1
|
Palmer NA, Alvarez S, Naldrett MJ, Muhle A, Sarath G, Edmé SJ, Tatineni S, Mitchell RB, Yuen G. Dynamic Reconfiguration of Switchgrass Proteomes in Response to Rust ( Puccinia novopanici) Infection. Int J Mol Sci 2023; 24:14630. [PMID: 37834079 PMCID: PMC10572835 DOI: 10.3390/ijms241914630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Switchgrass (Panicum virgatum L.) can be infected by the rust pathogen (Puccinia novopanici) and results in lowering biomass yields and quality. Label-free quantitative proteomics was conducted on leaf extracts harvested from non-infected and infected plants from a susceptible cultivar (Summer) at 7, 11, and 18 days after inoculation (DAI) to follow the progression of disease and evaluate any plant compensatory mechanisms to infection. Some pustules were evident at 7 DAI, and their numbers increased with time. However, fungal DNA loads did not appreciably change over the course of this experiment in the infected plants. In total, 3830 proteins were identified at 1% false discovery rate, with 3632 mapped to the switchgrass proteome and 198 proteins mapped to different Puccinia proteomes. Across all comparisons, 1825 differentially accumulated switchgrass proteins were identified and subjected to a STRING analysis using Arabidopsis (A. thaliana L.) orthologs to deduce switchgrass cellular pathways impacted by rust infection. Proteins associated with plastid functions and primary metabolism were diminished in infected Summer plants at all harvest dates, whereas proteins associated with immunity, chaperone functions, and phenylpropanoid biosynthesis were significantly enriched. At 18 DAI, 1105 and 151 proteins were significantly enriched or diminished, respectively. Many of the enriched proteins were associated with mitigation of cellular stress and defense.
Collapse
Affiliation(s)
- Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583-0937, USA; (N.A.P.); (A.M.); (S.J.E.); (S.T.); (R.B.M.)
| | - Sophie Alvarez
- Proteomics and Metabolomics Core Facility, Center for Biotechnology, University of Nebraska at Lincoln, Lincoln, NE 68588-0664, USA; (S.A.); (M.J.N.)
| | - Michael J. Naldrett
- Proteomics and Metabolomics Core Facility, Center for Biotechnology, University of Nebraska at Lincoln, Lincoln, NE 68588-0664, USA; (S.A.); (M.J.N.)
| | - Anthony Muhle
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583-0937, USA; (N.A.P.); (A.M.); (S.J.E.); (S.T.); (R.B.M.)
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583-0937, USA; (N.A.P.); (A.M.); (S.J.E.); (S.T.); (R.B.M.)
| | - Serge J. Edmé
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583-0937, USA; (N.A.P.); (A.M.); (S.J.E.); (S.T.); (R.B.M.)
| | - Satyanarayana Tatineni
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583-0937, USA; (N.A.P.); (A.M.); (S.J.E.); (S.T.); (R.B.M.)
- Department of Plant Pathology, University of Nebraska at Lincoln, Lincoln, NE 68583-0722, USA;
| | - Robert B. Mitchell
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Lincoln, NE 68583-0937, USA; (N.A.P.); (A.M.); (S.J.E.); (S.T.); (R.B.M.)
| | - Gary Yuen
- Department of Plant Pathology, University of Nebraska at Lincoln, Lincoln, NE 68583-0722, USA;
| |
Collapse
|
2
|
Wu S, Guo Y, Joan HI, Tu Y, Adil MF, Sehar S, Zhao D, Shamsi IH. iTRAQ-based comparative proteomic analysis reveals high temperature accelerated leaf senescence of tobacco (Nicotiana tabacum L.) during flue-curing. Genomics 2020; 112:3075-3088. [PMID: 32454168 DOI: 10.1016/j.ygeno.2020.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Tobacco (Nicotiana tabacum) is extensively cultivated all over the world for its economic value. During curing and storage, senescence occurs, which is associated with physiological and biochemical changes in postharvest plant organs. However, the molecular mechanisms involved in accelerated senescence due to high temperatures in tobacco leaves during curing need further elaboration. We studied molecular mechanisms of senescence in tobacco leaves exposed to high temperature during curing (Fresh, 38 °C and 42 °C), revealed by isobaric tags for relative and absolute quantification (iTRAQ) for the proteomic profiles of cultivar Bi'na1. In total, 8903 proteins were identified, and 2034 (1150 up-regulated and 1074 down-regulated) differentially abundant proteins (DAPs) were obtained from tobacco leaf samples. These DAPs were mainly involved in posttranslational modification, protein turnover, energy production and conversion. Sugar- and energy-related metabolic biological processes and pathways might be critical regulators of tobacco leaves exposed to high temperature during senescence. High-temperature stress accelerated tobacco leaf senescence mainly by down-regulating photosynthesis-related pathways and degrading cellular constituents to maintain cell viability and nutrient recycling. Our findings provide a valuable inventory of novel proteins involved in senescence physiology and elucidate the protein regulatory network in postharvest organs exposed to high temperatures during flue-curing.
Collapse
Affiliation(s)
- Shengjiang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, PR China; Guizhou Academy of Tobacco Science, Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang 550081, PR China
| | - Yushuang Guo
- Guizhou Academy of Tobacco Science, Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang 550081, PR China
| | - Heren Issaka Joan
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Yonggao Tu
- Guizhou Academy of Tobacco Science, Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang 550081, PR China
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Degang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, PR China; Guizhou Academy of Agricultural Sciences, Guiyang 550006, PR China.
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Rusinowski S, Krzyżak J, Sitko K, Kalaji HM, Jensen E, Pogrzeba M. Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:300-311. [PMID: 31003142 DOI: 10.1016/j.envpol.2019.04.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
The objective of this study was to evaluate the potential of three C4 perennial grasses (Miscanthus x giganteus, Panicum virgatum and Spartina pectinata) for biomass production on arable land unsuitable for food crop cultivation due to Pb, Cd and Zn contamination. We assessed soil properties, biomass yield, metal concentrations, and the photosynthetic performance of each species. Physico-chemical and elemental analyses were performed on soil samples before plantation establishment (2014) and after three years of cultivation (2016), when leaf area index, plant height, yield and heavy metal content of biomass were also determined. Physiological measurements (gas exchange, pigment content, chlorophyll a fluorescence) were recorded monthly between June and September on mature plants in 2016. Cultivation of investigated plants resulted in increased pH, nitrogen, and organic matter (OM) content in soil, although OM increase (13%) was significant only for S. pectinata plots. During the most productive months, maximal quantum yield values of primary photochemistry (Fv/Fm) and gas exchange parameter values reflected literature data of those plants grown on uncontaminated sites. Biomass yields of M. x giganteus (15.0 ± 0.4 t d.m. ha-1) and S. pectinata (12.6 ± 1.2 t d.m. ha-1) were also equivalent to data published from uncontaminated land. P. virgatum performed poorly (4.1 ± 0.4 t d.m. ha-1), probably due to unfavourable climatic conditions, although metal uptake in this species was the highest (3.6 times that of M. x giganteus for Pb). Yield and physiological measurements indicated that M. x giganteus and S. pectinata were unaffected by the levels of contamination and therefore offer alternatives for areas where food production is prohibited. The broad cultivatable latitudinal range of these species suggests these results are widely relevant for development of the bioeconomy. We recommend multi-location trials under diverse contaminant and environmental regimes to determine the full potential of these species.
Collapse
Affiliation(s)
- S Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland
| | - J Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland
| | - K Sitko
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, 40-032, Katowice, Poland
| | - H M Kalaji
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska Street, 02-776, Warsaw, Poland
| | - E Jensen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, Wales, SY23 3EB, UK
| | - M Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland.
| |
Collapse
|
4
|
Eldakak M, Das A, Zhuang Y, Rohila JS, Glover K, Yen Y. A Quantitative Proteomics View on the Function of Qfhb1, a Major QTL for Fusarium Head Blight Resistance in Wheat. Pathogens 2018; 7:E58. [PMID: 29932155 PMCID: PMC6161305 DOI: 10.3390/pathogens7030058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Fusarium head blight (FHB) is a highly detrimental disease of wheat. A quantitative trait locus for FHB resistance, Qfhb1, is the most utilized source of resistance in wheat-breeding programs, but very little is known about its resistance mechanism. In this study, we elucidated a prospective FHB resistance mechanism by investigating the proteomic signatures of Qfhb1 in a pair of contrasting wheat near-isogenic lines (NIL) after 24 h of inoculation of wheat florets by Fusarium graminearum. Statistical comparisons of the abundances of protein spots on the 2D-DIGE gels of contrasting NILs (fhb1+ NIL = Qfhb1 present; fhb1- NIL = Qfhb1 absent) enabled us to select 80 high-ranking differentially accumulated protein (DAP) spots. An additional evaluation confirmed that the DAP spots were specific to the spikelet from fhb1- NIL (50 spots), and fhb1+ NIL (seven spots). The proteomic data also suggest that the absence of Qfhb1 makes the fhb1- NIL vulnerable to Fusarium attack by constitutively impairing several mechanisms including sucrose homeostasis by enhancing starch synthesis from sucrose. In the absence of Qfhb1, Fusarium inoculations severely damaged photosynthetic machinery; altered the metabolism of carbohydrates, nitrogen and phenylpropanoids; disrupted the balance of proton gradients across relevant membranes; disturbed the homeostasis of many important signaling molecules induced the mobility of cellular repair; and reduced translational activities. These changes in the fhb1- NIL led to strong defense responses centered on the hypersensitive response (HSR), resulting in infected cells suicide and the consequent initiation of FHB development. Therefore, the results of this study suggest that Qfhb1 largely functions to either alleviate HSR or to manipulate the host cells to not respond to Fusarium infection.
Collapse
Affiliation(s)
- Moustafa Eldakak
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Genetics Department, College of Agriculture, Alexandria University, Alexandria 21526, Egypt.
| | - Aayudh Das
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA.
| | - Yongbin Zhuang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- College of Agronomy, Shandong Agricultural University, Taian 271018, China.
| | - Jai S Rohila
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Karl Glover
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
| |
Collapse
|
5
|
Huang YH, Liu SJ, Yuan S, Guan C, Tian DY, Cui X, Zhang YW, Yang FY. Overexpression of ovine AANAT and HIOMT genes in switchgrass leads to improved growth performance and salt-tolerance. Sci Rep 2017; 7:12212. [PMID: 28939842 PMCID: PMC5610178 DOI: 10.1038/s41598-017-12566-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022] Open
Abstract
Melatonin is a well-known bioactive molecule with an array of health-promoting properties. Here, we detected the physiological function of melatonin in transgenic switchgrass overexpressing the homologous sheep arylalkylamine N-acetyltransferase and hydroxyindole O-methyltransferase genes, which catalyze the last two steps of melatonin synthesis. Compared to the wild-type (WT) and transgenic control (EV, expressing the empty vector only) plants, the transgenic switchgrass showed higher melatonin levels. Melatonin was detected in almost all switchgrass tissues, and relatively higher levels were detected in the roots and stems. Besides, melatonin showed diurnal or circadian rhythms in switchgrass similar to that in other species. Furthermore, we also found that melatonin positively affected switchgrass growth, flowering and salt tolerance. The genes related to flowering (APL3, SL1, FT1, FLP3, MADS6 and MADS15) and salt stress resistance (PvNHX1) in transgenic switchgrass exhibited a different expression profiles when compared to the control plants. Our study provided valuable findings that melatonin functions as a promoter in the regulation of switchgrass growth, flowering and salt tolerance.
Collapse
Affiliation(s)
- Yan-Hua Huang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si-Jia Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shan Yuan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Guan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan-Yang Tian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yun-Wei Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China. .,Beijing Key Laboratory for Grassland Science, China Agricultural University, Beijing, China. .,National Energy R&D Center for Biomass (NECB), Beijing, China.
| | - Fu-Yu Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China. .,Beijing Sure Academy of Biosciences, Beijing, China.
| |
Collapse
|
6
|
Huang Y, Guan C, Liu Y, Chen B, Yuan S, Cui X, Zhang Y, Yang F. Enhanced Growth Performance and Salinity Tolerance in Transgenic Switchgrass via Overexpressing Vacuolar Na + (K +)/H + Antiporter Gene ( PvNHX1). FRONTIERS IN PLANT SCIENCE 2017; 8:458. [PMID: 28421093 PMCID: PMC5376569 DOI: 10.3389/fpls.2017.00458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/15/2017] [Indexed: 05/20/2023]
Abstract
Switchgrass (Panicum virgatum L.) has been increasingly recognized as one of the most valuable perennial bioenergy crop. To improve its biomass production, especially under salt stress, we isolated a putative vacuolar Na+ (K+)/H+ antiporter gene from switchgrass and designated as PvNHX1. Subcellular localization revealed that this protein was localized mainly on the vacuole membrane. The PvNHX1 was found to be expressed throughout the entire growth period of switchgrass, exhibited preferentially expressed in the leaf tissue, and highly induced by salt stress. Transgenic switchgrass overexpressing PvNHX1 showed obvious advantages with respect to plant height and leaf development compared to the wild-type (WT) and transgenic control (EV, expressing the empty vector only) plants, suggesting PvNHX1 may serve as a promoter in switchgrass growth and development. Moreover, transgenic switchgrass were more tolerant than control plants with better growth-related phenotypes (higher shoot height, larger stem diameter, longer leaf length, and width) and physiological capacities (increased proline accumulation, reduced malondialdehyde production, preserved cell membrane integrity, etc.) under high salinity stress. Furthermore, the genes related to cell growth, flowering, and potassium transporters in transgenic switchgrass exhibited a different expression profiles when compared to the control plants, indicating a pivotal function of PvNHX1 in cell expansion and K+ homeostasis. Taken together, PvNHX1 is essential for normal plant growth and development, and play an important role in the response to salt stress by improving K+ accumulation. Our data provide a valuable foundation for further researches on the molecular mechanism and physiological roles of NHXs in plants.
Collapse
Affiliation(s)
- Yanhua Huang
- Department of Crop Ecology and Farming, College of Agriculture and Biotechnology, China Agricultural UniversityBeijing, China
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Cong Guan
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yanrong Liu
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Baoyue Chen
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Shan Yuan
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Xin Cui
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yunwei Zhang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory for Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for BiomassBeijing, China
- *Correspondence: Yunwei Zhang
| | - Fuyu Yang
- Department of Grassland Science, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Sure Academy of BiosciencesBeijing, China
- Fuyu Yang
| |
Collapse
|