1
|
Chau TP, Devanesan S, Farhat K, Liu X, Jhanani GK. Phytoremediation efficiency of Vigna mungo with the amalgamation of indigenous metal tolerant bacterial strain on metal polluted agriculture soil. ENVIRONMENTAL RESEARCH 2023:116291. [PMID: 37276971 DOI: 10.1016/j.envres.2023.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
This research was performed to evaluate physico-chemical properties of farmland soil nearby the magnesite mine site. Unexpectedly, few physico-chemical properties were crossing the acceptable limits. Particularly, the quantities of Cd (112.34 ± 3.25), Pb (386.42 ± 11.71), Zn (854.28 ± 3.53), and Mn (2538 ± 41.11) were crossing the permissible limits. Among 11 bacterial cultures isolated from the metal contaminated soil, 2 isolates names as SS1 and SS3 showed significant multi-metal tolerance up to the concentration of 750 mg L-1. Furthermore, these strains also showed considerable metal mobilization as well as absorption ability on metal contaminated soil under in-vitro conditions. In a short duration of treatment, these isolates effectively mobilize and absorb the metals from the polluted soil. The results obtained from the greenhouse investigation with Vigna mungo revealed that the among various treatment (T1 to T5) groups, the T3 (V.mungo + SS1+SS3) showed remarkable phytoremediation potential (Pb: 50.88, Mn: 152, Cd: 14.54, and Zn: 67.99 mg kg-1) on metal contaminated soil. Furthermore, these isolates influence the growth as well as biomass of V.mungo under greenhouse conditions on metal contaminated soil. These findings suggest that combining multi-metal tolerant bacterial isolates can improve the phytoextraction efficiency of V.mungo on metal-contaminated soil.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Karim Farhat
- Department of Urology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| |
Collapse
|
2
|
Lu H, Xia C, Chinnathambi A, Nasif O, Narayanan M, Shanmugam S, Lan Chi NT, Pugazhendhi A, On-Uma R, Jutamas K, Anupong W. Optimistic influence of multi-metal tolerant Bacillus species on phytoremediation potential of Chrysopogon zizanioides on metal contaminated soil. CHEMOSPHERE 2023; 311:136889. [PMID: 36257390 DOI: 10.1016/j.chemosphere.2022.136889] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The current study investigated the plant growth promoting (PGP) characteristics of multi-metal-tolerant Bacillus cereus and their positive effect on the physiology, biomolecule substance, and phytoremediation ability of Chrysopogon zizanioides in metal-contaminated soil. The test soil sample was detrimentally contaminated by metals including Cd (31 mg kg-1), Zn (7696 mg kg-1), Pb (326 mg kg-1), Mn (2519 mg kg-1) and Cr (302 mg kg-1) that exceeded Indian standards. The multi-metal-tolerant B. cereus seemed to have superb PGP activities including fabrication of hydrogen cyanide, siderophore, Indole Acetic Acid, N2 fixation, as well as P solubilisation. Such multi-metal-tolerant B. cereus attributes can dramatically reduce or decontaminate metals in contaminated soils, and their PGP attributes significantly improve plant growth in contaminated soils. Hence, without (study I) and with (study II) the blending of B. cereus, this strain vastly enhances the growth and phytoremediation potency of C. zizanioides on metal contaminated soil. The results revealed that the physiological data, biomolecule components, and phytoremediation efficiency of C. zizanioides (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g-1) seem to have been greatly effective in study II due to the metal solubilizing and PGP characteristics of B. cereus. This is a one-of-a-kind report on the effect of B. cereus's multi-metal tolerance and PGP characteristics on the development and phytoextraction effectiveness of C. zizanioides in metal-polluted soil.
Collapse
Affiliation(s)
- Haiying Lu
- College of Biology and the Environment, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- College of Biology and the Environment, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Sabarathinam Shanmugam
- Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Lifescience, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kumchai Jutamas
- Department of Plant Science and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Field Studies on the Effect of Bioaugmentation with Bacillus amyloliquefaciens FZB42 on Plant Accumulation of Rare Earth Elements and Selected Trace Elements. MINERALS 2022. [DOI: 10.3390/min12040409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study is an investigation of the effect of soil bioaugmentation (inoculation) on a field scale with the commercially available product RhizoVital®42, containing Bacillus amyloliquefaciens FZB4, on element bioavailability, plant biomass production, as well as accumulation of rare earth elements (REEs), germanium, and selected trace elements. Zea mays and Helianthus annuus were selected as test plants. Post-harvest, results showed inoculation increased biomass production of Z. mays and H. annuus by 24% and 26%, albeit insignificant at p ≤ 0.05. Bioaugmentation enhanced Z. mays shoot content of P, Cd, and Ge by percentages between 73% and 80% (significant only for Ge) and decreased shoot content of REET, Pb, and Cu by 28%, 35%, and 59%, respectively. For H. annuus grown on bioaugmented soil, shoot content of Ca, Cu, Ge, REET, and Pb increased by over 40%, with a negligible decrease observed for Cd. Summarily, results suggest that bioaugmentation with Bacillus amyloliquefaciens FZB42 could enhance biomass production, increase soil element bioavailability enhance, and increase or reduce plant accumulation of target elements. Additionally, differences in P use efficiency could influence bioaugmentation effects on P accumulation.
Collapse
|
4
|
Paura B, Di Marzio P. Making a Virtue of Necessity: The Use of Wild Edible Plant Species (Also Toxic) in Bread Making in Times of Famine According to Giovanni Targioni Tozzetti (1766). BIOLOGY 2022; 11:285. [PMID: 35205151 PMCID: PMC8869735 DOI: 10.3390/biology11020285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 04/27/2023]
Abstract
In 1766, the agricultural scientist Giovanni Targioni Tozzetti described for the Grand Duchy of Tuscany, the wild and cultivated plant species that could be used, in times of famine, to increase the quantity of flour or vegetable mass in bread making. These wild plants can be defined as wild edible plants (WEPs) or "alimurgic species", a concept usually traced back to Giovanni Targioni Tozzetti himself. The 342 plant names mentioned in the text are in the Tuscan vernacular, so a research work was done on bibliographic sources from the 1800s in order to match them with their current nomenclature. This process led to an "alimurgic flora" repertoire based on the writing of Targioni Tozzetti; and a comparison with our AlimurgITA database of 1103 wild edible plants used in Italy. It is particularly interesting that in his short treatise, Giovanni Targioni Tozzetti identified eight toxic plants (corresponding to 14 species), indicating how to eliminate the poisonous substances from their useful roots. We treat them in detail, examining their current and past use, their geographical distribution in Italy, and their eventual toxicity. We obtained 343 matches, of which 198 were reliable (certain matches) and 145 possessed some degree of uncertainty (due to generic or collective vernacular names). Among the 198 certain identifications, 140 species are present in the AlimurgITA database (92 mentioned for Tuscany) and 58 are not; for bread-making there are only documentary traces of 53 species for Italy and 7 for Tuscany. Moreover, among the total 198 species, 84 showed some degree of hazard. Researching edible toxic spontaneous species allows: (1) investigation, from an unusual perspective, of a historical period in which the poor conditions of some social strata led to finding unusual solutions to food provision; (2) idea generation to re-enable potentially useful WEPs whose use has been lost. Making a virtue of necessity!
Collapse
Affiliation(s)
- Bruno Paura
- Department of Agricultural, Environmental and Food Sciences University of Molise, 86100 Campobasso, Italy
| | - Piera Di Marzio
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy;
| |
Collapse
|
5
|
Narayanan M, Thangabalu R, Natarajan D, Kumarasamy S, Kandasamy S, Elfasakhany A, Pugazhendhi A. Reclamation competence of Crotalaria juncea with the amalgamation and influence of indigenous bacteria on a waste dump of bauxite mine. CHEMOSPHERE 2021; 279:130632. [PMID: 34134423 DOI: 10.1016/j.chemosphere.2021.130632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 05/16/2023]
Abstract
The accumulated bauxite mine soil had an acidic pH of 5.52 ± 0.12 and more heavy metals such as Cr, Cd, Zn, and Pb, which can cause severe soil and water pollution to the nearby farmlands and water reservoirs. Hence, the work was designed to find the possibility of reclamation of bauxite mine soil through Crotalaria juncea with the amalgamation of native metal degrading bacterial isolates. Out of 15 bacterial cultures, only 2 isolates (B3 and B14) showed excellent metal tolerance (for up to 750 mg L-1), solubilizing (15.27-38.7 mg kg-1) (including phosphate: 47.4 ± 1.79%), and degrading potential (22.8 ± 0.89 to 31.5 ± 1.6%) than the others. These B3 and B14 isolates were recognized as B. borstelensis UTM105 (1432 bp) and B. borstelensis AK2 (1494 bp) through molecular characterization. These isolates have produced a metal stress response protein (205-43 KDa molecular weight protein) during metal stress conditions. The phytoremediation competence of C. juncea under the influence of these bacterial isolates was assessed with various treatment (I-IV) schemes. The treatment IV (C. juncea with two bacterial isolates) showed substantial physiological and biochemical results compared with the control and the other treatments. The phytoremediation competence of C. juncea was also effective in treatment IV than the others. It reduced and extracted a reasonable quantity of metals from the bauxite mine soil. The intact results accomplished that these native metals tolerant, solubilizing, and degrading bacterial isolates, could be used as optimistic bacterial candidates in combination with C. juncea for the effective reclamation of metal enriched bauxite mine soil.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, India
| | - Ramar Thangabalu
- Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| | | | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institutions (AERI), Hosur, Krishnagiri, Tamil Nadu, India
| | | | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
6
|
Wang Z, Zhang Y, Jiang L, Qiu J, Gao Y, Gu T, Li Z. Responses of Rhodotorula mucilaginosa under Pb(II) stress: carotenoid production and budding. Environ Microbiol 2021; 24:678-688. [PMID: 34002461 DOI: 10.1111/1462-2920.15603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 11/27/2022]
Abstract
Rhodotorula mucilaginosa resists heavy metal (HM) stress because of its abundant extracellular polymeric substances and functional vesicles. In this study, we provided new insights into its survival strategies at both biochemical and genetic levels. After lead exposure, carotenoid biosynthesis was initiated within 24 h incubation and then increased to the maximum after 96 h of incubation. Raman analysis confirmed that carotenoids (primarily β-carotene) were the major identifiable chemical substances on the cell surface. Moreover, the increased carotenoid production was accompanied by a rising budding rate, ~40% higher than that in the cultures without Pb. During the 96 h of incubation, the driving force for Pb accumulation was assigned to this elevated budding rate. After 96 h, biosorption was primarily attributed to the enhanced antioxidant ability of the single cells during carotenoid production. Furthermore, the yeast budding cells demonstrated an evidently heterogeneous biosorption of Pb, i.e., the rejuvenated daughters had a relatively lower Pb level than the mother cells. This resulted in the protection of the buds from Pb stress. After investigating phosphorus uptake and the RNA sequencing data, we finally confirmed two tightly correlated pathways that resist HM stress, i.e., biochemical (carotenoid production) and reproductive (healthy buds) pathways.
Collapse
Affiliation(s)
- Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ying Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Liu Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingjing Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yanan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tingting Gu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Xiao C, Guo S, Wang Q, Chi R. Enhanced reduction of lead bioavailability in phosphate mining wasteland soil by a phosphate-solubilizing strain of Pseudomonas sp., LA, coupled with ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116572. [PMID: 33529904 DOI: 10.1016/j.envpol.2021.116572] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/20/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Due to ecologically unsustainable mining strategies, there remain large areas of phosphate mining wasteland contaminated with accumulated lead (Pb). In this study, a Pb-resistant phosphate-solubilizing strain of Pseudomonas sp., LA, isolated from phosphate mining wasteland, was coupled with two species of native plants, ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.), for use in enhancing the reduction of bioavailable Pb in soil from a phosphate mining wasteland. The effect of PbCO3 solubilization by Pseudomonas sp. strain LA was evaluated in solution culture. It was found that strain LA could attain the best solubilization effect on insoluble Pb when the PbCO3 concentration was 1% (w/v). Pot experiments were carried out to investigate the potential of remediation by ryegrass and sonchus in phosphate mining wastelands with phosphate rock application and phosphate-solubilizing bacteria inoculation. Compared to the control group without strain LA inoculation, the biomass and length of ryegrass and sonchus were markedly increased, available P and Pb in roots increased by 22.2%-325% and 23.3%-368%, respectively, and available P and Pb in above-ground parts increased by 4.44%-388% and 1.67%-303%, respectively, whereas available Pb in soil decreased by 14.1%-27.3%. These results suggest that the combination of strain LA and plants is a bioremediation strategy with considerable potential and could help solve the Pb-contamination problem in phosphate mining wastelands.
Collapse
Affiliation(s)
- Chunqiao Xiao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Shuyu Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Qi Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Ruan Chi
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| |
Collapse
|
8
|
El Alaoui A, Raklami A, Bechtaoui N, El Gharmali A, Ouhammou A, Imziln B, Achouak W, Pajuelo E, Oufdou K. Use of native plants and their associated bacteria rhizobiomes to remediate-restore Draa Sfar and Kettara mining sites, Morocco. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:232. [PMID: 33772660 DOI: 10.1007/s10661-021-08977-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Soil and mine tailings are unreceptive to plant growth representing an imminent threat to the environment and resource sustainability. Using indigenous plants and their associated rhizobacteria to restore mining sites would be an eco-friendly solution to mitigate soil-metal toxicity. Soil prospection from Draa Sfar and Kettara mining sites in Morocco was carried out during different seasons for native plant sampling and rhizobacteria screening. The sites have been colonized by fifteen tolerant plant species having different capacities to accumulate Cu, Zn, and P in their shoots/root systems. In Draa Sfar mine, Suaeda vera J.F. Gmel., Sarcocornia fruticosa (L.) A.J. Scott., and Frankenia corymbosa Desf. accumulated mainly Cu (more than 90 mg kg-1), Atriplex halimus L. accumulated Zn (mg kg-1), and Frankenia corymbosa Desf. accumulated Pb (14 mg kg-1). As for Kettara mine, Aizoon canariense L. mainly accumulated Zn (270 mg kg-1), whereas Forsskalea tenacissima L. was the best shoot Cu accumulator with up to 50 mg kg-1, whereas Cu accumulation in roots was 21 mg kg-1. The bacterial screening revealed the strains' abilities to tolerate heavy metals up to 50 mg kg-1 Cu, 250 mg kg-1 Pb, and 150 mg kg-1 Zn. Isolated strains belonged mainly to Bacillaceae (73.33%) and Pseudomonadaceae (10%) and expressed different plant growth-promoting traits, alongside their antifungal activity. Results from this study will provide an insight into the ability of native plants and their associated rhizobacteria to serve as a basis for remediation-restoration strategies.
Collapse
Affiliation(s)
- Abdelkhalek El Alaoui
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
- LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Aix-Marseille University, CEA, CNRS, UMR7265, F-13108, Saint Paul Lez Durance, France
| | - Anas Raklami
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco.
| | - Noura Bechtaoui
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| | - Abdelhay El Gharmali
- Laboratory of Water, Biodiversity and Global Change, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| | - Ahmed Ouhammou
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| | - Boujamaa Imziln
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| | - Wafa Achouak
- LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Aix-Marseille University, CEA, CNRS, UMR7265, F-13108, Saint Paul Lez Durance, France
| | - Eloisa Pajuelo
- Department of Microbiology and Parasitology, University of Seville, PO Box 1095, 41080, Seville, Spain
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| |
Collapse
|
9
|
Narayanan M, Ranganathan M, Kandasamy G, Kumarasamy S. Evaluation of interaction among indigenous rhizobacteria and Vigna unguiculata on remediation of metal-containing abandoned magnesite mine tailing. Arch Microbiol 2021; 203:1399-1410. [PMID: 33388787 DOI: 10.1007/s00203-020-02115-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022]
Abstract
Abandoned magnesite mine heap causing pollution to nearby farmland and water reservoir. Thus the intention of this research was to screening metal mobilizing and absorbing bacteria from the rhizosphere section of V. unguiculata from farmland nearby to magnesite mine. Further, studied their stimulus effect on growth, biomass, and phytoextraction prospective of V unguiculata in mine tailing. The results of the physicochemical properties of mine tailing shows that four metals (Pb, Mn, Cd, and Zn) were crossing the permissible limit. Out of 27 isolates, 2 isolates (MMS15 and MMS17) were identified with maximum metal tolerance for up to 700 mg L-1 (MIC) and metal mobilization (Pb 5.5 and 5.87, Mn 6.6 and 4.88, Cd 1.99 and 2.59, and Zn 6.55 and 6.94 mg kg-1) and biosorption efficiency as Pb 3.74 and 3.74, Mn 4.9 and 4.7, Cd 2.41 and 3.96, and Zn 4.3 and 4.9 mg g-1. These two strains were identified as members of B. cereus and Kosakonia sp. using 16S rRNA technique and labelled strains NDRMN001 and MGR1, respectively. The Kosakonia sp. MGR1 effectively fixes the nitrogen in the rate of 81.94% and B. cereus NDRMN001 solubilizes 69.98 ± 2.31 mg L-1 of soluble phosphate. The experimental group's study results show that the group C (Kosakonia sp. MGR1 and B. cereus NDRMN001) has effectively stimulate the growth, biomass, and phytoextraction potential of V. unguiculata. The results conclude that the optimistic interaction between these two bacteria could be more significant to minimize the metal pollution in magnesite mine tailing.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India.
| | - Muthusamy Ranganathan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Gajendiran Kandasamy
- Department of Microbiology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| |
Collapse
|
10
|
Al-Thani RF, Yasseen BT. Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113694. [PMID: 31887591 DOI: 10.1016/j.envpol.2019.113694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 05/19/2023]
Abstract
Because pollution is predicted to worsen and sources of quality water for agriculture and other human activities are limited, many countries have been motivated to seek novel water sources. Qatar relies on groundwater and water desalinization to meet its water needs, and additional water resources will be needed to avoid unexpected crises in the future. Industrial wastewater (IWW) is an alternative water source, and much research activities should be focused on developing innovative and contemporary approaches to removing pollutants from IWW. Phytoremediation methods, shown to be efficient methods of removing and degrading contaminants of various kinds from polluted waters and soils, require knowledge of the native plants and associated microorganisms. In Qatar, many native plants (monocot and dicot, indigenous or introduced) have been shown to be greatly effective in remediating polluted areas. This article is a guide for Qatari scientists aiming to identify promising native plants and associated microbes for IWW phytoremediation. In it, we review the basic components of bioremediation and summarize the principle phytoremediation approaches and preferred recycling options. The multiple mechanisms and methods of phytoremediation for cleansing polluted soils and waters are also discussed as are details of the metabolic reactions degrading the organic components of oil and gas. Finally, heavy metal accumulation is addressed. Wastewater from industrial and domestic activities is currently being used to create green areas around Doha, Qatar, and such areas could be at risk of contamination. Many native Qatari plants and soil-dwelling microbes are efficient at removing organic and inorganic contaminants from polluted soils and waters, and some are promising candidates for achieving a clean environment free of contaminants.
Collapse
Affiliation(s)
- R F Al-Thani
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - B T Yasseen
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
11
|
Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmad A, Akram W, Faisal M. Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:581-592. [PMID: 29688047 DOI: 10.1080/15226514.2017.1405378] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The current study was performed to assess the effect of Burkholderia cepacia CS8 on the phytoremediation of cadmium (Cd) by Catharanthus roseus grown in Cd-contaminated soil. The plants cultivated in Cd amended soil showed reduced growth, dry mass, gas-exchange capacity, and chlorophyll contents. Furthermore, the plants exhibited elevated levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) under Cd stress. The bacterized plants showed higher shoot length, root length; fresh and dry weight. The improved stress tolerance in inoculated plants was attributed to the reduced quantity of MDA and H2O2, enhanced synthesis of protein, proline, phenols, flavonoids, and improved activity of antioxidant enzymes including peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase. Similarly, the 1-aminocyclopropane-1-carboxylate deaminase activity, phosphate solubilization, auxin, and siderophore production capability of B. cepacia CS8 improved growth and stress alleviation in treated plants. The bacterial inoculation enhanced the amount of water extractable Cd from soil. Furthermore, the inoculated plants showed higher bioconcentration factor and translocation factor. The current study exhibits that B. cepacia CS8 improves stress alleviation and phytoextraction potential of C. roseus plants growing under Cd stress.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- a College of Earth and Environmental Sciences , University of the Punjab , Lahore , Pakistan
| | - Nasim Ahmad Yasin
- b Senior Superintendent Garden, RO-II Office , University of the Punjab , Lahore , Pakistan
| | - Sajid Rashid Ahmad
- a College of Earth and Environmental Sciences , University of the Punjab , Lahore , Pakistan
| | - Aamir Ali
- c Department of Botany , University of Sargodha , Sargodha , Pakistan
| | - Aqeel Ahmad
- d Research Scholar , Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Waheed Akram
- d Research Scholar , Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , China
| | - Muhammad Faisal
- e Department of Microbiology and Molecular Genetics , University of the Punjab , Lahore , Pakistan
| |
Collapse
|
12
|
Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.). Appl Environ Microbiol 2017; 84:AEM.01715-17. [PMID: 29079619 DOI: 10.1128/aem.01715-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022] Open
Abstract
Soil and plant inoculation with heterotrophic zinc-solubilizing bacteria (ZSB) is considered a promising approach for increasing zinc (Zn) phytoavailability and enhancing crop growth and nutritional quality. Nevertheless, it is necessary to understand the underlying bacterial solubilization processes to predict their repeatability in inoculation strategies. Acidification via gluconic acid production remains the most reported process. In this study, wheat rhizosphere soil serial dilutions were plated on several solid microbiological media supplemented with scarcely soluble Zn oxide (ZnO), and 115 putative Zn-solubilizing isolates were directly detected based on the formation of solubilization halos around the colonies. Eight strains were selected based on their Zn solubilization efficiency and siderophore production capacity. These included one strain of Curtobacterium, two of Plantibacter, three strains of Pseudomonas, one of Stenotrophomonas, and one strain of Streptomyces In ZnO liquid solubilization assays, the presence of glucose clearly stimulated organic acid production, leading to medium acidification and ZnO solubilization. While solubilization by Streptomyces and Curtobacterium was attributed to the accumulated production of six and seven different organic acids, respectively, the other strains solubilized Zn via gluconic, malonic, and oxalic acids exclusively. In contrast, in the absence of glucose, ZnO dissolution resulted from proton extrusion (e.g., via ammonia consumption by Plantibacter strains) and complexation processes (i.e., complexation with glutamic acid in cultures of Curtobacterium). Therefore, while gluconic acid production was described as a major Zn solubilization mechanism in the literature, this study goes beyond and shows that solubilization mechanisms vary among ZSB and are strongly affected by growth conditions.IMPORTANCE Barriers toward a better understanding of the mechanisms underlying zinc (Zn) solubilization by bacteria include the lack of methodological tools for isolation, discrimination, and identification of such organisms. Our study proposes a direct bacterial isolation procedure, which prevents the need to screen numerous bacterial candidates (for which the ability to solubilize Zn is unknown) for recovering Zn-solubilizing bacteria (ZSB). Moreover, we confirm the potential of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as a quick and accurate tool for the identification and discrimination of environmental bacterial isolates. This work also describes various Zn solubilization processes used by wheat rhizosphere bacteria, including proton extrusion and the production of different organic acids among bacterial strains. These processes were also clearly affected by growth conditions (i.e., solid versus liquid cultures and the presence and absence of glucose). Although highlighted mechanisms may have significant effects at the soil-plant interface, these should only be transposed cautiously to real ecological situations.
Collapse
|