1
|
Kumar P, Eriksen RL, Simko I, Shi A, Mou B. Insights into nitrogen metabolism in the wild and cultivated lettuce as revealed by transcriptome and weighted gene co-expression network analysis. Sci Rep 2022; 12:9852. [PMID: 35701518 PMCID: PMC9197935 DOI: 10.1038/s41598-022-13954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Large amounts of nitrogen fertilizers applied during lettuce (Lactuca sativa L.) production are lost due to leaching or volatilization, causing severe environmental pollution and increased costs of production. Developing lettuce varieties with high nitrogen use efficiency (NUE) is the eco-friendly solution to reduce nitrogen pollution. Hence, in-depth knowledge of nitrogen metabolism and assimilation genes and their regulation is critical for developing high NUE varieties. In this study, we performed comparative transcriptomic analysis of the cultivated lettuce (L. sativa L.) and its wild progenitor (L. serriola) under high and low nitrogen conditions. A total of 2,704 differentially expressed genes were identified. Key enriched biological processes included photosynthesis, oxidation-reduction process, chlorophyll biosynthetic process, and cell redox homeostasis. The transcription factors (TFs) belonging to the ethylene responsive factor family and basic helix-loop-helix family were among the top differentially expressed TFs. Using weighted gene co-expression network analysis we constructed nine co-expression modules. Among these, two modules were further investigated because of their significant association with total nitrogen content and photosynthetic efficiency of photosystem II. Three highly correlated clusters were identified which included hub genes for nitrogen metabolism, secondary metabolites, and carbon assimilation, and were regulated by cluster specific TFs. We found that the expression of nitrogen transportation and assimilation genes varied significantly between the two lettuce species thereby providing the opportunity of introgressing wild alleles into the cultivated germplasm for developing lettuce cultivars with more efficient use of nitrogen.
Collapse
Affiliation(s)
- Pawan Kumar
- Crop Improvement and Protection Research Unit, USDA-ARS, 1636 E Alisal St, Salinas, CA, 93905, USA.
| | - Renee L Eriksen
- Forage Seed and Cereal Research Unit, USDA-ARS, 3450 SW Campus Way, Corvallis, OR, 97331, USA
| | - Ivan Simko
- Crop Improvement and Protection Research Unit, USDA-ARS, 1636 E Alisal St, Salinas, CA, 93905, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, USDA-ARS, 1636 E Alisal St, Salinas, CA, 93905, USA
| |
Collapse
|
2
|
Park JS, Kang MY, Shim EJ, Oh J, Seo KI, Kim KS, Sim SC, Chung SM, Park Y, Lee GP, Lee WS, Kim M, Jung JK. Genome-wide core sets of SNP markers and Fluidigm assays for rapid and effective genotypic identification of Korean cultivars of lettuce ( Lactuca sativa L.). HORTICULTURE RESEARCH 2022; 9:uhac119. [PMID: 35928401 PMCID: PMC9343917 DOI: 10.1093/hr/uhac119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/04/2022] [Indexed: 05/08/2023]
Abstract
Lettuce is one of the economically important leaf vegetables and is cultivated mainly in temperate climate areas. Cultivar identification based on the distinctness, uniformity, and stability (DUS) test is a prerequisite for new cultivar registration. However, DUS testing based on morphological features is time-consuming, labor-intensive, and costly, and can also be influenced by environmental factors. Thus, molecular markers have also been used for the identification of genetic diversity as an effective, accurate, and stable method. Currently, genome-wide single nucleotide polymorphisms (SNPs) using next-generation sequencing technology are commonly applied in genetic research on diverse plant species. This study aimed to establish an effective and high-throughput cultivar identification system for lettuce using core sets of SNP markers developed by genotyping by sequencing (GBS). GBS identified 17 877 high-quality SNPs for 90 commercial lettuce cultivars. Genetic differentiation analyses based on the selected SNPs classified the lettuce cultivars into three main groups. Core sets of 192, 96, 48, and 24 markers were further selected and validated using the Fluidigm platform. Phylogenetic analyses based on all core sets of SNPs successfully discriminated individual cultivars that have been currently recognized. These core sets of SNP markers will support the construction of a DNA database of lettuce that can be useful for cultivar identification and purity testing, as well as DUS testing in the plant variety protection system. Additionally, this work will facilitate genetic research to improve breeding in lettuce.
Collapse
Affiliation(s)
- Jee-Soo Park
- Seed Testing and Research Center, Korea Seed & Variety Service, Gimcheon 39660, Republic of Korea
| | - Min-Young Kang
- Seed Testing and Research Center, Korea Seed & Variety Service, Gimcheon 39660, Republic of Korea
| | - Eun-Jo Shim
- Seed Testing and Research Center, Korea Seed & Variety Service, Gimcheon 39660, Republic of Korea
| | - JongHee Oh
- Seed Testing and Research Center, Korea Seed & Variety Service, Gimcheon 39660, Republic of Korea
| | - Kyoung-In Seo
- Seed Testing and Research Center, Korea Seed & Variety Service, Gimcheon 39660, Republic of Korea
| | - Kyung Seok Kim
- Department of Natural Resource Ecology and Management, Iowa State University, Ames IA 50011, USA
| | - Sung-Chur Sim
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Min Chung
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Gung Pyo Lee
- Department of Plant Science and Technology, Chung-Ang University, Ansung 17546, South Korea
| | - Won-Sik Lee
- Seed Testing and Research Center, Korea Seed & Variety Service, Gimcheon 39660, Republic of Korea
| | - Minkyung Kim
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea
| | | |
Collapse
|
3
|
Damerum A, Smith HK, Clarkson G, Truco MJ, Michelmore RW, Taylor G. The genetic basis of water-use efficiency and yield in lettuce. BMC PLANT BIOLOGY 2021; 21:237. [PMID: 34044761 PMCID: PMC8157645 DOI: 10.1186/s12870-021-02987-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Water supply limits agricultural productivity of many crops including lettuce. Identifying cultivars within crop species that can maintain productivity with reduced water supply is a significant challenge, but central to developing resilient crops for future water-limited climates. We investigated traits known to be related to water-use efficiency (WUE) and yield in lettuce, a globally important leafy salad crop, in a recombinant inbred line (RIL) lettuce mapping population, produced from a cross between the cultivated Lactuca sativa L. cv. Salinas and its wild progenitor L. serriola L. RESULTS Wild and cultivated lettuce differed in their WUE and we observed transgressive segregation in yield and water-use traits in the RILs. Quantitative trait loci (QTL) analysis identified genomic regions controlling these traits under well-watered and droughted conditions. QTL were detected for carbon isotope discrimination, transpiration, stomatal conductance, leaf temperature and yield, controlling 4-23 % of the phenotypic variation. A QTL hotspot was identified on chromosome 8 that controlled carbon isotope discrimination, stomatal conductance and yield under drought. Several promising candidate genes in this region were associated with WUE, including aquaporins, late embryogenesis abundant proteins, an abscisic acid-responsive element binding protein and glutathione S-transferases involved in redox homeostasis following drought stress were also identified. CONCLUSIONS For the first time, we have characterised the genetic basis of WUE of lettuce, a commercially important and water demanding crop. We have identified promising candidate genomic regions determining WUE and yield under well-watered and water-limiting conditions, providing important pre-breeding data for future lettuce selection and breeding where water productivity will be a key target.
Collapse
Affiliation(s)
- Annabelle Damerum
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Hazel K Smith
- School of Biological Sciences, University of Southampton, Hampshire, SO17 1BJ, UK
- Present address: Vitacress Salads, Lower Link Farm, St Mary Bourne, SP11 6DB, Hampshire, UK
| | - Gjj Clarkson
- Present address: Vitacress Salads, Lower Link Farm, St Mary Bourne, SP11 6DB, Hampshire, UK
| | - Maria José Truco
- The Genome Centre, University of California, Davis, 95616, CA, USA
| | | | - Gail Taylor
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA.
- School of Biological Sciences, University of Southampton, Hampshire, SO17 1BJ, UK.
| |
Collapse
|
4
|
Kumar P, Eriksen RL, Simko I, Mou B. Molecular Mapping of Water-Stress Responsive Genomic Loci in Lettuce ( Lactuca spp.) Using Kinetics Chlorophyll Fluorescence, Hyperspectral Imaging and Machine Learning. Front Genet 2021; 12:634554. [PMID: 33679897 PMCID: PMC7935093 DOI: 10.3389/fgene.2021.634554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
Deep understanding of genetic architecture of water-stress tolerance is critical for efficient and optimal development of water-stress tolerant cultivars, which is the most economical and environmentally sound approach to maintain lettuce production with limited irrigation. Lettuce (Lactuca sativa L.) production in areas with limited precipitation relies heavily on the use of ground water for irrigation. Lettuce plants are highly susceptible to water-stress, which also affects their nutrient uptake efficiency. Water stressed plants show reduced growth, lower biomass, and early bolting and flowering resulting in bitter flavors. Traditional phenotyping methods to evaluate water-stress are labor intensive, time-consuming and prone to errors. High throughput phenotyping platforms using kinetic chlorophyll fluorescence and hyperspectral imaging can effectively attain physiological traits related to photosynthesis and secondary metabolites that can enhance breeding efficiency for water-stress tolerance. Kinetic chlorophyll fluorescence and hyperspectral imaging along with traditional horticultural traits identified genomic loci affected by water-stress. Supervised machine learning models were evaluated for their accuracy to distinguish water-stressed plants and to identify the most important water-stress related parameters in lettuce. Random Forest (RF) had classification accuracy of 89.7% using kinetic chlorophyll fluorescence parameters and Neural Network (NN) had classification accuracy of 89.8% using hyperspectral imaging derived vegetation indices. The top ten chlorophyll fluorescence parameters and vegetation indices selected by sequential forward selection by RF and NN were genetically mapped using a L. sativa × L. serriola interspecific recombinant inbred line (RIL) population. A total of 25 quantitative trait loci (QTL) segregating for water-stress related horticultural traits, 26 QTL for the chlorophyll fluorescence traits and 34 QTL for spectral vegetation indices (VI) were identified. The percent phenotypic variation (PV) explained by the horticultural QTL ranged from 6.41 to 19.5%, PV explained by chlorophyll fluorescence QTL ranged from 6.93 to 13.26% while the PV explained by the VI QTL ranged from 7.2 to 17.19%. Eight QTL clusters harboring co-localized QTL for horticultural traits, chlorophyll fluorescence parameters and VI were identified on six lettuce chromosomes. Molecular markers linked to the mapped QTL clusters can be targeted for marker-assisted selection to develop water-stress tolerant lettuce.
Collapse
Affiliation(s)
- Pawan Kumar
- Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, CA, United States
| | - Renee L Eriksen
- Forage Seed and Cereal Research Unit, USDA-ARS, Corvallis, OR, United States
| | - Ivan Simko
- Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, CA, United States
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, CA, United States
| |
Collapse
|
5
|
Damerum A, Chapman MA, Taylor G. Innovative breeding technologies in lettuce for improved post-harvest quality. POSTHARVEST BIOLOGY AND TECHNOLOGY 2020; 168:111266. [PMID: 33012992 PMCID: PMC7397847 DOI: 10.1016/j.postharvbio.2020.111266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Societal awareness of healthy eating is increasing alongside the market for processed bagged salads, which remain as one of the strongest growing food sectors internationally, including most recently from indoor growing systems. Lettuce represents a significant proportion of this ready-to-eat salad market. However, such products typically have a short shelf life, with decay of post-harvest quality occurring through complex biochemical and physiological changes in leaves and resulting in spoilage, food waste and risks to health. We review the functional and quantitative genetic understanding of lettuce post-harvest quality, revealing that few findings have translated into improved cultivar development. We identify (i) phytonutrient status (for enhanced antioxidant and vitamin status, aroma and flavour) (ii) leaf biophysical, cell wall and water relations traits (for longer shelf life) (iii) leaf surface traits (for enhanced food safety and reduced spoilage) and (iv) chlorophyll, other pigments and developmental senescence traits (for appearance and colour), as key targets for future post-harvest breeding. Lettuce is well-placed for rapid future exploitation to address postharvest quality traits with extensive genomic resources including the recent release of the lettuce genome and the development of innovative breeding technologies. Although technologies such as CRISPR/Cas genome editing are paving the way for accelerated crop improvement, other equally important resources available for lettuce include extensive germplasm collections, bi-parental mapping and wide populations with genotyping for genomic selection strategies and extensive multiomic datasets for candidate gene discovery. We discuss current progress towards post-harvest quality breeding for lettuce and how such resources may be utilised for future crop improvement.
Collapse
Affiliation(s)
- Annabelle Damerum
- Department of Plant Sciences, University of California, Davis, 95616, USA
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton, SO179BJ, UK
| | - Gail Taylor
- Department of Plant Sciences, University of California, Davis, 95616, USA
- School of Biological Sciences, University of Southampton, Southampton, SO179BJ, UK
- Corresponding author at: Department of Plant Sciences, University of California, Davis, 95616, USA.
| |
Collapse
|
6
|
Yu X, Wang L, Xu K, Kong F, Wang D, Tang X, Sun B, Mao Y. Fine Mapping to Identify the Functional Genetic Locus for Red Coloration in Pyropia yezoensis Thallus. FRONTIERS IN PLANT SCIENCE 2020; 11:867. [PMID: 32655600 PMCID: PMC7324768 DOI: 10.3389/fpls.2020.00867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 05/26/2023]
Abstract
Pyropia yezoensis, commonly known as "Nori" or "Laver" is an economically important marine crop. In natural or selected populations of P. yezoensis, coloration mutants are frequently observed. Various coloration mutants are excellent materials for genetic research and study photosynthesis. However, the candidate gene controlling the Pyropia coloration phenotype remains unclear to date. QTL-seq, in combination with kompetitive allele-specific PCR (KASP) and RNA-seq, can be generally applied to population genomics studies to rapidly identify genes that are responsible for phenotypes showing extremely opposite traits. Through cross experiments between the wild line RZ and red-mutant HT, offsprings with 1-4 sectors chimeric blade were generated. Statistical analyses revealed that the red thallus coloration phenotype is conferred by a single nuclear allele. Two-pair populations, consisting of 24 and 56 wild-type/red-type single-genotype sectors from F1 progeny, were used in QTL-seq to detect a genomic region in P. yezoensis harboring the red coloration locus. Based on a high-quality genome, we first identified the candidate region within a 3.30-Mb region at the end of chromosome 1. Linkage map-based QTL analysis was used to confirm the candidate region identified by QTL-seq. Then, four KASP markers developed in this region were used to narrow down the candidate region to a 1.42-Mb region. Finally, we conducted RNA-seq to focus on 13 differentially expressed genes and further predicted rcl-1, which contains one non-synonymous SNP [A/C] in the coding region that could be regulating red thallus coloration in P. yezoensis. Our results provide novel insights into the underlying mechanism controlling blade coloration, which is a desirable trait in algae.
Collapse
Affiliation(s)
- Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lu Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Kuipeng Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Fanna Kong
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dongmei Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bin Sun
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
| |
Collapse
|