1
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
2
|
Singh D, Chaudhary P, Taunk J, Singh CK, Chinnusamy V, Sevanthi AM, Singh VJ, Pal M. Targeting Induced Local Lesions in Genomes (TILLING): advances and opportunities for fast tracking crop breeding. Crit Rev Biotechnol 2024; 44:817-836. [PMID: 37455414 DOI: 10.1080/07388551.2023.2231630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
The intensification of food production via conventional crop breeding alone is inadequate to cater for global hunger. The development of precise and expeditious high throughput reverse genetics approaches has hugely benefited modern plant breeding programs. Targeting Induced Local Lesions in Genomes (TILLING) is one such reverse genetics approach which employs chemical/physical mutagenesis to create new genetic sources and identifies superior/novel alleles. Owing to technical limitations and sectional applicability of the original TILLING protocol, it has been timely modified. Successions include: EcoTILLING, Double stranded EcoTILLING (DEcoTILLING), Self-EcoTILLING, Individualized TILLING (iTILLING), Deletion-TILLING (De-TILLING), PolyTILLING, and VeggieTILLING. This has widened its application to a variety of crops and needs. They can characterize mutations in coding as well as non-coding regions and can overcome complexities associated with the large genomes. Combining next generation sequencing tools with the existing TILLING protocols has enabled screening of huge germplasm collections and mutant populations for the target genes. In silico TILLING platforms have transformed TILLING into an exciting breeding approach. The present review outlines these multifarious TILLING modifications for precise mutation detection and their application in advance breeding programmes together with relevant case studies. Appropriate use of these protocols will open up new avenues for crop improvement in the twenty first century.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
4
|
An integrated transcriptome mapping the regulatory network of coding and long non-coding RNAs provides a genomics resource in chickpea. Commun Biol 2022; 5:1106. [PMID: 36261617 PMCID: PMC9581958 DOI: 10.1038/s42003-022-04083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Large-scale transcriptome analysis can provide a systems-level understanding of biological processes. To accelerate functional genomic studies in chickpea, we perform a comprehensive transcriptome analysis to generate full-length transcriptome and expression atlas of protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs) from 32 different tissues/organs via deep sequencing. The high-depth RNA-seq dataset reveal expression dynamics and tissue-specificity along with associated biological functions of PCGs and lncRNAs during development. The coexpression network analysis reveal modules associated with a particular tissue or a set of related tissues. The components of transcriptional regulatory networks (TRNs), including transcription factors, their cognate cis-regulatory motifs, and target PCGs/lncRNAs that determine developmental programs of different tissues/organs, are identified. Several candidate tissue-specific and abiotic stress-responsive transcripts associated with quantitative trait loci that determine important agronomic traits are also identified. These results provide an important resource to advance functional/translational genomic and genetic studies during chickpea development and environmental conditions. A full-length transcriptome and expression atlas of protein-coding genes and long non-coding RNAs is generated in chickpea. Components of transcriptional regulatory networks and candidate tissue-specific transcripts associated with quantitative trait loci are identified.
Collapse
|
5
|
Srungarapu R, Mahendrakar MD, Mohammad LA, Chand U, Jagarlamudi VR, Kondamudi KP, Kudapa H, Samineni S. Genome-Wide Association Analysis Reveals Trait-Linked Markers for Grain Nutrient and Agronomic Traits in Diverse Set of Chickpea Germplasm. Cells 2022; 11:cells11152457. [PMID: 35954301 PMCID: PMC9367858 DOI: 10.3390/cells11152457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chickpea is an inexpensive source of protein, minerals, and vitamins to the poor people living in arid and semi-arid regions of Southern Asia and Sub-Saharan Africa. New chickpea cultivars with enhanced levels of protein, Fe and Zn content are a medium-term strategy for supplying essential nutrients for human health and reducing malnutrition. In the current study, a chickpea reference set of 280 accessions, including landraces, breeding lines, and advanced cultivars, was evaluated for grain protein, Fe, Zn content and agronomic traits over two seasons. Using a mid-density 5k SNP array, 4603 highly informative SNPs distributed across the chickpea genome were used for GWAS analysis. Population structure analysis revealed three subpopulations (K = 3). Linkage disequilibrium (LD) was extensive, and LD decay was relatively low. A total of 20 and 46 marker-trait associations (MTAs) were identified for grain nutrient and agronomic traits, respectively, using FarmCPU and BLINK models. Of which seven SNPs for grain protein, twelve for Fe, and one for Zn content were distributed on chromosomes 1, 4, 6, and 7. The marker S4_4477846 on chr4 was found to be co-associated with grain protein over seasons. The markers S1_11613376 and S1_2772537 co-associated with grain Fe content under NSII and pooled seasons and S7_9379786 marker under NSI and pooled seasons. The markers S4_31996956 co-associated with grain Fe and days to maturity. SNP annotation of associated markers were found to be related to gene functions of metal ion binding, transporters, protein kinases, transcription factors, and many more functions involved in plant metabolism along with Fe and protein homeostasis. The identified significant MTAs has potential use in marker-assisted selection for developing nutrient-rich chickpea cultivars after validation in the breeding populations.
Collapse
Affiliation(s)
- Rajasekhar Srungarapu
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
- Department of Molecular Biology and Biotechnology, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Mahesh Damodhar Mahendrakar
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | - Lal Ahamed Mohammad
- Department of Genetics and Plant Breeding, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Uttam Chand
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | - Venkata Ramana Jagarlamudi
- Department of Genetics and Plant Breeding, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Kiran Prakash Kondamudi
- Department of Statistics and Computer Applications, Acharya N.G. Ranga Agricultural University, Guntur 522034, India
| | - Himabindu Kudapa
- Genomics, Pre-Breeding and Bioinformatics, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
| | - Srinivasan Samineni
- Accelerated Crop Improvement, Chickpea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, India
- Correspondence:
| |
Collapse
|
6
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
7
|
Mahesh HB, Prasannakumar MK, Manasa KG, Perumal S, Khedikar Y, Kagale S, Soolanayakanahally RY, Lohithaswa HC, Rao AM, Hittalmani S. Genome, Transcriptome, and Germplasm Sequencing Uncovers Functional Variation in the Warm-Season Grain Legume Horsegram Macrotyloma uniflorum (Lam.) Verdc. FRONTIERS IN PLANT SCIENCE 2021; 12:758119. [PMID: 34733308 PMCID: PMC8558620 DOI: 10.3389/fpls.2021.758119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 06/07/2023]
Abstract
Horsegram is a grain legume with excellent nutritional and remedial properties and good climate resilience, able to adapt to harsh environmental conditions. Here, we used a combination of short- and long-read sequencing technologies to generate a genome sequence of 279.12Mb, covering 83.53% of the estimated total size of the horsegram genome, and we annotated 24,521 genes. De novo prediction of DNA repeats showed that approximately 25.04% of the horsegram genome was made up of repetitive sequences, the lowest among the legume genomes sequenced so far. The major transcription factors identified in the horsegram genome were bHLH, ERF, C2H2, WRKY, NAC, MYB, and bZIP, suggesting that horsegram is resistant to drought. Interestingly, the genome is abundant in Bowman-Birk protease inhibitors (BBIs), which can be used as a functional food ingredient. The results of maximum likelihood phylogenetic and estimated synonymous substitution analyses suggested that horsegram is closely related to the common bean and diverged approximately 10.17 million years ago. The double-digested restriction associated DNA (ddRAD) sequencing of 40 germplasms allowed us to identify 3,942 high-quality SNPs in the horsegram genome. A genome-wide association study with powdery mildew identified 10 significant associations similar to the MLO and RPW8.2 genes. The reference genome and other genomic information presented in this study will be of great value to horsegram breeding programs. In addition, keeping the increasing demand for food with nutraceutical values in view, these genomic data provide opportunities to explore the possibility of horsegram for use as a source of food and nutraceuticals.
Collapse
Affiliation(s)
- H. B. Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - M. K. Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - K. G. Manasa
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - Sampath Perumal
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yogendra Khedikar
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | | | - H. C. Lohithaswa
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - Annabathula Mohan Rao
- Department of Genetics and Plant Breeding, College of Agriculture, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Shailaja Hittalmani
- Department of Genetics and Plant Breeding, College of Agriculture, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
8
|
Rajkumar MS, Garg R, Jain M. Genome resequencing reveals DNA polymorphisms associated with seed size/weight determination in chickpea. Genomics 2021; 113:1458-1468. [PMID: 33744344 DOI: 10.1016/j.ygeno.2021.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022]
Abstract
Crop productivity in legumes is determined by number and size/weight of seeds. To understand the genetic basis of seed size/weight in chickpea, we performed genome resequencing of 13 small- and 5 large-seeded genotypes using Illumina platform. Single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) differentiating small- and large-seeded genotypes were identified. A total of 17,902 SNPs and 2594 InDels located in promoter and/or coding regions that may contribute to seed size/weight were detected. Of these, 266 SNPs showed significant association with seed size/weight trait. Twenty-three genes including those involved in cell growth/division, encoding transcription factors and located within QTLs associated with seed size/weight harbored SNPs within transcription factor binding motif(s) and/or coding region. The non-synonymous SNPs were found to affect the mutational sensitivity and stability of the encoded proteins. Overall, we provided a high-quality SNP map for large-scale genotyping applications and identified candidate genes that determine seed size/weight in chickpea.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Gil J, Andrade-Martínez JS, Duitama J. Accurate, Efficient and User-Friendly Mutation Calling and Sample Identification for TILLING Experiments. Front Genet 2021; 12:624513. [PMID: 33613641 PMCID: PMC7886796 DOI: 10.3389/fgene.2021.624513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful reverse genetics method in plant functional genomics and breeding to identify mutagenized individuals with improved behavior for a trait of interest. Pooled high throughput sequencing (HTS) of the targeted genes allows efficient identification and sample assignment of variants within genes of interest in hundreds of individuals. Although TILLING has been used successfully in different crops and even applied to natural populations, one of the main issues for a successful TILLING experiment is that most currently available bioinformatics tools for variant detection are not designed to identify mutations with low frequencies in pooled samples or to perform sample identification from variants identified in overlapping pools. Our research group maintains the Next Generation Sequencing Experience Platform (NGSEP), an open source solution for analysis of HTS data. In this manuscript, we present three novel components within NGSEP to facilitate the design and analysis of TILLING experiments: a pooled variants detector, a sample identifier from variants detected in overlapping pools and a simulator of TILLING experiments. A new implementation of the NGSEP calling model for variant detection allows accurate detection of low frequency mutations within pools. The samples identifier implements the process to triangulate the mutations called within overlapping pools in order to assign mutations to single individuals whenever possible. Finally, we developed a complete simulator of TILLING experiments to enable benchmarking of different tools and to facilitate the design of experimental alternatives varying the number of pools and individuals per pool. Simulation experiments based on genes from the common bean genome indicate that NGSEP provides similar accuracy and better efficiency than other tools to perform pooled variants detection. To the best of our knowledge, NGSEP is currently the only tool that generates individual assignments of the mutations discovered from the pooled data. We expect that this development will be of great use for different groups implementing TILLING as an alternative for plant breeding and even to research groups performing pooled sequencing for other applications.
Collapse
Affiliation(s)
- Juanita Gil
- Systems and Computing Engineering Department, Universidad de Los Andes, Bogotá, Colombia
| | - Juan Sebastian Andrade-Martínez
- Research Group on Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia.,Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
10
|
Singh RK, Prasad A, Muthamilarasan M, Parida SK, Prasad M. Breeding and biotechnological interventions for trait improvement: status and prospects. PLANTA 2020; 252:54. [PMID: 32948920 PMCID: PMC7500504 DOI: 10.1007/s00425-020-03465-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/12/2020] [Indexed: 05/06/2023]
Abstract
Present review describes the molecular tools and strategies deployed in the trait discovery and improvement of major crops. The prospects and challenges associated with these approaches are discussed. Crop improvement relies on modulating the genes and genomic regions underlying key traits, either directly or indirectly. Direct approaches include overexpression, RNA interference, genome editing, etc., while breeding majorly constitutes the indirect approach. With the advent of latest tools and technologies, these strategies could hasten the improvement of crop species. Next-generation sequencing, high-throughput genotyping, precision editing, use of space technology for accelerated growth, etc. had provided a new dimension to crop improvement programmes that work towards delivering better varieties to cope up with the challenges. Also, studies have widened from understanding the response of plants to single stress to combined stress, which provides insights into the molecular mechanisms regulating tolerance to more than one stress at a given point of time. Altogether, next-generation genetics and genomics had made tremendous progress in delivering improved varieties; however, the scope still exists to expand its horizon to other species that remain underutilized. In this context, the present review systematically analyses the different genomics approaches that are deployed for trait discovery and improvement in major species that could serve as a roadmap for executing similar strategies in other crop species. The application, pros, and cons, and scope for improvement of each approach have been discussed with examples, and altogether, the review provides comprehensive coverage on the advances in genomics to meet the ever-growing demands for agricultural produce.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
DNA methylation reprogramming during seed development and its functional relevance in seed size/weight determination in chickpea. Commun Biol 2020; 3:340. [PMID: 32620865 PMCID: PMC7335156 DOI: 10.1038/s42003-020-1059-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 11/21/2022] Open
Abstract
Seed development is orchestrated via complex gene regulatory networks and pathways. Epigenetic factors may also govern seed development and seed size/weight. Here, we analyzed DNA methylation in a large-seeded chickpea cultivar (JGK 3) during seed development stages. Progressive gain of CHH context DNA methylation in transposable elements (TEs) and higher frequency of small RNAs in hypermethylated TEs during seed development suggested a role of the RNA-dependent DNA methylation pathway. Frequency of intragenic TEs was higher in CHH context differentially methylated region (DMR) associated differentially expressed genes (DEGs). CG context hyper/hypomethylation within the gene body was observed for most of DMR-associated DEGs in JGK 3 as compared to small-seeded chickpea cultivar (Himchana 1). We identified candidate genes involved in seed size/weight determination exhibiting CG context hypermethylation within the gene body and higher expression in JGK 3. This study provides insights into the role of DNA methylation in seed development and seed size/weight determination in chickpea. Rajkumar et al. report progressive gain of CHH context DNA methylation in transposable elements during seed development in chickpea, of which hypermethylation is associated with small RNAs. The candidate genes that determine seed size/weight in chickpea show CG context hypermethylation in the gene body and higher expression in large-seeded cultivar.
Collapse
|
12
|
Tanzi AS, Eagleton GE, Ho WK, Wong QN, Mayes S, Massawe F. Winged bean (Psophocarpus tetragonolobus (L.) DC.) for food and nutritional security: synthesis of past research and future direction. PLANTA 2019; 250:911-931. [PMID: 30911885 DOI: 10.1007/s00425-019-03141-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Winged bean is popularly known as "One Species Supermarket" for its nutrient-dense green pods, immature seeds, tubers, leaves, and mature seeds. This underutilised crop has potential beneficial traits related to its biological nitrogen-fixation to support low-input farming. Drawing from past knowledge, and based on current technologies, we propose a roadmap for research and development of winged bean for sustainable food systems. Reliance on a handful of "major" crops has led to decreased diversity in crop species, agricultural systems and human diets. To reverse this trend, we need to encourage the greater use of minor, "orphan", underutilised species. These could contribute to an increase in crop diversity within agricultural systems, to improve human diets, and to support more sustainable and resilient food production systems. Among these underutilised species, winged bean (Psophocarpus tetragonolobus) has long been proposed as a crop for expanded use particularly in the humid tropics. It is an herbaceous perennial legume of equatorial environments and has been identified as a rich source of protein, with most parts of the plant being edible when appropriately prepared. However, to date, limited progress in structured improvement programmes has restricted the expansion of winged bean beyond its traditional confines. In this paper, we discuss the reasons for this and recommend approaches for better use of its genetic resources and related Psophocarpus species in developing improved varieties. We review studies on the growth, phenology, nodulation and nitrogen-fixation activity, breeding programmes, and molecular analyses. We then discuss prospects for the crop based on the greater understanding that these studies have provided and considering modern plant-breeding technologies and approaches. We propose a more targeted and structured research approach to fulfil the potential of winged bean to contribute to food security.
Collapse
Affiliation(s)
- Alberto Stefano Tanzi
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
- Crops for the Future, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Graham Ewen Eagleton
- Department of Planning, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, 15011, Myanmar
| | - Wai Kuan Ho
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
- Crops for the Future, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Quin Nee Wong
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sean Mayes
- Crops for the Future, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
- School of Biosciences, Faculty of Science, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Festo Massawe
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
- Crops for the Future, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Tadele Z. Orphan crops: their importance and the urgency of improvement. PLANTA 2019; 250:677-694. [PMID: 31190115 DOI: 10.1007/s00425-019-03210-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/05/2019] [Indexed: 05/23/2023]
Abstract
Due to significant contributions of orphan crops in the economy of the developing world, scientific studies need to be promoted on these little researched but vital crops of smallholder farmers and consumers. Food security is the main challenge in the developing world, particularly in the least developed countries. Orphan crops play a vital role in the food security and livelihood of resource-poor farmers and consumers in these countries. Like major crops, there are members of all food types-cereals, legumes, vegetables and root and tuber crops, that are considered to be orphan crops. Despite their huge importance for present and future agriculture, orphan crops have generally received little attention by the global scientific community. Due to this, they produce inferior yields in terms of both quantity and quality. The major bottlenecks affecting the productivity of these crops are little or no selection of improved genetic traits, extreme environmental conditions and unfavorable policy. However, some orphan crops have recently received the attention of the global and national scientific community where advanced research and development initiatives have been launched. These initiatives which implement a variety of genetic and genomic tools targeted major constraints affecting productivity and/or nutritional quality of orphan crops. In this paper, some of these initiatives are briefly described. Here, I provide key suggestions to relevant stakeholders regarding improvement of orphan crops. Concerted efforts are urgently needed to advance the research and development of both the major and orphan crops so that food security will be achieved and ultimately the livelihood of the population will be improved.
Collapse
Affiliation(s)
- Zerihun Tadele
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Sharma A, Basu U, Malik N, Daware A, Thakro V, Narnoliya L, Bajaj D, Tripathi S, Hegde VS, Upadhyaya HD, Tyagi AK, Parida SK. Genome-wide cis-regulatory signatures for modulation of agronomic traits as exemplified by drought yield index (DYI) in chickpea. Funct Integr Genomics 2019; 19:973-992. [PMID: 31177403 DOI: 10.1007/s10142-019-00691-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022]
Abstract
Developing functional molecular tags from the cis-regulatory sequence components of genes is vital for their deployment in efficient genetic dissection of complex quantitative traits in crop plants including chickpea. The current study identified 431,194 conserved non-coding SNP (CNSNP) from the cis-regulatory element regions of genes which were annotated on a chickpea genome. These genome-wide CNSNP marker resources are made publicly accessible through a user-friendly web-database ( http://www.cnsnpcicarbase.com ). The CNSNP-based quantitative trait loci (QTL) and expression QTL (eQTL) mapping and genome-wide association study (GWAS) were further integrated with global gene expression landscapes, molecular haplotyping, and DNA-protein interaction study in the association panel and recombinant inbred lines (RIL) mapping population to decode complex genetic architecture of one of the vital seed yield trait under drought stress, drought yield index (DYI), in chickpea. This delineated two constituted natural haplotypes and alleles from a histone H3 protein-coding gene and its transcriptional regulator NAC transcription factor (TF) harboring the major QTLs and trans-acting eQTL governing DYI in chickpea. The effect of CNSNPs in TF-binding cis-element of a histone H3 gene in altering the binding affinity and transcriptional activity of NAC TF based on chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay was evident. The CNSNP-led promising molecular tags scanned will essentially have functional significance to decode transcriptional gene regulatory function and thus can drive translational genomic analysis in chickpea.
Collapse
Affiliation(s)
- Akash Sharma
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Udita Basu
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Laxmi Narnoliya
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Deepak Bajaj
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - V S Hegde
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Akhilesh K Tyagi
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Rajkumar MS, Garg R, Jain M. Genome-wide discovery of DNA polymorphisms among chickpea cultivars with contrasting seed size/weight and their functional relevance. Sci Rep 2018; 8:16795. [PMID: 30429540 PMCID: PMC6235875 DOI: 10.1038/s41598-018-35140-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Seed size/weight is a major agronomic trait which determine crop productivity in legumes. To understand the genetic basis of seed size determination, we sought to identify DNA polymorphisms between two small (Himchana 1 and Pusa 362) and two large-seeded (JGK 3 and PG 0515) chickpea cultivars via whole genome resequencing. We identified a total of 75535 single nucleotide polymorphisms (SNPs), 6486 insertions and deletions (InDels), 1938 multi-nucleotide polymorphisms (MNPs) and 5025 complex variants between the two small and two large-seeded chickpea cultivars. Our analysis revealed 814, 244 and 72 seed-specific genes harboring DNA polymorphisms in promoter or non-synonymous and large-effect DNA polymorphisms, respectively. Gene ontology analysis revealed enrichment of cell growth and division related terms in these genes. Among them, at least 22 genes associated with quantitative trait loci, and those involved in cell growth and division and encoding transcription factors harbored promoter and/or large-effect/non-synonymous DNA polymorphisms. These also showed higher expression at late-embryogenesis and/or mid-maturation stages of seed development in the large-seeded cultivar, suggesting their role in seed size/weight determination in chickpea. Altogether, this study provided a valuable resource for large-scale genotyping applications and a few putative candidate genes that might play crucial role in governing seed size/weight in chickpea.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. .,National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
16
|
Basu U, Srivastava R, Bajaj D, Thakro V, Daware A, Malik N, Upadhyaya HD, Parida SK. Genome-wide generation and genotyping of informative SNPs to scan molecular signatures for seed yield in chickpea. Sci Rep 2018; 8:13240. [PMID: 30185866 PMCID: PMC6125345 DOI: 10.1038/s41598-018-29926-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/18/2018] [Indexed: 01/21/2023] Open
Abstract
We discovered 2150 desi and 2199 kabuli accessions-derived SNPs by cultivar-wise individual assembling of sequence-reads generated through genotyping-by-sequencing of 92 chickpea accessions. Subsequent large-scale validation and genotyping of these SNPs discovered 619 desi accessions-derived (DAD) SNPs, 531 kabuli accessions-derived (KAD) SNPs, 884 multiple accessions-derived (MAD) SNPs and 1083 two accessions (desi ICC 4958 and kabuli CDC Frontier)-derived (TAD) SNPs that were mapped on eight chromosomes. These informative SNPs were annotated in coding/non-coding regulatory sequence components of genes. The MAD-SNPs were efficient to detect high intra-specific polymorphic potential and wide natural allelic diversity level including high-resolution admixed-population genetic structure and precise phylogenetic relationship among 291 desi and kabuli accessions. This signifies their effectiveness in introgression breeding and varietal improvement studies targeting useful agronomic traits of chickpea. Six trait-associated genes with SNPs including quantitative trait nucleotides (QTNs) in combination explained 27.5% phenotypic variation for seed yield per plant (SYP). A pentatricopeptide repeat (PPR) gene with a synonymous-coding SNP/QTN significantly associated with SYP trait was found most-promising in chickpea. The essential information delineated can be of immense utility in genomics-assisted breeding applications to develop high-yielding chickpea cultivars.
Collapse
Affiliation(s)
- Udita Basu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, Telangana, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
17
|
Jha UC. Current advances in chickpea genomics: applications and future perspectives. PLANT CELL REPORTS 2018; 37:947-965. [PMID: 29860584 DOI: 10.1007/s00299-018-2305-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 05/27/2023]
Abstract
Chickpea genomics promises to illuminate our understanding of genome organization, structural variations, evolutionary and domestication-related insights and fundamental biology of legume crops. Unprecedented advancements of next generation sequencing (NGS) technologies have enabled in decoding of multiple chickpea genome sequences and generating huge genomic resources in chickpea both at functional and structural level. This review is aimed to update the current progress of chickpea genomics ranging from high density linkage map development, genome-wide association studies (GWAS), functional genomics resources for various traits, emerging role of abiotic stress responsive coding and non-coding RNAs after the completion of draft chickpea genome sequences. Additionally, the current efforts of whole genome re-sequencing (WGRS) approach of global chickpea germplasm to capture the global genetic diversity existing in the historically released varieties across the world and increasing the resolution of the previously identified candidate gene(s) of breeding importance have been discussed. Thus, the outcomes of these genomics resources will assist in genomics-assisted selection and facilitate breeding of climate-resilient chickpea cultivars for sustainable agriculture.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| |
Collapse
|
18
|
Kumar J, Gupta S, Biradar RS, Gupta P, Dubey S, Singh NP. Association of functional markers with flowering time in lentil. J Appl Genet 2017; 59:9-21. [PMID: 29230682 DOI: 10.1007/s13353-017-0419-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
Abstract
In the present study, a diverse panel of 96 accessions of lentil germplasm was used to study flowering time over environments and to identify simple sequence repeat markers associated with flowering time through association mapping. The study showed high broad sense heritability estimate (h 2 bs=0.93) for flowering time in lentil. Screening of 534 SSR markers resulted in an identification of 75 SSR polymorphic markers (13.9%) across studied genotypes. These markers amplified 266 loci and generated 697 alleles ranging from two to 16 alleles per locus. Model-based cluster analysis used for the determination of population structure resulted in the identification of two distinct subpopulations. Distribution of flowering time was ranged from 40 to 70 days in subpopulation I and from 54 to 69 days in subpopulation II and did not skew either late or early flowering time within a subpopulation. No admixture was observed within the subpopulations. Use of the most accepted maximum likelihood model (P3D mixed linear model with optimum compression) of MTA analysis showed significant association of 26 SSR markers with flowering time at <0.05 probability. The percent of phenotypic explained by each associated marker with flowering time ranged from 2.1 to 21.8% and identified QTLs for flowering time explaining high phenotypic variation across the environments (10.7-21.8%) or in a particular environment (10.2-21.4%). In the present study, 13 EST-SSR showed significant association with flowering time and explained large phenotypic variation (2.3-21.8%) compared to genomic SSR markers (2.1-10.2%). Hence, these markers can be used as functional markers in the lentil breeding program to develop short duration cultivars.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Revanappa S Biradar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Priyanka Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Narendra Pratap Singh
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| |
Collapse
|
19
|
Garg R, Singh VK, Rajkumar MS, Kumar V, Jain M. Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with seed development and seed size/weight determination in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1088-1107. [PMID: 28640939 DOI: 10.1111/tpj.13621] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 05/22/2023]
Abstract
Seed development is an intricate process regulated via a complex transcriptional regulatory network. To understand the molecular mechanisms governing seed development and seed size/weight in chickpea, we performed a comprehensive analysis of transcriptome dynamics during seed development in two cultivars with contrasting seed size/weight (small-seeded, Himchana 1 and large-seeded, JGK 3). Our analysis identified stage-specific expression for a significant proportion (>13%) of the genes in each cultivar. About one half of the total genes exhibited significant differential expression in JGK 3 as compared with Himchana 1. We found that different seed development stages can be delineated by modules of coexpressed genes. A comparative analysis revealed differential developmental stage specificity of some modules between the two cultivars. Furthermore, we constructed transcriptional regulatory networks and identified key components determining seed size/weight. The results suggested that extended period of cell division during embryogenesis and higher level of endoreduplication along with more accumulation of storage compounds during maturation determine large seed size/weight. Further, we identified quantitative trait loci-associated candidate genes harboring single nucleotide polymorphisms in the promoter sequences that differentiate small- and large-seeded chickpea cultivars. The results provide a valuable resource to dissect the role of candidate genes governing seed development and seed size/weight in chickpea.
Collapse
Affiliation(s)
- Rohini Garg
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Vikash K Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Singh Rajkumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinay Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Jain
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
20
|
Wang C, Hu S, Gardner C, Lübberstedt T. Emerging Avenues for Utilization of Exotic Germplasm. TRENDS IN PLANT SCIENCE 2017; 22:624-637. [PMID: 28476651 DOI: 10.1016/j.tplants.2017.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 05/21/2023]
Abstract
Breeders have been successful in increasing crop performance by exploiting genetic diversity over time. However, the reported annual yield increases are not sufficient in view of rapid human population growth and global environmental changes. Exotic germplasm possesses high levels of genetic diversity for valuable traits. However, only a small fraction of naturally occurring genetic diversity is utilized. Moreover, the yield gap between elite and exotic germplasm widens, which increases the effort needed to use exotic germplasm and to identify beneficial alleles and for their introgression. The advent of high-throughput genotyping and phenotyping technologies together with emerging biotechnologies provide new opportunities to explore exotic genetic variation. This review will summarize potential challenges for utilization of exotic germplasm and provide solutions.
Collapse
Affiliation(s)
- Cuiling Wang
- Department of Agronomy, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471023, China; Department of Agronomy, Iowa State University,100 Osborn Drive, Ames, IA 50011, USA; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhenzhou, Henan 450002, China
| | - Songlin Hu
- Department of Agronomy, Iowa State University,100 Osborn Drive, Ames, IA 50011, USA
| | - Candice Gardner
- Department of Agronomy, Iowa State University,100 Osborn Drive, Ames, IA 50011, USA; US Department of Agrigulture (USDA) Agricultural Research Service (ARS) Plant Introduction Research Unit, 100 Osborn Drive, Iowa State University, Ames, IA 50011, USA
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University,100 Osborn Drive, Ames, IA 50011, USA.
| |
Collapse
|
21
|
Muñoz N, Liu A, Kan L, Li MW, Lam HM. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement. Int J Mol Sci 2017; 18:E328. [PMID: 28165413 PMCID: PMC5343864 DOI: 10.3390/ijms18020328] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/14/2023] Open
Abstract
Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.
Collapse
Affiliation(s)
- Nacira Muñoz
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Centro de Investigaciones Agropecuarias-INTA, Instituto de Fisiología y Recursos Genéticos Vegetales, Córdoba X5000, Argentina.
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000, Argentina.
| | - Ailin Liu
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Leo Kan
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Man-Wah Li
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hon-Ming Lam
- Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Srivastava R, Bajaj D, Sayal YK, Meher PK, Upadhyaya HD, Kumar R, Tripathi S, Bharadwaj C, Rao AR, Parida SK. Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:374-387. [PMID: 27717474 DOI: 10.1016/j.plantsci.2016.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
The discovery and large-scale genotyping of informative gene-based markers is essential for rapid delineation of genes/QTLs governing stress tolerance and yield component traits in order to drive genetic enhancement in chickpea. A genome-wide 119169 and 110491 ISM (intron-spanning markers) from 23129 desi and 20386 kabuli protein-coding genes and 7454 in silico InDel (insertion-deletion) (1-45-bp)-based ILP (intron-length polymorphism) markers from 3283 genes were developed that were structurally and functionally annotated on eight chromosomes and unanchored scaffolds of chickpea. A much higher amplification efficiency (83%) and intra-specific polymorphic potential (86%) detected by these markers than that of other sequence-based genetic markers among desi and kabuli chickpea accessions was apparent even by a cost-effective agarose gel-based assay. The genome-wide physically mapped 1718 ILP markers assayed a wider level of functional genetic diversity (19-81%) and well-defined phylogenetics among domesticated chickpea accessions. The gene-derived 1424 ILP markers were anchored on a high-density (inter-marker distance: 0.65cM) desi intra-specific genetic linkage map/functional transcript map (ICC 4958×ICC 2263) of chickpea. This reference genetic map identified six major genomic regions harbouring six robust QTLs mapped on five chromosomes, which explained 11-23% seed weight trait variation (7.6-10.5 LOD) in chickpea. The integration of high-resolution QTL mapping with differential expression profiling detected six including one potential serine carboxypeptidase gene with ILP markers (linked tightly to the major seed weight QTLs) exhibiting seed-specific expression as well as pronounced up-regulation especially in seeds of high (ICC 4958) as compared to low (ICC 2263) seed weight mapping parental accessions. The marker information generated in the present study was made publicly accessible through a user-friendly web-resource, "Chickpea ISM-ILP Marker Database". The designing of multiple ISM and ILP markers (2-5 markers/gene) from an individual gene (transcription factor) with numerous aforementioned desirable genetic attributes can widen the user-preference to select suitable primer combination for simultaneous large-scale assaying of functional allelic variation, natural allelic diversity, molecular mapping and expression profiling of genes among chickpea accessions. This will essentially accelerate the identification of functionally relevant molecular tags regulating vital agronomic traits for genomics-assisted crop improvement by optimal resource expenses in chickpea.
Collapse
Affiliation(s)
- Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yogesh K Sayal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Prabina K Meher
- Division of Statistical Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Rajendra Kumar
- U.P. Council of Agricultural Research, Gomati Nagar, Lucknow 226010, Uttar Pradesh, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Chellapilla Bharadwaj
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Atmakuri R Rao
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|