1
|
Lukjanová E, Hanulíková A, Řepková J. Investigating the Origin and Evolution of Polyploid Trifolium medium L. Karyotype by Comparative Cytogenomic Methods. PLANTS (BASEL, SWITZERLAND) 2023; 12:235. [PMID: 36678948 PMCID: PMC9866396 DOI: 10.3390/plants12020235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Trifolium medium L. is a wild polyploid relative of the agriculturally important red clover that possesses traits promising for breeding purposes. To date, T. medium also remains the only clover species with which agriculturally important red clover has successfully been hybridized. Even though allopolyploid origin has previously been suggested, little has in fact been known about the T. medium karyotype and its origin. We researched T. medium and related karyotypes using comparative cytogenomic methods, such as fluorescent in situ hybridization (FISH) and RepeatExplorer cluster analysis. The results indicate an exceptional karyotype diversity regarding numbers and mutual positions of 5S and 26S rDNA loci and centromeric repeats in populations of T. medium ecotypes and varieties. The observed variability among T. medium ecotypes and varieties suggests current karyotype instability that can be attributed to ever-ongoing battle between satellite DNA together with genomic changes and rearrangements enhanced by post-hybridization events. Comparative cytogenomic analyses of a T. medium hexaploid variety and diploid relatives revealed stable karyotypes with a possible case of chromosomal rearrangement. Moreover, the results provided evidence of T. medium having autopolyploid origin.
Collapse
|
2
|
Wang ZF, Rouard M, Droc G, Heslop-Harrison P(JS, Ge XJ. Genome assembly of Musa beccarii shows extensive chromosomal rearrangements and genome expansion during evolution of Musaceae genomes. Gigascience 2022; 12:giad005. [PMID: 36807539 PMCID: PMC9941839 DOI: 10.1093/gigascience/giad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Musa beccarii (Musaceae) is a banana species native to Borneo, sometimes grown as an ornamental plant. The basic chromosome number of Musa species is x = 7, 10, or 11; however, M. beccarii has a basic chromosome number of x = 9 (2n = 2x = 18), which is the same basic chromosome number of species in the sister genera Ensete and Musella. Musa beccarii is in the section Callimusa, which is sister to the section Musa. We generated a high-quality chromosome-scale genome assembly of M. beccarii to better understand the evolution and diversity of genomes within the family Musaceae. FINDINGS The M. beccarii genome was assembled by long-read and Hi-C sequencing, and genes were annotated using both long Iso-seq and short RNA-seq reads. The size of M. beccarii was the largest among all known Musaceae assemblies (∼570 Mbp) due to the expansion of transposable elements and increased 45S ribosomal DNA sites. By synteny analysis, we detected extensive genome-wide chromosome fusions and fissions between M. beccarii and the other Musa and Ensete species, far beyond those expected from differences in chromosome number. Within Musaceae, M. beccarii showed a reduced number of terpenoid synthase genes, which are related to chemical defense, and enrichment in lipid metabolism genes linked to the physical defense of the cell wall. Furthermore, type III polyketide synthase was the most abundant biosynthetic gene cluster (BGC) in M. beccarii. BGCs were not conserved in Musaceae genomes. CONCLUSIONS The genome assembly of M. beccarii is the first chromosome-scale genome assembly in the Callimusa section in Musa, which provides an important genetic resource that aids our understanding of the evolution of Musaceae genomes and enhances our knowledge of the pangenome.
Collapse
Affiliation(s)
- Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Gaetan Droc
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pat (J S) Heslop-Harrison
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Xue-Jun Ge
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Marques A, Hufnagel B, Soriano A, Péret B. The Highly Repeat-Diverse (Peri) Centromeres of White Lupin ( Lupinus albus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:862079. [PMID: 35449890 PMCID: PMC9016224 DOI: 10.3389/fpls.2022.862079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/03/2022] [Indexed: 05/03/2023]
Abstract
Plant genomes are known to be mainly composed of repetitive DNA sequences. Regardless of the non-genic function of these sequences, they are important for chromosome structure and stability during cell-cycle. Based on the recent available whole-genome assembly of white lupin (Lupinus albus L.; WL), we have in silico annotated and in situ mapped the main classes of DNA repeats identified with RepeatExplorer. A highly diverse and an abundance of satellite DNAs were found representing more than 10 families, where three of them were highly associated with CENH3-immunoprecipitated chromatin. Applying a strategy of several re-hybridization steps with different combinations of satDNA, rDNA, and LTR-RTs probes, we were able to construct a repeat-based chromosome map for the identification of most chromosome pairs. Two families of LTR retrotransposons, Ty1/copia SIRE and Ty3/gypsy Tekay, were highly abundant at pericentromeric regions, while the centromeric retrotransposon of WL (CRWL) from the CRM clade showed strong centromere-specific localization in most chromosomes and was also highly enriched with CENH3-immunoprecipitated chromatin. FISH mapping of repeat DNA showed some incongruences with the reference genome, which can be further used for improving the current version of the genome. Our results demonstrate that despite the relatively small genome of WL, a high diversity of pericentromeric repeats was found, emphasizing the rapid evolution of repeat sequences in plant genomes.
Collapse
|
4
|
Variation in Ribosomal DNA in the Genus Trifolium (Fabaceae). PLANTS 2021; 10:plants10091771. [PMID: 34579303 PMCID: PMC8465422 DOI: 10.3390/plants10091771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 01/13/2023]
Abstract
The genus Trifolium L. is characterized by basic chromosome numbers 8, 7, 6, and 5. We conducted a genus-wide study of ribosomal DNA (rDNA) structure variability in diploids and polyploids to gain insight into evolutionary history. We used fluorescent in situ hybridization to newly investigate rDNA variation by number and position in 30 Trifolium species. Evolutionary history among species was examined using 85 available sequences of internal transcribed spacer 1 (ITS1) of 35S rDNA. In diploid species with ancestral basic chromosome number (x = 8), one pair of 5S and 26S rDNA in separate or adjacent positions on a pair of chromosomes was prevalent. Genomes of species with reduced basic chromosome numbers were characterized by increased number of signals determined on one pair of chromosomes or all chromosomes. Increased number of signals was observed also in diploids Trifolium alpestre and Trifolium microcephalum and in polyploids. Sequence alignment revealed ITS1 sequences with mostly single nucleotide polymorphisms, and ITS1 diversity was greater in diploids with reduced basic chromosome numbers compared to diploids with ancestral basic chromosome number (x = 8) and polyploids. Our results suggest the presence of one 5S rDNA site and one 26S rDNA site as an ancestral state.
Collapse
|
5
|
Kroc M, Tomaszewska M, Czepiel K, Bitocchi E, Oppermann M, Neumann K, Guasch L, Bellucci E, Alseekh S, Graner A, Fernie AR, Papa R, Susek K. Towards Development, Maintenance, and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Lupins. Curr Protoc 2021; 1:e191. [PMID: 34242495 DOI: 10.1002/cpz1.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Well-characterized genetic resources are fundamental to maintain and provide the various genotypes for pre-breeding programs for the production of new cultivars (e.g., wild relatives, unimproved material, landraces). The aim of the current article is to provide protocols for the characterization of the genetic resources of two lupin crop species: the European Lupinus albus and the American Lupinus mutabilis. Intelligent nested collections of lupins derived from homozygous lines (single-seed descent) are being developed, established, and exploited using cutting-edge approaches for genotyping, phenotyping, data management, and data analysis within the INCREASE project (EU Horizon 2020). This will allow us to predict the phenotypic performance of genotyped lines, and will further boost research and development in lupins. Lupins stand out due to their high-quality seed protein (∼40% of seed dry weight) and other primary components in the seeds, which include fatty acids, dietary fiber, and minerals. The potential of lupins as a crop is highlighted by the multiple benefits of plant-based food in terms of food security, nutrition, human health, and sustainable production. The use of lupins in foods, along with other well-studied and widely used food legumes, will also provide a greatly diversified plant-based food palette to meet the Global Goals for Sustainable Development to improve people's lives by 2030. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Lupin seed phenotypic descriptors Basic Protocol 2: Lupin seed imaging Basic Protocol 3: Standardized phenotypic characterization of lupin genetic resources grown towards primary seed increase (development of single-seed descent genetic resources).
Collapse
Affiliation(s)
- Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Tomaszewska
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Czepiel
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Markus Oppermann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Luis Guasch
- Spanish Plant Genetic Resources National Center, Alcalá de Henares, Spain
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
6
|
The Puzzling Fate of a Lupin Chromosome Revealed by Reciprocal Oligo-FISH and BAC-FISH Mapping. Genes (Basel) 2020; 11:genes11121489. [PMID: 33322080 PMCID: PMC7764521 DOI: 10.3390/genes11121489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
Old World lupins constitute an interesting model for evolutionary research due to diversity in genome size and chromosome number, indicating evolutionary genome reorganization. It has been hypothesized that the polyploidization event which occurred in the common ancestor of the Fabaceae family was followed by a lineage-specific whole genome triplication (WGT) in the lupin clade, driving chromosome rearrangements. In this study, chromosome-specific markers were used as probes for heterologous fluorescence in situ hybridization (FISH) to identify and characterize structural chromosome changes among the smooth-seeded (Lupinus angustifolius L., Lupinus cryptanthus Shuttlew., Lupinus micranthus Guss.) and rough-seeded (Lupinus cosentinii Guss. and Lupinus pilosus Murr.) lupin species. Comparative cytogenetic mapping was done using FISH with oligonucleotide probes and previously published chromosome-specific bacterial artificial chromosome (BAC) clones. Oligonucleotide probes were designed to cover both arms of chromosome Lang06 of the L. angustifolius reference genome separately. The chromosome was chosen for the in-depth study due to observed structural variability among wild lupin species revealed by BAC-FISH and supplemented by in silico mapping of recently released lupin genome assemblies. The results highlighted changes in synteny within the Lang06 region between the lupin species, including putative translocations, inversions, and/or non-allelic homologous recombination, which would have accompanied the evolution and speciation.
Collapse
|
7
|
Iqbal MM, Erskine W, Berger JD, Nelson MN. Phenotypic characterisation and linkage mapping of domestication syndrome traits in yellow lupin (Lupinus luteus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2975-2987. [PMID: 32683474 PMCID: PMC7497344 DOI: 10.1007/s00122-020-03650-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/01/2020] [Indexed: 05/03/2023]
Abstract
The transformation of wild plants into domesticated crops usually modifies a common set of characters referred to as 'domestication syndrome' traits such as the loss of pod shattering/seed dehiscence, loss of seed dormancy, reduced anti-nutritional compounds and changes in growth habit, phenology, flower and seed colour. Understanding the genetic control of domestication syndrome traits facilitates the efficient transfer of useful traits from wild progenitors into crops through crossing and selection. Domesticated forms of yellow lupin (Lupinus luteus L.) possess many domestication syndrome traits, while their genetic control remains a mystery. This study aimed to reveal the genetic control of yellow lupin domestication traits. This involved phenotypic characterisation of those traits, defining the genomic regions controlling domestication traits on a linkage map and performing a comparative genomic analysis of yellow lupin with its better-understood relatives, narrow-leafed lupin (L. angustifolius L.) and white lupin (L. albus L.). We phenotyped an F9 recombinant inbred line (RIL) population of a wide cross between Wodjil (domesticated) × P28213 (wild). Vernalisation responsiveness, alkaloid content, flower and seed colour in yellow lupin were each found to be controlled by single loci on linkage groups YL-21, YL-06, YL-03 and YL-38, respectively. Aligning the genomes of yellow with narrow-leafed lupin and white lupin revealed well-conserved synteny between these sister species (76% and 71%, respectively). This genomic comparison revealed that one of the key domestication traits, vernalisation-responsive flowering, mapped to a region of conserved synteny with the vernalisation-responsive flowering time Ku locus of narrow-leafed lupin, which has previously been shown to be controlled by an FT homologue. In contrast, the loci controlling alkaloid content were each found at non-syntenic regions among the three species. This provides a first glimpse into the molecular control of flowering time in yellow lupin and demonstrates both the power and the limitation of synteny as a tool for gene discovery in lupins.
Collapse
Affiliation(s)
- Muhammad Munir Iqbal
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia.
- Centre for Plant Genetics and Breeding, The University of Western Australia, Perth, WA, 6009, Australia.
| | - William Erskine
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
- Centre for Plant Genetics and Breeding, The University of Western Australia, Perth, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jens D Berger
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
| | - Matthew N Nelson
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia.
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia.
- Royal Botanic Gardens, Kew, Wakehurst Place Ardingly, West Sussex, RH17 6TN, UK.
| |
Collapse
|
8
|
A Tale of Two Families: Whole Genome and Segmental Duplications Underlie Glutamine Synthetase and Phosphoenolpyruvate Carboxylase Diversity in Narrow-Leafed Lupin ( Lupinus angustifolius L.). Int J Mol Sci 2020; 21:ijms21072580. [PMID: 32276381 PMCID: PMC7177731 DOI: 10.3390/ijms21072580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 01/04/2023] Open
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) has recently been supplied with advanced genomic resources and, as such, has become a well-known model for molecular evolutionary studies within the legume family—a group of plants able to fix nitrogen from the atmosphere. The phylogenetic position of lupins in Papilionoideae and their evolutionary distance to other higher plants facilitates the use of this model species to improve our knowledge on genes involved in nitrogen assimilation and primary metabolism, providing novel contributions to our understanding of the evolutionary history of legumes. In this study, we present a complex characterization of two narrow-leafed lupin gene families—glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC). We combine a comparative analysis of gene structures and a synteny-based approach with phylogenetic reconstruction and reconciliation of the gene family and species history in order to examine events underlying the extant diversity of both families. Employing the available evidence, we show the impact of duplications on the initial complement of the analyzed gene families within the genistoid clade and posit that the function of duplicates has been largely retained. In terms of a broader perspective, our results concerning GS and PEPC gene families corroborate earlier findings pointing to key whole genome duplication/triplication event(s) affecting the genistoid lineage.
Collapse
|
9
|
Franco AL, Figueredo A, Pereira LDM, de Sousa SM, Souza G, Carvalho MA, Simon MF, Viccini LF. Low cytomolecular diversification in the genus Stylosanthes Sw. (Papilionoideae, Leguminosae). Genet Mol Biol 2020; 43:e20180250. [PMID: 31429856 PMCID: PMC7197990 DOI: 10.1590/1678-4685-gmb-2018-0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/07/2019] [Indexed: 12/02/2022] Open
Abstract
Stylosanthes (Papilionoideae, Leguminosae) is a predominantly Neotropical genus with ~48 species that include worldwide important forage species. This study presents the chromosome number and morphology of eight species of the genus Stylosanthes (S. acuminata, S. gracilis, S. grandifolia, S. guianensis, S. hippocampoides, S. pilosa, S. macrocephala, and S. ruellioides). In addition, staining with CMA and DAPI, in situ hybridization with 5S and 35S rDNA probes, and estimation of DNA content were performed. The interpretation of Stylosanthes chromosome diversification was anchored by a comparison with the sister genus Arachis and a dated molecular phylogeny based on nuclear and plastid loci. Stylosanthes species showed 2n = 20, with low cytomolecular diversification regarding 5S rDNA, 35S rDNA, and genome size. Arachis has a more ancient diversification (~7 Mya in the Pliocene) than the relatively recent Stylosanthes (~2 Mya in the Pleistocene), and it seems more diverse than its sister lineage. Our data support the idea that the cytomolecular stability of Stylosanthes in relation to Arachis could be a result of its recent origin. The recent diversification of Stylosanthes could also be related to the low morphological differentiation among species, and to the recurrent formation of allopolyploid complexes.
Collapse
Affiliation(s)
- Ana Luiza Franco
- Universidade Federal de Juiz de Fora, Departamento de Biologia, Laboratório de Genética, Juiz de Fora, MG, Brazil
| | - Amanda Figueredo
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Citogenética e Evolução Vegetal, CCB, Recife, PE, Brazil
| | - Lívia de Moraes Pereira
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Citogenética e Evolução Vegetal, CCB, Recife, PE, Brazil
| | - Saulo Marçal de Sousa
- Universidade Federal de Juiz de Fora, Departamento de Biologia, Laboratório de Genética, Juiz de Fora, MG, Brazil
| | - Gustavo Souza
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Citogenética e Evolução Vegetal, CCB, Recife, PE, Brazil
| | | | - Marcelo F. Simon
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Brasília, DF, Brazil
| | - Lyderson Facio Viccini
- Universidade Federal de Juiz de Fora, Departamento de Biologia, Laboratório de Genética, Juiz de Fora, MG, Brazil
| |
Collapse
|
10
|
Chromatographic Fingerprinting of the Old World Lupins Seed Alkaloids: A Supplemental Tool in Species Discrimination. PLANTS 2019; 8:plants8120548. [PMID: 31783673 PMCID: PMC6963311 DOI: 10.3390/plants8120548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022]
Abstract
The total contents and qualitative compositions of alkaloids in seeds of 10 Old World lupin species (73 accessions) were surveyed using gas chromatography. The obtained results, combined with those for three lupin crops, Lupinus angustifolius, Lupinus albus, and Lupinus luteus, provide the most complete and up-to-date overview of alkaloid profiles of 13 lupin species originating from the Mediterranean Basin. The qualitative alkaloid compositions served as useful supplementary tools of species discrimination. On the basis of the most abundant major alkaloids, lupanine, lupinine, and multiflorine, the Old World lupin species were divided into four groups. Those containing lupanine (L. angustifolius, L. albus, and Lupinus mariae-josephi), containing lupinine (Lupinus luteus, Lupinus hispanicus, and Lupinus × hispanicoluteus), containing lupinine and multiflorine (Lupinus atlanticus, Lupinus palaestinus, Lupinus anatolicus, Lupinus digitatus, Lupinus pilosus, and Lupinus cosentinii), and containing multiflorine (Lupinus micranthus). Within a given group, certain species can be, in most cases, further distinguished by the presence of other major alkaloids. The discrimination of species based on the total alkaloid content was found to be less reliable because of the significant intra-species variations, as well as the influences of environmental factors on the seed alkaloid content.
Collapse
|
11
|
Susek K, Bielski W, Czyż KB, Hasterok R, Jackson SA, Wolko B, Naganowska B. Impact of Chromosomal Rearrangements on the Interpretation of Lupin Karyotype Evolution. Genes (Basel) 2019; 10:genes10040259. [PMID: 30939837 PMCID: PMC6523792 DOI: 10.3390/genes10040259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Plant genome evolution can be very complex and challenging to describe, even within a genus. Mechanisms that underlie genome variation are complex and can include whole-genome duplications, gene duplication and/or loss, and, importantly, multiple chromosomal rearrangements. Lupins (Lupinus) diverged from other legumes approximately 60 mya. In contrast to New World lupins, Old World lupins show high variability not only for chromosome numbers (2n = 32–52), but also for the basic chromosome number (x = 5–9, 13) and genome size. The evolutionary basis that underlies the karyotype evolution in lupins remains unknown, as it has so far been impossible to identify individual chromosomes. To shed light on chromosome changes and evolution, we used comparative chromosome mapping among 11 Old World lupins, with Lupinus angustifolius as the reference species. We applied set of L. angustifolius-derived bacterial artificial chromosome clones for fluorescence in situ hybridization. We demonstrate that chromosome variations in the species analyzed might have arisen from multiple changes in chromosome structure and number. We hypothesize about lupin karyotype evolution through polyploidy and subsequent aneuploidy. Additionally, we have established a cytogenomic map of L. angustifolius along with chromosome markers that can be used for related species to further improve comparative studies of crops and wild lupins.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Wojciech Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Katarzyna B Czyż
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA.
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
| |
Collapse
|
12
|
Kroc M, Koczyk G, Kamel KA, Czepiel K, Fedorowicz-Strońska O, Krajewski P, Kosińska J, Podkowiński J, Wilczura P, Święcicki W. Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci Rep 2019; 9:2231. [PMID: 30783128 PMCID: PMC6381137 DOI: 10.1038/s41598-018-37701-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/12/2018] [Indexed: 01/23/2023] Open
Abstract
Unravelling the biosynthetic pathway of quinolizidine alkaloids (QAs), regarded as antinutritional compounds of narrow-leafed lupin (NLL) seeds, is fundamental to best exploit NLL as food or feed. We investigated 12 candidate genes connected to QA biosynthesis, selecting them by transcriptomic and genomic approaches, from the landscape of genes differentially expressed in leaves of the high- and low-alkaloid NLL accessions. Linkage analysis enabled the assessment of the location of the candidate genes in relation to iucundus, a major locus of unknown identity, that confers reduced QA content in seeds. The key finding was the identification of APETALA2/ethylene response transcription factor, RAP2-7, cosegregating with the iucundus locus and located within a region with highly significant QTLs that affect QA composition. We additionally identified a 4-hydroxy-tetrahydrodipicolinate synthase (DHDPS) gene involved in L-lysine biosynthesis as being closely linked to iucundus. The distributed location of other remaining candidates (including previously known QA genes) across different linkage groups, also indirectly supports the transcription factor as a possible regulator of lupin alkaloid biosynthesis. Our findings provide crucial insight into QA biosynthesis in NLL. Additionally, we evaluated and selected appropriate reference genes for qRT-PCRs to analyse the expression levels of QA genes in NLL.
Collapse
Affiliation(s)
- Magdalena Kroc
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Grzegorz Koczyk
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Katarzyna A Kamel
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Katarzyna Czepiel
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Olga Fedorowicz-Strońska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Pawińskiego 3c, 02-106, Warsaw, Poland
| | - Jan Podkowiński
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Piotrowo 2, 61-138, Poznań, Poland
| | - Paulina Wilczura
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Wojciech Święcicki
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
13
|
Lusinska J, Majka J, Betekhtin A, Susek K, Wolny E, Hasterok R. Chromosome identification and reconstruction of evolutionary rearrangements in Brachypodium distachyon, B. stacei and B. hybridum. ANNALS OF BOTANY 2018; 122:445-459. [PMID: 29893795 PMCID: PMC6110338 DOI: 10.1093/aob/mcy086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The Brachypodium genus represents a useful model system to study grass genome organization. Palaeogenomic analyses (e.g. Murat F, Armero A, Pont C, Klopp C, Salse J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nature Genetics49: 490-496) have identified polyploidization and dysploidy as the prime mechanisms driving the diversity of plant karyotypes and nested chromosome fusions (NCFs) crucial for shaping grass chromosomes. This study compares the karyotype structure and evolution in B. distachyon (genome Bd), B. stacei (genome Bs) and in their putative allotetraploid B. hybridum (genomes BdBs). METHODS Brachypodium chromosomes were measured and identified using multicolour fluorescence in situ hybridization (mcFISH). For higher resolution, comparative chromosome barcoding was developed using sets of low-repeat, physically mapped B. distachyon-derived bacterial artificial chromosome (BAC) clones. KEY RESULTS All species had rather small chromosomes, and essentially all in the Bs genome were morphometrically indistinguishable. Seven BACs combined with two rDNA-based probes provided unambiguous and reproducible chromosome discrimination. Comparative chromosome barcoding revealed NCFs that contributed to the reduction in the x = 12 chromosome number that has been suggested for the intermediate ancestral grass karyotype. Chromosome Bd3 derives from two NCFs of three ancestral chromosomes (Os2, Os8, Os10). Chromosome Bs6 shows an ancient Os8/Os10 NCF, whilst Bs4 represents Os2 only. Chromosome Bd4 originated from a descending dysploidy that involves two NCFs of Os12, Os9 and Os11. The specific distribution of BACs along Bs9 and Bs5, in both B. stacei and B. hybridum, suggests a Bs genome-specific Robertsonian rearrangement. CONCLUSIONS mcFISH-based karyotyping identifies all chromosomes in Brachypodium annuals. Comparative chromosome barcoding reveals rearrangements responsible for the diverse organization of Bd and Bs genomes and provides new data regarding karyotype evolution since the split of the two diploids. The fact that no chromosome rearrangements were observed in B. hybridum compared with the karyotypes of its phylogenetic ancestors suggests prolonged genome stasis after the formation of the allotetraploid.
Collapse
Affiliation(s)
- Joanna Lusinska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Majka
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karolina Susek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Elzbieta Wolny
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
- For correspondence. E-mail
| |
Collapse
|
14
|
Susek K, Braszewska-Zalewska A, Bewick AJ, Hasterok R, Schmitz RJ, Naganowska B. Epigenomic diversification within the genus Lupinus. PLoS One 2017; 12:e0179821. [PMID: 28640886 PMCID: PMC5480990 DOI: 10.1371/journal.pone.0179821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/05/2017] [Indexed: 12/23/2022] Open
Abstract
Deciphering the various chemical modifications of both DNA and the histone compound of chromatin not only leads to a better understanding of the genome-wide organisation of epigenetic landmarks and their impact on gene expression but may also provide some insights into the evolutionary processes. Although both histone modifications and DNA methylation have been widely investigated in various plant genomes, here we present the first study for the genus Lupinus. Lupins, which are members of grain legumes (pulses), are beneficial for food security, nutrition, health and the environment. In order to gain a better understanding of the epigenetic organisation of genomes in lupins we applied the immunostaining of methylated histone H3 and DNA methylation as well as whole-genome bisulfite sequencing. We revealed variations in the patterns of chromatin modifications at the chromosomal level among three crop lupins, i.e. L. angustifolius (2n = 40), L. albus (2n = 50) and L. luteus (2n = 52), and the legume model plant Medicago truncatula (2n = 16). Different chromosomal patterns were found depending on the specific modification, e.g. H3K4me2 was localised in the terminal parts of L. angustifolius and M. truncatula chromosomes, which is in agreement with the results that have been obtained for other species. Interestingly, in L. albus and L. luteus this modification was limited to one arm in the case of all of the chromosomes in the complement. Additionally, H3K9me2 was detected in all of the analysed species except L. luteus. DNA methylation sequencing (CG, CHG and CHH contexts) of aforementioned crop but also wild lupins such as L. cosentinii (2n = 32), L. digitatus (2n = 36), L. micranthus (2n = 52) and L. pilosus (2n = 42) supported the range of interspecific diversity. The examples of epigenetic modifications illustrate the diversity of lupin genomes and could be helpful for elucidating further epigenetic changes in the evolution of the lupin genome.
Collapse
Affiliation(s)
- Karolina Susek
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Adam J. Bewick
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Poland
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|