivity to B deficiency, respectively, suggesting that ethylene is involved in the inhibition of primary root growth under B deficiency. Furthermore, after a decline in levels of EIN3, which may contribute to root growth, ethylene signaling was weakened in the jar1-1 mutant root under B deficiency. Under B deficiency, B concentrations were increased in the roots and shoots of the jar1-1 mutant, owing to the large root system and its activity. Therefore, our findings revealed that JA, which is involved in the inhibition of root growth under B deficiency, is regulated by JAR1-activated JA and ethylene signaling pathways.
Collapse
Affiliation(s)
- Yupu Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Feng YN, Cui JQ, Zhou T, Liu Y, Yue CP, Huang JY, Hua YP. Comprehensive dissection into morpho-physiologic responses, ionomic homeostasis, and transcriptomic profiling reveals the systematic resistance of allotetraploid rapeseed to salinity. BMC PLANT BIOLOGY 2020; 20:534. [PMID: 33228523 PMCID: PMC7685620 DOI: 10.1186/s12870-020-02734-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/09/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Salinity severely inhibit crop growth, yield, and quality worldwide. Allotetraploid rapeseed (Brassica napus L.), a major glycophyte oil crop, is susceptible to salinity. Understanding the physiological and molecular strategies of rapeseed salinity resistance is a promising and cost-effective strategy for developing highly resistant cultivars. RESULTS First, early leaf senescence was identified and root system growth was inhibited in rapeseed plants under severe salinity conditions. Electron microscopic analysis revealed that 200 mM NaCl induced fewer leaf trichomes and stoma, cell plasmolysis, and chloroplast degradation. Primary and secondary metabolite assays showed that salinity led to an obviously increased anthocyanin, osmoregulatory substances, abscisic acid, jasmonic acid, pectin, cellulose, reactive oxygen species, and antioxidant activity, and resulted in markedly decreased photosynthetic pigments, indoleacetic acid, cytokinin, gibberellin, and lignin. ICP-MS assisted ionomics showed that salinity significantly constrained the absorption of essential elements, including the nitrogen, phosphorus, potassium, calcium, magnesium, iron, mangnese, copper, zinc, and boron nutrients, and induced the increase in the sodium/potassium ratio. Genome-wide transcriptomics revealed that the differentially expressed genes were involved mainly in photosynthesis, stimulus response, hormone signal biosynthesis/transduction, and nutrient transport under salinity. CONCLUSIONS The high-resolution salt-responsive gene expression profiling helped the efficient characterization of central members regulating plant salinity resistance. These findings might enhance integrated comprehensive understanding of the morpho-physiologic and molecular responses to salinity and provide elite genetic resources for the genetic modification of salinity-resistant crop species.
Collapse
Affiliation(s)
- Ying-na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jia-qian Cui
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Cai-peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Jin-yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Ying-peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
18
|
Matthes MS, Robil JM, McSteen P. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1681-1693. [PMID: 31985801 PMCID: PMC7067301 DOI: 10.1093/jxb/eraa042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/25/2020] [Indexed: 05/27/2023]
Abstract
Deficiency of the essential nutrient boron (B) in the soil is one of the most widespread micronutrient deficiencies worldwide, leading to developmental defects in root and shoot tissues of plants, and severe yield reductions in many crops. Despite this agricultural importance, the underlying mechanisms of how B shapes plant developmental and morphological processes are still not unequivocally understood in detail. This review evaluates experimental approaches that address our current understanding of how B influences plant morphological processes by focusing on developmental defects observed under B deficiency. We assess what is known about mechanisms that control B homeostasis and specifically highlight: (i) limitations in the methodology that is used to induce B deficiency; (ii) differences between mutant phenotypes and normal plants grown under B deficiency; and (iii) recent research on analyzing interactions between B and phytohormones. Our analysis highlights the need for standardized methodology to evaluate the roles of B in the cell wall versus other parts of the cell.
Collapse
Affiliation(s)
- Michaela S Matthes
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| | - Janlo M Robil
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, LSC, Columbia, MO, USA
| |
Collapse
|
19
|
Gómez-Soto D, Galván S, Rosales E, Bienert P, Abreu I, Bonilla I, Bolaños L, Reguera M. Insights into the role of phytohormones regulating pAtNIP5;1 activity and boron transport in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110198. [PMID: 31481193 DOI: 10.1016/j.plantsci.2019.110198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 05/29/2023]
Abstract
Aiming to counteract B deficiency impacts, plants have developed different strategies in order to reach an optimal growth in soils with limited B availability. These include B transport mechanisms that involves a facilitated transport, via channel proteins, and a high-affinity active transport driven by borate transporters. The AtNIP5;1 channel protein is a member of Major Intrinsic Protein family which facilitates B influx into the roots under low B supply. In order to explore the phytohormone-dependent regulation of AtNIP5;1, the effects of abscisic acid (ABA), ethylene, auxins and cytokinins on the activity of AtNIP5;1 promoter were evaluated using the reporter line pNIP5;1-GUS. The results show that ABA treatment increased pAtNIP5;1 activity. Besides, a larger B uptake was found following ABA treatment under B deficiency suggesting a role of ABA inducing B uptake. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) caused an induction of AtNIP5;1 expression although did not correlate with higher B concentrations nor with an improvement in root growth. On the contrary, auxins and cytokinins caused slight changes in pAtNIP5;1 induction. Altogether, these results show a regulatory role of phytohormones in AtNIP5;1 promoter what may affect B transport. The herein provided information may contribute to better understand the regulation of B transport in plants towards minimizing B deficiency impacts on agriculture.
Collapse
Affiliation(s)
- D Gómez-Soto
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - S Galván
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - E Rosales
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - P Bienert
- IPK-Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Physiology and Cell Biology, 06466, Gatersleben, Germany
| | - I Abreu
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - I Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - L Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - M Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
20
|
Pommerrenig B, Eggert K, Bienert GP. Boron Deficiency Effects on Sugar, Ionome, and Phytohormone Profiles of Vascular and Non-Vascular Leaf Tissues of Common Plantain ( Plantago major L.). Int J Mol Sci 2019; 20:E3882. [PMID: 31395813 PMCID: PMC6719229 DOI: 10.3390/ijms20163882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular tissues essentially regulate water, nutrient, photo-assimilate, and phytohormone logistics throughout the plant body. Boron (B) is crucial for the development of the vascular tissue in many dicotyledonous plant taxa and B deficiency particularly affects the integrity of phloem and xylem vessels, and, therefore, functionality of long-distance transport. We hypothesize that changes in the plants' B nutritional status evoke differential responses of the vasculature and the mesophyll. However, direct analyses of the vasculature in response to B deficiency are lacking, due to the experimental inaccessibility of this tissue. Here, we generated biochemical and physiological understanding of B deficiency response reactions in common plantain (Plantago major L.), from which pure and intact vascular bundles can be extracted. Low soil B concentrations affected quantitative distribution patterns of various phytohormones, sugars and macro-, and micronutrients in a tissue-specific manner. Vascular sucrose levels dropped, and sucrose loading into the phloem was reduced under low B supply. Phytohormones responded selectively to B deprivation. While concentrations of abscisic acid and salicylic acid decreased at low B supply, cytokinins and brassinosteroids increased in the vasculature and the mesophyll, respectively. Our results highlight the biological necessity to analyze nutrient deficiency responses in a tissue- rather organ-specific manner.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany
- Plant Physiology, University of Kaiserslautern, Paul-Ehrlich-Str. 22, D-67653 Kaiserslautern, Germany
| | - Kai Eggert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany
| | - Gerd P Bienert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Gatersleben, Germany.
| |
Collapse
|
21
|
Madrigal Y, Alzate JF, González F, Pabón-Mora N. Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in non-core eudicots. AMERICAN JOURNAL OF BOTANY 2019; 106:334-351. [PMID: 30845367 DOI: 10.1002/ajb2.1243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/07/2018] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY Bilateral symmetry in core eudicot flowers is established by the differential expression of CYCLOIDEA (CYC), DICHOTOMA (DICH), and RADIALIS (RAD), which are restricted to the dorsal portion of the flower, and DIVARICATA (DIV), restricted to the ventral and lateral petals. Little is known regarding the evolution of these gene lineages in non-core eudicots, and there are no reports on gene expression that can be used to assess whether the network predates the diversification of core eudicots. METHODS Homologs of the RAD and DIV lineages were isolated from available genomes and transcriptomes, including those of three selected non-core eudicot species, the magnoliid Aristolochia fimbriata and the monocots Cattleya trianae and Hypoxis decumbens. Phylogenetic analyses for each gene lineage were performed. RT-PCR was used to evaluate the expression and putative contribution to floral symmetry in dissected floral organs of the selected species. KEY RESULTS RAD-like genes have undergone at least two duplication events before eudicot diversification, three before monocots and at least four in Orchidaceae. DIV-like genes also duplicated twice before eudicot diversification and underwent independent duplications specific to Orchidaceae. RAD-like and DIV-like genes have differential dorsiventral expression only in C. trianae, which contrasts with the homogeneous expression in the perianth of A. fimbriata. CONCLUSIONS Our results point to a common genetic regulatory network for floral symmetry in monocots and core eudicots, while alternative genetic mechanisms are likely driving the bilateral perianth symmetry in the early-diverging angiosperm Aristolochia.
Collapse
Affiliation(s)
- Yesenia Madrigal
- Instituto de Biología, Universidad de Antioquia, AA 1226, Cl. 67 No. 53-108, Medellín, Colombia
| | - Juan Fernando Alzate
- Centro Nacional de Secuenciación Genómica, SIU, Facultad de Medicina, Universidad de Antioquia, Cl. 70 No. 52-21, Medellín, Colombia
| | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, AA. 7495, Bogotá, Colombia
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, AA 1226, Cl. 67 No. 53-108, Medellín, Colombia
| |
Collapse
|
22
|
Prerostova S, Dobrev PI, Konradyova V, Knirsch V, Gaudinova A, Kramna B, Kazda J, Ludwig-Müller J, Vankova R. Hormonal Responses to Plasmodiophora brassicae Infection in Brassica napus Cultivars Differing in Their Pathogen Resistance. Int J Mol Sci 2018; 19:E4024. [PMID: 30551560 PMCID: PMC6321006 DOI: 10.3390/ijms19124024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/27/2022] Open
Abstract
Hormonal dynamics after Plasmodiophora brassicae infection were compared in two Brassica napus cultivars-more resistant SY Alister and more sensitive Hornet, in order to elucidate responses associated with efficient defense. Both cultivars responded to infection by the early transient elevation of active cytokinins (predominantly cis-zeatin) and auxin indole-3-acetic acid (IAA) in leaves and roots, which was longer in Hornet. Moderate IAA levels in Hornet roots coincided with a high expression of biosynthetic gene nitrilase NIT1 (contrary to TAA1, YUC8, YUC9). Alister had a higher basal level of salicylic acid (SA), and it stimulated its production (via the expression of isochorismate synthase (ICS1)) in roots earlier than Hornet. Gall formation stimulated cytokinin, auxin, and SA levels-with a maximum 22 days after inoculation (dai). SA marker gene PR1 expression was the most profound at the time point where gall formation began, in leaves, roots, and especially in galls. Jasmonic acid (JA) was higher in Hornet than in Alister during the whole experiment. To investigate SA and JA function, SA was applied before infection, and twice (before infection and 15 dai), and JA at 15 dai. Double SA application diminished gall formation in Alister, and JA promoted gall formation in both cultivars. Activation of SA/JA pathways reflects the main differences in clubroot resistance.
Collapse
Affiliation(s)
- Sylva Prerostova
- Institute of Experimental Botany Czech Acad Sci, Laboratory of Hormonal Regulations in Plants, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | - Petre I Dobrev
- Institute of Experimental Botany Czech Acad Sci, Laboratory of Hormonal Regulations in Plants, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | - Veronika Konradyova
- Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6, Czech Republic.
| | - Vojtech Knirsch
- Institute of Experimental Botany Czech Acad Sci, Laboratory of Hormonal Regulations in Plants, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | - Alena Gaudinova
- Institute of Experimental Botany Czech Acad Sci, Laboratory of Hormonal Regulations in Plants, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | - Barbara Kramna
- Institute of Experimental Botany Czech Acad Sci, Laboratory of Hormonal Regulations in Plants, Rozvojova 263, 165 02 Prague 6, Czech Republic.
- Department of Experimental Plant Biology, Charles University, Faculty of Science, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Jan Kazda
- Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6, Czech Republic.
| | - Jutta Ludwig-Müller
- Dresden, Faculty of Biology, Institute of Botany, Technische Universität, 01062 Dresden, Germany.
| | - Radomira Vankova
- Institute of Experimental Botany Czech Acad Sci, Laboratory of Hormonal Regulations in Plants, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| |
Collapse
|
23
|
Matthes MS, Robil JM, Tran T, Kimble A, McSteen P. Increased transpiration is correlated with reduced boron deficiency symptoms in the maize tassel-less1 mutant. PHYSIOLOGIA PLANTARUM 2018; 163:344-355. [PMID: 29577325 DOI: 10.1111/ppl.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/09/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Loss-of-function mutations of the tassel-less1 (tls1) gene in maize, which is the co-ortholog of the Arabidopsis boron (B) importer NIP5;1, leads to the loss of reproductive structures (tassels and ears). The tls1 phenotypes can be rescued by B supplementation in the field and in the greenhouse. As the rescue with B supplementation is variable in the field, we investigated additional abiotic factors, potentially causing this variation in controlled greenhouse conditions. We found that the B-dependent rescue of the tls1 mutant tassel phenotype was enhanced when plants were grown with a mix of high pressure sodium (HPS) and metal halide (MH) lamps. Normal and tls1 plants had a significant increase in transpiration and increased B content in the leaves in the greenhouse with the addition of MH lamps. Our findings imply that B transport to the shoot is enhanced through increased transpiration, which suggests that the xylem transpiration stream provides a significant supply of B in maize.
Collapse
Affiliation(s)
- Michaela S Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Thu Tran
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Ashten Kimble
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Eggert K, von Wirén N. Response of the plant hormone network to boron deficiency. THE NEW PHYTOLOGIST 2017; 216:868-881. [PMID: 28833172 DOI: 10.1111/nph.14731] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/30/2017] [Indexed: 05/04/2023]
Abstract
Plant hormones (PH) adjust plant growth to environmental conditions such as nutrient availability. Although responses of individual PHs to growth-determining nutrient supplies have been reported, little is known about simultaneous dynamics in the metabolism of different PH species. Brassica napus seedlings were grown under increasing supply of B, and LC-MS/MS was used to characterize bioactive forms of different PH species together with several of their precursors, storage and inactivated forms. Increasing shoot B concentrations in response to B supply were accompanied by decreasing concentrations of abscisic acid (ABA) and indole-3-acetic acid (IAA), which appeared to be synthesized under B deficiency mainly via indole-3-acetonitrile (IAN). By contrast, shoot B concentrations correlated closely with cytokinins, and the B-dependent growth response appeared to be triggered primarily by de-novo synthesis of cytokinins and by re-routing less active towards highly active forms of cytokinin. Also gibberellin biosynthesis strongly increased with B supply, in particular gibberellin species from the non-13-hydroxylation pathway. The brassinosteroid castasterone appeared to support shoot growth primarily at suboptimal B nutrition. These results indicate that a variable B nutritional status causes coordinated changes in PH metabolism as prerequisite for an adjusted growth response.
Collapse
Affiliation(s)
- Kai Eggert
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, 06466, Gatersleben, Germany
| |
Collapse
|