1
|
Liu X, Zhang N, Sun Y, Fu Z, Han Y, Yang Y, Jia J, Hou S, Zhang B. QTL mapping of downy mildew resistance in foxtail millet by SLAF‑seq and BSR-seq analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:168. [PMID: 38909331 DOI: 10.1007/s00122-024-04673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/03/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE Key message Three major QTLs for resistance to downy mildew were located within an 0.78 Mb interval on chromosome 8 in foxtail millet. Downy mildew, a disease caused by Sclerospora graminicola, is a serious problem that jeopardizes the yield and quality of foxtail millet. Breeding resistant varieties represents one of the most economical and effective solutions, yet there is a lack of molecular markers related to the resistance. Here, a mapping population comprising of 158 F6:7 recombinant inbred lines (RILs) was constructed from the crossing of G1 and JG21. Based on the specific locus amplified fragment sequencing results, a high-density linkage map of foxtail millet with 1031 bin markers, spanning 1041.66 cM was constructed. Based on the high-density linkage map and the phenotype data in four environments, a total of nine quantitative trait loci (QTL) associated with resistance to downy mildew were identified. Further BSR-seq confirmed the genomic regions containing the potential candidate genes related to downy mildew resistance. Interestingly, a 0.78-Mb interval between C8M257 and C8M268 on chromosome 8 was highlighted because of its presence in three major QTL, qDM8_1, qDM8_2, and qDM8_4, which contains 10 NBS-LRR genes. Haplotype analysis in RILs and natural population suggest that 9 SNP loci on Seita8G.199800, Seita8G.195900, Seita8G.198300, and Seita.8G199300 genes were significantly correlated with disease resistance. Furthermore, we found that those genes were taxon-specific by collinearity analysis of pearl millet and foxtail millet genomes. The identification of these new resistance QTL and the prediction of resistance genes against downy mildew will be useful in breeding for resistant varieties and the study of genetic mechanisms of downy mildew disease resistance in foxtail millet.
Collapse
Affiliation(s)
- Xu Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Nuo Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Yurong Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Zhenxin Fu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Yang Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Jichun Jia
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China
| | - Siyu Hou
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China.
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China.
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China.
| |
Collapse
|
2
|
Zhou N, Miao K, Liu C, Jia L, Hu J, Huang Y, Ji Y. Historical biogeography and evolutionary diversification of Lilium (Liliaceae): New insights from plastome phylogenomics. PLANT DIVERSITY 2024; 46:219-228. [PMID: 38807906 PMCID: PMC11128834 DOI: 10.1016/j.pld.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 05/30/2024]
Abstract
Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium (14 plastomes were newly sequenced) to recover the phylogenetic backbone of the genus and a time-calibrated phylogenetic framework to estimate biogeographical history scenarios and evolutionary diversification rates of Lilium. Our results suggest that ancient climatic changes and geological tectonic activities jointly shaped the distribution range and drove evolutionary radiation of Lilium, including the Middle Miocene Climate Optimum (MMCO), the late Miocene global cooling, as well as the successive uplift of the Qinghai-Tibet Plateau (QTP) and the strengthening of the monsoon climate in East Asia during the late Miocene and the Pliocene. This case study suggests that the unique geological and climatic events in the Neogene of East Asia, in particular the uplift of QTP and the enhancement of monsoonal climate, may have played an essential role in formation of uneven distribution of plant diversity in the Northern Hemisphere.
Collapse
Affiliation(s)
- Nian Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changkun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Linbo Jia
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jinjin Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yongjiang Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
3
|
Oliya BK, Maharjan L, Pant B. Genetic diversity and population structure analysis of Paris polyphylla Sm. revealed by SSR marker. Heliyon 2023; 9:e18230. [PMID: 37539281 PMCID: PMC10395474 DOI: 10.1016/j.heliyon.2023.e18230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Paris polyphylla Sm. is a vulnerable medicinal plant distributed in the Himalayan countries. This plant has numerous pharmacological benefits, including anticancer, anti-inflammatory, analgesic, and antipyretic properties. The distribution, conservation status, and traditional usage of this species are fairly known in Nepal. However, its diversity and population structure at the molecular level are unexplored. This study analyzes, the genetic diversity and population structure of 32 P. polyphylla germplasms collected from Central, Eastern and Western regions of Nepal using 15 simple sequence repeat (SSR) markers. All the SSR primers were polymorphic and amplified 60 alleles ranging from 50 bp to 900 bp. The polymorphic information content (PIC) value ranged from 0 to 0.75. The average value of the observed heterozygosity (Ho), expected heterozygosity (He), Shannon's information index (I), and total heterozygosity (Ht) were 0.63, 0.53, 0.92 and 0.32, respectively. The analysis of molecular variance (AMOVA), showed a maximum variation of 74% within the individual in a population and only 26% variation among the population. In the population STRUCTURE analysis two clusters were formed where Eastern germplasms (EN) were separated far from the Central and Western germplasms (CWN), this clustering was in complete correspondence to the unweighted pair group method based on arithmetic average (UPGMA) and principle coordinate analysis (PCoA). Furthermore, in the UPGMA and PCoA, germplasms collected from the same or relatively similar geographic origin were closer. These findings are critical for developing conservation policies, facilitating evolutionary research, sustainable utilization and commercial cultivation of this pharmacologically important and threatened species.
Collapse
Affiliation(s)
- Bal Kumari Oliya
- Seed Quality Control Centre, Ministry of Agriculture and Livestock Development, Hariharbhawan, Lalitpur, Nepal
- Warm Temperate Horticulture Centre, Ministry of Agriculture and Livestock Development, Kirtipur, Kathmandu, Nepal
- Annapurna Research Center, Maitighar, Kathmandu, Nepal
| | | | - Bijaya Pant
- Annapurna Research Center, Maitighar, Kathmandu, Nepal
- Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
4
|
Ji Y, Landis JB, Yang J, Wang S, Zhou N, Luo Y, Liu H. Phylogeny and evolution of Asparagaceae subfamily Nolinoideae: new insights from plastid phylogenomics. ANNALS OF BOTANY 2023; 131:301-312. [PMID: 36434782 PMCID: PMC9992941 DOI: 10.1093/aob/mcac144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Asparagaceae subfamily Nolinoideae is an economically important plant group, but the deep relationships and evolutionary history of the lineage remain poorly understood. Based on a large data set including 37 newly sequenced samples and publicly available plastomes, this study aims to better resolve the inter-tribal relationships of Nolinoideae, and to rigorously examine the tribe-level monophyly of Convallarieae, Ophiopogoneae and Polygonateae. METHODS Maximum likelihood (ML) and Bayesian inference (BI) methods were used to infer phylogenetic relationships of Nolinoideae at the genus level and above. The diversification history of Nolinoideae was explored using molecular dating. KEY RESULTS Both ML and BI analyses identically recovered five clades within Nolinoideae, respectively corresponding to Dracaeneae + Rusceae, Polygonateae + Theropogon, Ophiopogoneae, Nolineae, and Convallarieae excluding Theropogon, and most deep nodes were well supported. As Theropogon was embedded in Polygonateae, the plastome phylogeny failed to resolve Convallarieae and Polygonateae as reciprocally monophyletic. Divergence time estimation showed that the origins of most Nolinoideae genera were dated to the Miocene and Pliocene. The youthfulness of Nolinoideae genera is well represented in the three herbaceous tribes (Convallarieae, Ophiopogoneae and Polygonateae) chiefly distributed in temperate areas of the Northern Hemisphere, as the median stem ages of all 14 genera currently belonging to them were estimated at <12.37 Ma. CONCLUSIONS This study recovered a robust backbone phylogeny, providing new insights for better understanding the evolution and classification of Nolinoideae. Compared with the deep relationships recovered by a previous study based on transcriptomic data, our data suggest that ancient hybridization or incomplete lineage sorting may have occurred in the early diversification of Nolinoideae. Our findings will provide important reference for further study of the evolutionary complexity of Nolinoideae using nuclear genomic data. The recent origin of these herbaceous genera currently belonging to Convallarieae, Ophiopogoneae and Polygonateae provides new evidence to support the hypothesis that the global expansion of temperate habitats caused by the climate cooling over the past 15 million years may have dramatically driven lineage diversification and speciation in the Northern Hemisphere temperate flora.
Collapse
Affiliation(s)
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L. H. Bailey Hortorium, Cornell University, Ithaca, NY 14850, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Nian Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Luo
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
5
|
Liu C, Deng J, Zhou R, Song B, Zhou S, He X. Plastid Phylogenomics Provide Evidence to Accept Two New Members of Ligusticopsis (Apiaceae, Angiosperms). Int J Mol Sci 2022; 24:ijms24010382. [PMID: 36613825 PMCID: PMC9820081 DOI: 10.3390/ijms24010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peucedanum nanum and P. violaceum are recognized as members of the genus Peucedanum because of their dorsally compressed mericarps with slightly prominent dorsal ribs and narrowly winged lateral ribs. However, these species are not similar to other Peucedanum taxa but resemble Ligusticopsis in overall morphology. To check the taxonomic positions of P. nanum and P. violaceum, we sequenced their complete plastid genome (plastome) sequences and, together with eleven previously published Ligusticopsis plastomes, performed comprehensively comparative analyses. The thirteen plastomes were highly conserved and similar in structure, size, GC content, gene content and order, IR borders, and the patterns of codon bias, RNA editing, and simple sequence repeats (SSRs). Nevertheless, twelve mutation hotspots (matK, ndhC, rps15, rps8, ycf2, ccsA-ndhD, petN-psbM, psbA-trnK, rps2-rpoC2, rps4-trnT, trnH-psbA, and ycf2-trnL) were selected. Moreover, both the phylogenetic analyses based on plastomes and on nuclear ribosomal DNA internal transcribed spacer (ITS) sequences robustly supported that P. nanum and P. violaceum nested in Ligusticopsis, and this was further confirmed by the morphological evidence. Hence, transferring P. nanum and P. violaceum into Ligusticopsis genus is reasonable and convincing, and two new combinations are presented.
Collapse
Affiliation(s)
| | | | | | | | - Songdong Zhou
- Correspondence: (S.Z.); (X.H.); Tel.: +028-85415006 (X.H.)
| | - Xingjin He
- Correspondence: (S.Z.); (X.H.); Tel.: +028-85415006 (X.H.)
| |
Collapse
|
6
|
Montenegro JD, Julca I, Chumbe-Nolasco LD, Rodríguez-Pérez LM, Sevilla Panizo R, Medina-Hoyos A, Gutiérrez-Reynoso DL, Guerrero-Abad JC, Amasifuen Guerra CA, García-Serquén AL. Phylogenomic Analysis of the Plastid Genome of the Peruvian Purple Maize Zea mays subsp. mays cv. 'INIA 601'. PLANTS (BASEL, SWITZERLAND) 2022; 11:2727. [PMID: 36297753 PMCID: PMC9612013 DOI: 10.3390/plants11202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Peru is an important center of diversity for maize; its different cultivars have been adapted to distinct altitudes and water availability and possess an array of kernel colors (red, blue, and purple), which are highly appreciated by local populations. Specifically, Peruvian purple maize is a collection of native landraces selected and maintained by indigenous cultures due to its intense purple color in the seed, bract, and cob. This color is produced by anthocyanin pigments, which have gained interest due to their potential use in the food, agriculture, and pharmaceutical industry. It is generally accepted that the Peruvian purple maize originated from a single ancestral landrace 'Kculli', but it is not well understood. To study the origin of the Peruvian purple maize, we assembled the plastid genomes of the new cultivar 'INIA 601' with a high concentration of anthocyanins, comparing them with 27 cultivars/landraces of South America, 9 Z. mays subsp. parviglumis, and 5 partial genomes of Z. mays subsp. mexicana. Using these genomes, plus four other maize genomes and two outgroups from the NCBI database, we reconstructed the phylogenetic relationship of Z. mays. Our results suggest a polyphyletic origin of purple maize in South America and agree with a complex scenario of domestication with recurrent gene flow from wild relatives. Additionally, we identify 18 plastid positions that can be used as high-confidence genetic markers for further studies. Altogether, these plastid genomes constitute a valuable resource to study the evolution and domestication of Z. mays in South America.
Collapse
Affiliation(s)
- Juan D. Montenegro
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
- Department of Neurosciences and Developmental Biology, University of Vienna, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Irene Julca
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Lenin D. Chumbe-Nolasco
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
| | - Lila M. Rodríguez-Pérez
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
| | - Ricardo Sevilla Panizo
- Departamento de Fitotecnia, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 15024, Peru
| | - Alicia Medina-Hoyos
- Estación Experimental Agraria “Baños del Inca”, Instituto Nacional de Innovación Agraria (INIA), Km. 5.5 Carretera Cajamarca–Celendín, Cajamarca 06000, Peru
| | - Dina L. Gutiérrez-Reynoso
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
| | - Juan Carlos Guerrero-Abad
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
| | - Carlos A. Amasifuen Guerra
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
| | - Aura L. García-Serquén
- Laboratorio de Biología Molecular y Genómica, Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
| |
Collapse
|
7
|
Yang L, Abduraimov O, Tojibaev K, Shomurodov K, Zhang YM, Li WJ. Analysis of complete chloroplast genome sequences and insight into the phylogenetic relationships of Ferula L. BMC Genomics 2022; 23:643. [PMID: 36076164 PMCID: PMC9461113 DOI: 10.1186/s12864-022-08868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Background Ferula L. is one of the largest and most taxonomically complicated genera as well as being an important medicinal plant resource in the family Apiaceae. To investigate the plastome features and phylogenetic relationships of Ferula and its neighboring genera Soranthus Ledeb., Schumannia Kuntze., and Talassia Korovin, we sequenced 14 complete plastomes of 12 species. Results The size of the 14 complete chloroplast genomes ranged from 165,607 to 167,013 base pairs (bp) encoding 132 distinct genes (87 protein-coding, 37 tRNA, and 8 rRNA genes), and showed a typical quadripartite structure with a pair of inverted repeats (IR) regions. Based on comparative analysis, we found that the 14 plastomes were similar in codon usage, repeat sequence, simple sequence repeats (SSRs), and IR borders, and had significant collinearity. Based on our phylogenetic analyses, Soranthus, Schumannia, and Talassia should be considered synonymous with Ferula. Six highly divergent regions (rps16/trnQ-UUG, trnS-UGA/psbZ, psbH/petB, ycf1/ndhF, rpl32, and ycf1) were also detected, which may represent potential molecular markers, and combined with selective pressure analysis, the weak positive selection gene ccsA may be a discriminating DNA barcode for Ferula species. Conclusion Plastids contain abundant informative sites for resolving phylogenetic relationships. Combined with previous studies, we suggest that there is still much room for improvement in the classification of Ferula. Overall, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of this genus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08868-z.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China.,Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, No.818 South Beijing Road, Urumqi, 830011, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Ozodbek Abduraimov
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Komiljon Tojibaev
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Khabibullo Shomurodov
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Yuan-Ming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China.,Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, No.818 South Beijing Road, Urumqi, 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China. .,Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, No.818 South Beijing Road, Urumqi, 830011, China. .,The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
8
|
Cui N, Chen W, Li X, Wang P. Comparative chloroplast genomes and phylogenetic analyses of Pinellia. Mol Biol Rep 2022; 49:7873-7885. [PMID: 35689783 PMCID: PMC9304046 DOI: 10.1007/s11033-022-07617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
Background Pinellia Tenore (Araceae) is a genus of perennial herbaceous plants, all of which have medicinal value. The chloroplast (cp) genome data of Pinellia are scarce, and the phylogenetic relationship and gene evolution remain unclear. Methods and results We sequenced and annotated the Pinellia pedatisecta cp genome and combined it with previously published genomes for other Pinellia species. We used bioinformatics methods to analyse the genomic structure, repetitive sequences, interspecific variation, divergence hotspots, phylogenetic relationships, divergence time estimation and selective pressure of four Pinellia plastomes. Results showed that the cp genomes of Pinellia varied in length between 168,178 (P. pedatisecta MN046890) and 164,013 bp (P. ternata KR270823). A total of 68–111 SSR loci were identified as candidate molecular markers for further genetic diversity study. Eight mutational hotspot regions were determined, including psbI-trnG-UCC, psbM-rpoB, ndhJ-trnT-UGU, trnP-UGG-trnW-CCA, ndhF-trnN-GUU, ndhG-ndhE, ycf1-rps15 and trnR-ycf1. Gene selection pressure suggested that four genes were subjected to positive selection. Phylogenetic inferences based on the complete cp genomes revealed a sister relationship between Pinellia and Arisaema plants whose divergence was estimated to occur around 22.48 million years ago. All Pinellia species formed a monophyletic evolutionary clade in which P. peltata, rather than P. pedatisecta, earlier diverged, indicating that P. pedatisecta is not the basal taxon of Pinellia but P. peltata may be. Conclusions The cp genomes of Pinellia will provide valuable information for species classification, identification, molecular breeding and evolutionary exploration of the genus Pinellia. Supplementary Information The online version of this article (10.1007/s11033-022-07617-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ning Cui
- Central Laboratory, Shandong Academy of Chinese Medicine, Ji'nan, China
| | - Weixu Chen
- Shang Yao Hua Yu (LinYi) Traditional Chinese Medicine Resources Co., Ltd, Linyi, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ping Wang
- Central Laboratory, Shandong Academy of Chinese Medicine, Ji'nan, China.
| |
Collapse
|
9
|
Ji Y, Yang J, Landis JB, Wang S, Jin L, Xie P, Liu H, Yang JB, Yi TS. Genome Skimming Contributes to Clarifying Species Limits in Paris Section Axiparis (Melanthiaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:832034. [PMID: 35444671 PMCID: PMC9014178 DOI: 10.3389/fpls.2022.832034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Paris L. section Axiparis H. Li (Melanthiaceae) is a taxonomically perplexing taxon with considerable confusion regarding species delimitation. Based on the analyses of morphology and geographic distribution of each species currently recognized in the taxon, we propose a revision scheme that reduces the number of species in P. sect. Axiparis from nine to two. To verify this taxonomic proposal, we employed a genome skimming approach to recover the plastid genomes (plastomes) and nuclear ribosomal DNA (nrDNA) regions of 51 individual plants across the nine described species of P. sect. Axiparis by sampling multiple accessions per species. The species boundaries within P. sect. Axiparis were explored using phylogenetic inference and three different sequence-based species delimitation methods (ABGD, mPTP, and SDP). The mutually reinforcing results indicate that there are two species-level taxonomic units in P. sect. Axiparis (Paris forrestii s.l. and P. vaniotii s.l.) that exhibit morphological uniqueness, non-overlapping distribution, genetic distinctiveness, and potential reproductive isolation, providing strong support to the proposed species delimitation scheme. This study confirms that previous morphology-based taxonomy overemphasized intraspecific and minor morphological differences to delineate species boundaries, therefore resulting in an overestimation of the true species diversity of P. sect. Axiparis. The findings clarify species limits and will facilitate robust taxonomic revision in P. sect. Axiparis.
Collapse
Affiliation(s)
- Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jacob B. Landis
- Section of Plant Biology and the L. H. Bailey Hortorium, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, United States
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lei Jin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pingxuan Xie
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
10
|
Fu N, Ji M, Rouard M, Yan HF, Ge XJ. Comparative plastome analysis of Musaceae and new insights into phylogenetic relationships. BMC Genomics 2022; 23:223. [PMID: 35313810 PMCID: PMC8939231 DOI: 10.1186/s12864-022-08454-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/08/2022] [Indexed: 01/16/2023] Open
Abstract
Background Musaceae is an economically important family consisting of 70-80 species. Elucidation of the interspecific relationships of this family is essential for a more efficient conservation and utilization of genetic resources for banana improvement. However, the scarcity of herbarium specimens and quality molecular markers have limited our understanding of the phylogenetic relationships in wild species of Musaceae. Aiming at improving the phylogenetic resolution of Musaceae, we analyzed a comprehensive set of 49 plastomes for 48 species/subspecies representing all three genera of this family. Results Musaceae plastomes have a relatively well-conserved genomic size and gene content, with a full length ranging from 166,782 bp to 172,514 bp. Variations in the IR borders were found to show phylogenetic signals to a certain extent in Musa. Codon usage bias analysis showed different preferences for the same codon between species and three genera and a common preference for A/T-ending codons. Among the two genes detected under positive selection (dN/dS > 1), ycf2 was indicated under an intensive positive selection. The divergent hotspot analysis allowed the identification of four regions (ndhF-trnL, ndhF, matK-rps16, and accD) as specific DNA barcodes for Musaceae species. Bayesian and maximum likelihood phylogenetic analyses using full plastome resulted in nearly identical tree topologies with highly supported relationships between species. The monospecies genus Musella is sister to Ensete, and the genus Musa was divided into two large clades, which corresponded well to the basic number of n = x = 11 and n = x =10/9/7, respectively. Four subclades were divided within the genus Musa. A dating analysis covering the whole Zingiberales indicated that the divergence of Musaceae family originated in the Palaeocene (59.19 Ma), and the genus Musa diverged into two clades in the Eocene (50.70 Ma) and then started to diversify from the late Oligocene (29.92 Ma) to the late Miocene. Two lineages (Rhodochlamys and Australimusa) radiated recently in the Pliocene /Pleistocene periods. Conclusions The plastome sequences performed well in resolving the phylogenetic relationships of Musaceae and generated new insights into its evolution. Plastome sequences provided valuable resources for population genetics and phylogenetics at lower taxon. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08454-3.
Collapse
Affiliation(s)
- Ning Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meiyuan Ji
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397, Montpellier Cedex 5, France
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. .,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
11
|
Liu CK, Lei JQ, Jiang QP, Zhou SD, He XJ. The complete plastomes of seven Peucedanum plants: comparative and phylogenetic analyses for the Peucedanum genus. BMC PLANT BIOLOGY 2022; 22:101. [PMID: 35255817 PMCID: PMC8900453 DOI: 10.1186/s12870-022-03488-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/02/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND The Peucedanum genus is the backbone member of Apiaceae, with many economically and medically important plants. Although the previous studies on Peucedanum provide us with a good research basis, there are still unclear phylogenetic relationships and many taxonomic problems in Peucedanum, and a robust phylogenetic framework of this genus still has not been obtained, which severely hampers the improvement and revision of taxonomic system for this genus. The plastid genomes possessing more variable characters have potential for reconstructing a robust phylogeny in plants. RESULTS In the current study, we newly sequenced and assembled seven Peucedanum plastid genomes. Together with five previously published plastid genomes of Peucedanum, we performed a comprehensively comparative analyses for this genus. Twelve Peucedanum plastomes were similar in terms of genome structure, codon bias, RNA editing sites, and SSRs, but varied in genome size, gene content and arrangement, and border of SC/IR. Fifteen mutation hotspot regions were identified among plastid genomes that can serve as candidate DNA barcodes for species identification in Peucedanum. Our phylogenetic analyses based on plastid genomes generated a phylogeny with high supports and resolutions for Peucedanum that robustly supported the non-monophyly of genus Peucedanum. CONCLUSION The plastid genomes of Peucedanum showed both conservation and diversity. The plastid genome data were efficient and powerful for improving the supports and resolutions of phylogeny for the complex Peucedanum genus. In summary, our study provides new sights into the plastid genome evolution, taxonomy, and phylogeny for Peucedanum species.
Collapse
Affiliation(s)
- Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jia-Qing Lei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qiu-Ping Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
12
|
Zhang SD, Yang XF, Wang Q, Du MM, Ling LZ. The complete chloroplast genome and phylogenetic analysis of Paris stigmatosa (Melanthiaceae). Mitochondrial DNA B Resour 2021; 6:3204-3206. [PMID: 34660904 PMCID: PMC8519551 DOI: 10.1080/23802359.2021.1990146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Paris stigmatosa is a new described species of Melanthiaceae. In this study, the complete chloroplast (cp) genome sequence of P. stigmatosa was first reported and characterized. The cp genome is 165,623 bp in length and contains a pair of inverted repeats (IRs, 34,165 bp) separated by a large (84,327 bp) and small (12,966 bp) single-copy regions. A total of 113 genes were predicted, including 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The phylogenetic analysis suggested that P. stigmatosa is sister of the clade formed by P. marmorata and P. luquanensis.
Collapse
Affiliation(s)
- Shu-Dong Zhang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Xiu-Fei Yang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Qin Wang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Mao-Mao Du
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Li-Zhen Ling
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
13
|
Ding YG, Zhao YL, Zhang J, Zuo ZT, Zhang QZ, Wang YZ. The traditional uses, phytochemistry, and pharmacological properties of Paris L. (Liliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114293. [PMID: 34102270 DOI: 10.1016/j.jep.2021.114293] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paris L. (Liliaceae) consisted of 33 species, of which the study focused on Paris polyphylla Smith, P. polyphylla var. chinensis (Franch.) Hara, and P. polyphylla Smith var. yunnanensis (Franch.) Hand. -Mazz. Due of course to the good effects of analgesia and hemostasis, it was traditionally used to treat trauma by folk herbalists. AIM OF THIS REVIEW This study summarized the traditional uses, distributions, phytochemical components, pharmacological properties, and toxicity evaluation of the genus Paris, and reviewed the economic value of cultivate P. polyphylla. This aim was that of providing a new and comprehensive recognition of these medicinal plants for the further utilization of Paris plants. MATERIALS AND METHODS The literature about traditional and folk uses of genus Paris was obtained from Duxiu Search, and China National Knowledge Infrastructure (CNKI). The other literature about genus Paris was searched online on Web of Science, PubMed, Google Scholar, Baidu Scholar, Scifinder database, and Springer research. The Scientific Database of China Plant Species (DCP) (http://db.kib.ac.cn/Default.aspx) databases were used to check the scientific names and provide species, varieties, and distribution of genus Paris. The botany studies information of genus Paris was available online from Plant Plus of China (www.iplant.cn). All the molecular structures of chemical compounds displayed in the text were produced by ChemBioDraw Ultra 14.0. RESULTS The plants of genus Paris, containing about 33 species and 15 varieties, are mainly distributed in Southwest China (Yunnan, Sichuan, and Guizhou provinces). More than 320 chemical components have been isolated from genus Paris since 2020, including steroidal saponins, C-21 steroids, phytosterols, insect hormones, pentacyclic triterpenes, flavonoids, and other compounds. Arrays of pharmacological investigations revealed that compounds and extracts of Paris species possess a wide spectrum of pharmacological effects, such as antitumor, cytotoxic, antimicrobial, antifungal, hemostatic, and anti-inflammatory activities. The studies about toxicity evaluation suggested that Rhizome Paridis had slight liver toxicity. CONCLUSIONS The dried rhizomes of P. polyphylla, P. polyphylla var. chinensis, and P. polyphylla var. yunnanensis were used to treat wound, bleeding, and stomachache, etc. in folk medicine. Phytochemistry researches showed that different species had pretty similarities especially in terms of chemical constituents. Pharmacological studies witnessed that Rhizome Paridis has various activities. Among these activities, steroidal saponins were the main active ingredients. Furthermore, an important aspect responsible for increasing interest in genus Paris is the use of antifertility-nonhormonal contraceptives by women. Also, the development of TCM (Traditional Chinese medicine) planting industry can improve the income of ethnic minorities and promote economic development.
Collapse
Affiliation(s)
- Yu-Gang Ding
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yan-Li Zhao
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhi-Tian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qing-Zhi Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
14
|
Huang R, Xie X, Chen A, Li F, Tian E, Chao Z. The chloroplast genomes of four Bupleurum (Apiaceae) species endemic to Southwestern China, a diversity center of the genus, as well as their evolutionary implications and phylogenetic inferences. BMC Genomics 2021; 22:714. [PMID: 34600494 PMCID: PMC8487540 DOI: 10.1186/s12864-021-08008-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
Background As one of the largest genera in Apiaceae, Bupleurum L. is well known for its high medicinal value. The genus has frequently attracted the attention of evolutionary biologist and taxonomist for its distinctive characteristics in the Apiaceae family. Although some chloroplast genomes data have been now available, the changes in the structure of chloroplast genomes and selective pressure in the genus have not been fully understood. In addition, few of the species are endemic to Southwest China, a distribution and diversity center of Chinese Bupleurum. Endemic species are key components of biodiversity and ecosystems, and investigation of the chloroplast genomes features of endemic species in Bupleurum will be helpful to develop a better understanding of evolutionary process and phylogeny of the genus. In this study, we analyzed the sequences of whole chloroplast genomes of 4 Southwest China endemic Bupleurum species in comparison with the published data of 17 Bupleurum species to determine the evolutionary characteristics of the genus and the phylogenetic relationships of Asian Bupleurum. Results The complete chloroplast genome sequences of the 4 endemic Bupleurum species are 155,025 bp to 155,323 bp in length including a SSC and a LSC region separated by a pair of IRs. Comparative analysis revealed an identical chloroplast gene content across the 21 Bupleurum species, including a total of 114 unique genes (30 tRNA genes, 4 rRNA genes and 80 protein-coding genes). Chloroplast genomes of the 21 Bupleurum species showed no rearrangements and a high sequence identity (96.4–99.2%). They also shared a similar tendency of SDRs and SSRs, but differed in number (59–83). In spite of their high conservation, they contained some mutational hotspots, which can be potentially exploited as high-resolution DNA barcodes for species discrimination. Selective pressure analysis showed that four genes were under positive selection. Phylogenetic analysis revealed that the 21 Bupleurum formed two major clades, which are likely to correspond to their geographical distribution. Conclusions The chloroplast genome data of the four endemic Bupleurum species provide important insights into the characteristics and evolution of chloroplast genomes of this genu, and the phylogeny of Bupleurum. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08008-z.
Collapse
Affiliation(s)
- Rong Huang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xuena Xie
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Aimin Chen
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Enwei Tian
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhi Chao
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China. .,Faculty of Medicinal Plants and Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Wu L, Wu M, Cui N, Xiang L, Li Y, Li X, Chen S. Plant super-barcode: a case study on genome-based identification for closely related species of Fritillaria. Chin Med 2021; 16:52. [PMID: 34225754 PMCID: PMC8256587 DOI: 10.1186/s13020-021-00460-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022] Open
Abstract
Background Although molecular analysis offers a wide range of options for species identification, a universal methodology for classifying and distinguishing closely related species remains elusive. This study validated the effectiveness of utilizing the entire chloroplast (cp) genome as a super-barcode to help identify and classify closely related species. Methods We here compared 26 complete cp genomes of ten Fritillaria species including 18 new sequences sequenced in this study. Each species had repeats and the cp genomes were used as a whole DNA barcode to test whether they can distinguish Fritillaria species. Results The cp genomes of Fritillaria medicinal plants were conserved in genome structure, gene type, and gene content. Comparison analysis of the Fritillaria cp genomes revealed that the intergenic spacer regions were highly divergent compared with other regions. By constructing the phylogenetic tree by the maximum likelihood and maximum parsimony methods, we found that the entire cp genome showed a high discrimination power for Fritillaria species with individuals of each species in a monophyletic clade. These results indicate that cp genome can be used to effectively differentiate medicinal plants from the genus Fritillaria at the species level. Conclusions This study implies that cp genome can provide distinguishing differences to help identify closely related Fritillaria species, and has the potential to be served as a universal super-barcode for plant identification. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00460-z.
Collapse
Affiliation(s)
- Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mingli Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ning Cui
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiwen Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
16
|
Pereira JBS, Giulietti AM, Prado J, Vasconcelos S, Watanabe MTC, Pinangé DSB, Oliveira RRM, Pires ES, Caldeira CF, Oliveira G. Plastome-based phylogenomics elucidate relationships in rare Isoëtes species groups from the Neotropics. Mol Phylogenet Evol 2021; 161:107177. [PMID: 33866010 DOI: 10.1016/j.ympev.2021.107177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The genus Isoëtes is globally distributed. Within the Neotropics, Isoëtes occurs in various habitats and ecosystems, making it an interesting case study to address phylogenetic and biogeographic questions. We sequenced and assembled plastomes and ribosomal DNA (rDNA) sequences to reconstruct phylogenetic relationships in Isoëtes from tropical regions in the Neotropics. The ploidy level of nine taxa was established to address the potential source of phylogenetic incongruence in the genus. Node ages were estimated using MCMCTree. The ancestral range estimates were conducted in BioGeoBEARS. Plastome-based phylogenies were congruent throughout distinct matrices and partition schemes, exhibiting high support for almost all nodes. Whereas, we found incongruences between the rDNA and plastome datasets. Chromosome counts identified three diploids, five tetraploids and one likely hexaploid among Neotropical species. Plastome-based node age estimates showed that the radiation of the crown Isoëtes group occurred at 20 Ma, with the diversification of the tropical American (TAA) clade taking place in the Pleistocene at 1.7 Ma. Ancestral range estimates showed that the ancestor of the TAA clade may have evolved first in the dry diagonal area in South America before reaching more humid regions. In addition, the colonization of the Brazilian semiarid region occurred three times, while the occupation of the Cerrado and Amazon regions occurred twice and once, respectively. Our study showed a large unobserved diversity within the genus in warm-dry regions in the Neotropics. Plastomes provided sufficient genomic information to establish a robust phylogenetic framework to answer evolutionary questions in Isoëtes from the Neotropics.
Collapse
Affiliation(s)
| | - Ana Maria Giulietti
- Universidade Estadual de Feira de Santana, Programa de Pós-Graduação em Botânica, Feira de Santana, Brazil
| | - Jefferson Prado
- Universidade Estadual de São Paulo, Depto de Zoologia e Botânica, São José do Rio Preto, Brazil
| | | | | | - Diego S B Pinangé
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Depto de Genética, Manaus, Brazil
| | | | | | | | | |
Collapse
|
17
|
Liu C, Yang J, Jin L, Wang S, Yang Z, Ji Y. Plastome phylogenomics of the East Asian endemic genus Dobinea. PLANT DIVERSITY 2021; 43:35-42. [PMID: 33778223 PMCID: PMC7987559 DOI: 10.1016/j.pld.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/02/2023]
Abstract
Dobinea is a dioecious genus endemic to East Asia that consists of two extant species: Dobinea delavayi and Dobinea vulgaris. Although the genus is morphologically distinct, its phylogenetic position remains controversial. In this study, we investigated the phylogenetic relationships between Dobinea and related taxa by sequencing the whole plastome DNA sequences for both extant species of Dobinea and comparing them to published plastomes within Sapindales. The complete plastomes of D. vulgaris and D. delavayi were 160,683 and 160, 154 base pairs (bp) in length, including a pair of inverted repeat regions (IRs, 26,889 and 26,759 bp) divided by the large single-copy region (LSC, 87,962 and 87,555 bp) and small single-copy region (SSC, 18,943 and 19,081 bp), and identically encoded 113 unique genes (79 protein-coding genes, 30 tRNAs, and 4 rRNA genes). Plastid phylogenomic analyses showed that Dobinea was a well-supported monophyletic unit and sister to the clade including tribes Anacardieae and Rhoideae, which suggests that Dobinea is a member of Anacardiaceae. In addition, molecular dating inferred D. delavayi and D. vulgaris diverged approximately 10.76 Ma, suggesting the divergence between these two species may have been driven by the intensification of the Asian summer monsoon and the establishment of distinct monsoon regimes in East Asia.
Collapse
Affiliation(s)
- Changkun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Science, Yunnan University, Kunming, 650091, China
| | - Lei Jin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Science, Yunnan University, Kunming, 650091, China
| | - Zhenyan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
18
|
Zhai Y, Yu X, Zhou J, Li J, Tian Z, Wang P, Meng Y, Zhao Q, Lou Q, Du S, Chen J. Complete chloroplast genome sequencing and comparative analysis reveals changes to the chloroplast genome after allopolyploidization in Cucumis. Genome 2021; 64:627-638. [PMID: 33460340 DOI: 10.1139/gen-2020-0134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Allopolyploids undergo "genomic shock" leading to significant genetic and epigenetic modifications. Previous studies have mainly focused on nuclear changes, while little is known about the inheritance and changes of organelle genome in allopolyploidization. The synthetic allotetraploid Cucumis ×hytivus, which is generated via hybridization between C. hystrix and C. sativus, is a useful model system for studying cytonuclear variation. Here, we report the chloroplast genome of allotetraploid C. ×hytivus and its diploid parents via sequencing and comparative analysis. The size of the obtained chloroplast genomes ranged from 154 673 to 155 760 bp, while their gene contents, gene orders, and GC contents were similar to each other. Comparative genome analysis supports chloroplast maternal inheritance. However, we identified 51 indels and 292 SNP genetic variants in the chloroplast genome of the allopolyploid C. ×hytivus relative to its female parent C. hystrix. Nine intergenic regions with rich variation were identified through comparative analysis of the chloroplast genomes within the subgenus Cucumis. The phylogenetic network based on the chloroplast genome sequences clarified the evolution and taxonomic position of the synthetic allotetraploid C. ×hytivus. The results of this study provide us with an insight into the changes of organelle genome after allopolyploidization, and a new understanding of the cytonuclear evolution.
Collapse
Affiliation(s)
- Yufei Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junguo Zhou
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhen Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Panqiao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ya Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shengli Du
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Kernel Cucumber Research Institute, Tianjin, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.,State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Kernel Cucumber Research Institute, Tianjin, China
| |
Collapse
|
19
|
Ling LZ, Zhang SD. The complete chloroplast genome and phylogenetic analysis of Paris delavayi (Melanthiaceae). Mitochondrial DNA B Resour 2020; 5:2126-2128. [PMID: 33366943 PMCID: PMC7510667 DOI: 10.1080/23802359.2020.1767522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/25/2020] [Indexed: 11/04/2022] Open
Abstract
Paris delavayi Franchet is a perennial herb of the family Melanthiaceae. In this study, the complete chloroplast (cp) genome sequence of P. delavayi was characterized. The cp genome is 164,195 bp in length and contains a pair of inverted repeats (33,415 bp) separated by a large (84,400 bp) and small (12,965 bp) single-copy regions. A total of 112 unique genes were predicted, including 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The phylogenetic analysis suggested that P. delavayi is sister to P. mairei but with low support.
Collapse
Affiliation(s)
- Li-Zhen Ling
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| | - Shu-Dong Zhang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
20
|
Ji Y, Liu C, Yang J, Jin L, Yang Z, Yang JB. Ultra-Barcoding Discovers a Cryptic Species in Paris yunnanensis (Melanthiaceae), a Medicinally Important Plant. FRONTIERS IN PLANT SCIENCE 2020; 11:411. [PMID: 32391031 PMCID: PMC7189017 DOI: 10.3389/fpls.2020.00411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/23/2020] [Indexed: 05/07/2023]
Abstract
Ultra-barcoding is a technique using whole plastomes and nuclear ribosomal DNA (nrDNA) sequences for plant species identification. Paris yunnanensis is a medicinal plant of great economic importance for the pharmaceutical industry. However, the alpha taxonomy of P. yunnanensis is still uncertain, hindering effective conservation and management of the germplasm. To resolve long-standing taxonomic disputes regarding this species, we newly generated the complete plastomes and nrDNA sequences from 22 P. yunnanensis accessions. Ultra-barcoding analyses suggest that P. yunnanensis as currently circumscribed is made up of two distinct genetic lineages, corresponding to the two phenotypes ("typical" and "high stem" form) identified early in our study. With distinct morphologies and distribution, the "high stem" form should be recognized as a previously unrecognized species; here it is described as a new species, P. liiana sp. nov. Moreover, the ultra-barcoding data do not support treatment of P. yunnanensis as a conspecific variety under Paris polyphylla. Our study represents a guiding practical application of ultra-barcoding for discovery of cryptic species in taxonomically challenging plant taxa. The findings highlight the great potential of ultra-barcoding as an effective tool for resolving perplexing problems in plant taxonomy.
Collapse
Affiliation(s)
- Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Changkun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lei Jin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenyan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
21
|
Implications of plastome evolution in the true lilies (monocot order Liliales). Mol Phylogenet Evol 2020; 148:106818. [PMID: 32294543 DOI: 10.1016/j.ympev.2020.106818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 01/30/2023]
Abstract
The families of the monocot order Liliales exhibit highly contrasting characteristic of photosynthetic and mycoheterotrophic life histories. Although previous phylogenetic and morphological studies of Liliales have been conducted, they have not examined molecular evolution associated with this contrasting phenomenon. Here, we conduct the first comparative plastome study of all ten families of Liliales using 29 newly sequenced plastid genomes analyzed together with previously published data. We also present a phylogenetic analysis for Liliales of 78 plastid genes combined with 22 genes from all three genomes (nuclear 18S rDNA and phyC; 17 plastid genes; and mitochondrial matR, atpA, and cob). Within the newly generated phylogenetic tree of Liliales, we evaluate the ancestral state changes of selected morphological traits in the order. There are no significant differences in plastid genome features among species that show divergent characteristics correlated with family circumscriptions. However, the results clearly differentiate between photosynthetic and mycoheterotrophic taxa of Liliales in terms of genome structure, and gene content and order. The newly sequenced plastid genomes and combined three-genome data revealed Smilacaceae as sister to Liliaceae instead of Philesiaceae and Ripogonaceae. Additionally, we propose a revised familial classification system of Liliales that consists of nine families, considering Ripogonaceae a synonym of Philesiaceae. The ancestral state reconstruction indicated synapomorphies for each family of Liliales, except Liliaceae, Melanthiaceae and Colchicaceae. A taxonomic key for all nine families of Liliales is also provided.
Collapse
|
22
|
Phylogenetic relationships of Atractylodes lancea, A. chinensis and A. macrocephala, revealed by complete plastome and nuclear gene sequences. PLoS One 2020; 15:e0227610. [PMID: 31990944 PMCID: PMC6986703 DOI: 10.1371/journal.pone.0227610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022] Open
Abstract
Atractylodes lancea, A. chinensis, and A. macrocephala are the three most widely used medicinal species of the Atractylodes genus. Their similar morphological features cause disagreement as whether they are three unique species, leading to their frequent misuses in medical products. Our study aimed to understand their relationships through both the complete plastome sequences and nuclear sequences, to identify molecular markers for their differentiation and explore the evolutionary relationships among three species. We sequenced, annotated, and analyzed the plastomes of these three species. The plastomes are 153,201, 153,258, and 153,265 bps in length for A. lancea, A. chinensis, and A. macrocephaly, respectively. Similar to other Asteraceae species, their plastomes exhibit typical quadripartite structures. Each plastome consists of 119 distinct genes, including 78 protein-coding, 37 tRNA, and 4 rRNA genes. Analyses of indels, single-nucleotide polymorphisms and simple sequence repeats, and comparison of plastomes showed high degree of conservation, leading to difficulty in the discovery of differentiating markers. We identified eleven potential molecular markers using an algorithm based on interspecific and intraspecific nucleotide diversity gaps. Validation experiments with fifty-five individuals from the three species collected from the botanical garden and fields confirmed that the marker cz11 could effectively distinguish samples from the three different species. Analysis of the several nuclear sequences suggests that the species of A. macrocephala may be a hybrid of A. lancea and A. chinensis. In summary, the results from this study highlight the complex relationships among of these three medicinal plants.
Collapse
|
23
|
Comparative Chloroplast Genomics of Fritillaria (Liliaceae), Inferences for Phylogenetic Relationships between Fritillaria and Lilium and Plastome Evolution. PLANTS 2020; 9:plants9020133. [PMID: 31973113 PMCID: PMC7076684 DOI: 10.3390/plants9020133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
Fritillaria is a genus that has important medicinal and horticultural values. The study involved the most comprehensive chloroplast genome samples referring to Old and New World clades of Fritillaria for marker selection and phylogenetic studies. We reported and compared eleven newly sequenced whole-plastome sequences of Fritillaria which proved highly similar in overall size (151,652–152,434 bp), genome structure, gene content, and order. Comparing them with other species of Liliales (6 out of 10 families) indicated the same similarity but showed some structural variations due to the contraction or expansion of the inverted repeat (IR) regions. A/T mononucleotides, palindromic, and forward repeats were the most common types. Six hypervariable regions (rps16-trnQ, rbcL-accD, accD-psaI, psaJ-rpl33, petD-rpoA, and rpl32-trnL) were discovered based on 26 Fritillaria whole-plastomes to be potential molecular markers. Based on the plastome data that were collected from 26 Fritillaria and 21 Lilium species, a phylogenomic study was carried out with three Cardiocrinum species as outgroups. Fritillaria was sister to Lilium with a high support value, and the interspecies relationships within subgenus Fritillaria were resolved very well. The six hypervariable regions can be used as candidate DNA barcodes of Fritillaria and the phylogenomic framework can guide extensive genomic sampling for further phylogenetic analyses.
Collapse
|
24
|
Song Y, Zhang Y, Xu J, Li W, Li M. Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci Rep 2019; 9:20401. [PMID: 31892714 PMCID: PMC6938520 DOI: 10.1038/s41598-019-56727-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022] Open
Abstract
The pantropical plant genus Dalbergia comprises approximately 250 species, most of which have a high economic and ecological value. However, these species are among the most threatened due to illegal logging and the timber trade. To enforce protective legislation and ensure effective conservation of Dalbergia species, the identity of wood being traded must be accurately validated. For the rapid and accurate identification of Dalbergia species and assessment of phylogenetic relationships, it would be highly desirable to develop more effective DNA barcodes for these species. In this study, we sequenced and compared the chloroplast genomes of nine species of Dalbergia. We found that these chloroplast genomes were conserved with respect to genome size, structure, and gene content and showed low sequence divergence. We identified eight mutation hotspots, namely, six intergenic spacer regions (trnL-trnT, atpA-trnG, rps16-accD, petG-psaJ, ndhF-trnL, and ndhG-ndhI) and two coding regions (ycf1a and ycf1b), as candidate DNA barcodes for Dalbergia. Phylogenetic analyses based on whole chloroplast genome data provided the best resolution of Dalbergia, and phylogenetic analysis of the Fabaceae showed that Dalbergia was sister to Arachis. Based on comparison of chloroplast genomes, we identified a set of highly variable markers that can be developed as specific DNA barcodes.
Collapse
Affiliation(s)
- Yun Song
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yongjiang Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jin Xu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Weimin Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - MingFu Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
25
|
Ji Y, Yang L, Chase MW, Liu C, Yang Z, Yang J, Yang JB, Yi TS. Plastome phylogenomics, biogeography, and clade diversification of Paris (Melanthiaceae). BMC PLANT BIOLOGY 2019; 19:543. [PMID: 31805856 PMCID: PMC6896732 DOI: 10.1186/s12870-019-2147-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Paris (Melanthiaceae) is an economically important but taxonomically difficult genus, which is unique in angiosperms because some species have extremely large nuclear genomes. Phylogenetic relationships within Paris have long been controversial. Based on complete plastomes and nuclear ribosomal DNA (nrDNA) sequences, this study aims to reconstruct a robust phylogenetic tree and explore historical biogeography and clade diversification in the genus. RESULTS All 29 species currently recognized in Paris were sampled. Whole plastomes and nrDNA sequences were generated by the genome skimming approach. Phylogenetic relationships were reconstructed using the maximum likelihood and Bayesian inference methods. Based on the phylogenetic framework and molecular dating, biogeographic scenarios and historical diversification of Paris were explored. Significant conflicts between plastid and nuclear datasets were identified, and the plastome tree is highly congruent with past interpretations of the morphology. Ancestral area reconstruction indicated that Paris may have originated in northeastern Asia and northern China, and has experienced multiple dispersal and vicariance events during its diversification. The rate of clade diversification has sharply accelerated since the Miocene/Pliocene boundary. CONCLUSIONS Our results provide important insights for clarifying some of the long-standing taxonomic debates in Paris. Cytonuclear discordance may have been caused by ancient and recent hybridizations in the genus. The climatic and geological changes since the late Miocene, such as the intensification of Asian monsoon and the rapid uplift of Qinghai-Tibet Plateau, as well as the climatic fluctuations during the Pleistocene, played essential roles in driving range expansion and radiative diversification in Paris. Our findings challenge the theoretical prediction that large genome sizes may limit speciation.
Collapse
Affiliation(s)
- Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Lifang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS UK
| | - Changkun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Zhenyan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| |
Collapse
|
26
|
Vu TTT, Vu LTK, Nguyen QH, Pham KV, Nguyen DT, Nguyen LTN, Chu MH. Cytotoxic effects of steroidal glycosides isolated from the Paris vietnamensis plant on cancer cell lines and against bacterial strains. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1676168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Thuy Thi Thu Vu
- Department of Genetics and Modern Biology, Thainguyen University of Education, Thainguyen University, Vietnam
| | - Lien Thi Kim Vu
- Laboratory of Applied Nanotechnology, Institute of Theoretical and Applied Research, Duy Tan University, Hanoi, Vietnam
| | - Quan Huu Nguyen
- Department of Genetics and Modern Biology, Thainguyen University of Education, Thainguyen University, Vietnam
| | - Khang Van Pham
- Department of Organic Chemistry, Thainguyen University of Education, Thainguyen University, Vietnam
| | - Dung Tien Nguyen
- Department of Medicinal Plants, Center for Research and Technology Transfer, Institute of Regional Research and Development, Hanoi, Vietnam
| | - Lan Thi Ngoc Nguyen
- Department of Genetics and Modern Biology, Thainguyen University of Education, Thainguyen University, Vietnam
| | - Mau Hoang Chu
- Department of Genetics and Modern Biology, Thainguyen University of Education, Thainguyen University, Vietnam
| |
Collapse
|
27
|
Kim SH, Yang J, Park J, Yamada T, Maki M, Kim SC. Comparison of Whole Plastome Sequences between Thermogenic Skunk Cabbage Symplocarpus renifolius and Nonthermogenic S. nipponicus (Orontioideae; Araceae) in East Asia. Int J Mol Sci 2019; 20:E4678. [PMID: 31547213 PMCID: PMC6801674 DOI: 10.3390/ijms20194678] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Symplocarpus, a skunk cabbage genus, includes two sister groups, which are drastically different in life history traits and thermogenesis, as follows: The nonthermogenic summer flowering S. nipponicus and thermogenic early spring flowering S. renifolius. Although the molecular basis of thermogenesis and complete chloroplast genome (plastome) of thermogenic S. renifolius have been well characterized, very little is known for that of S. nipponicus. We sequenced the complete plastomes of S. nipponicus sampled from Japan and Korea and compared them with that of S. renifolius sampled from Korea. The nonthermogenic S. nipponicus plastomes from Japan and Korea had 158,322 and 158,508 base pairs, respectively, which were slightly shorter than the thermogenic plastome of S. renifolius. No structural or content rearrangements between the species pairs were found. Six highly variable noncoding regions (psbC/trnS, petA/psbJ, trnS/trnG, trnC/petN, ycf4/cemA, and rpl3/rpl22) were identified between S. nipponicus and S. renifolius and 14 hot-spot regions were also identified at the subfamily level. We found a similar total number of SSR (simple sequence repeat) motifs in two accessions of S. nipponicus sampled from Japan and Korea. Phylogenetic analysis supported the basal position of subfamily Orontioideae and the monophyly of genus Symplocarpus, and also revealed an unexpected evolutionary relationship between S. nipponicus and S. renifolius.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, Kyungpook National University, Daegu, Gyeongsangbuk-do 41566, Korea.
| | | | - Takayuki Yamada
- Botanical Gardens, Tohoku University, Sendai 980-0862, Japan.
| | - Masayuki Maki
- Botanical Gardens, Tohoku University, Sendai 980-0862, Japan.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
28
|
Pei Y, Zhang Q, Wang Y. Application of Authentication Evaluation Techniques of Ethnobotanical Medicinal Plant Genus Paris: A Review. Crit Rev Anal Chem 2019; 50:405-423. [DOI: 10.1080/10408347.2019.1642734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Yifei Pei
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qingzhi Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
29
|
Yang L, Yang Z, Liu C, He Z, Zhang Z, Yang J, Liu H, Yang J, Ji Y. Chloroplast phylogenomic analysis provides insights into the evolution of the largest eukaryotic genome holder, Paris japonica (Melanthiaceae). BMC PLANT BIOLOGY 2019; 19:293. [PMID: 31272375 PMCID: PMC6611055 DOI: 10.1186/s12870-019-1879-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/10/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Robust phylogenies for species with giant genomes and closely related taxa can build evolutionary frameworks for investigating the origin and evolution of these genomic gigantisms. Paris japonica (Melanthiaceae) has the largest genome that has been confirmed in eukaryotes to date; however, its phylogenetic position remains unresolved. As a result, the evolutionary history of the genomic gigantisms in P. japonica remains poorly understood. RESULTS We used next-generation sequencing to generate complete plastomes of P. japonica, P. verticillata, Trillium govanianum, Ypsilandra thibetica and Y. yunnanensis. Together with published plastomes, the infra-familial relationships in Melanthiaceae and infra-generic phylogeny in Paris were investigated, and their divergence times were calculated. The results indicated that the expansion of the ancestral genome of extant Paris and Trillium occurred approximately from 59.16 Mya to 38.21 Mya. The sister relationship between P. japonica and the section Euthyra was recovered, and they diverged around the transition of the Oligocene/Miocene (20 Mya), when the Japan Islands were separated from the continent of Asia. CONCLUSIONS The genome size expansion in the most recent common ancestor for Paris and Trillium was most possibly a gradual process that lasted for approximately 20 million years. The divergence of P. japonica (section Kinugasa) and other taxa with thick rhizome may have been triggered by the isolation of the Japan Islands from the continent of Asia. This long-term separation, since the Oligocene/Miocene boundary, would have played an important role in the formation and evolution of the genomic gigantism in P. japonica. Moreover, our results support the taxonomic treatment of Paris as a genus rather than dividing it into three genera, but do not support the recognition of T. govanianum as the separate genus Trillidium.
Collapse
Affiliation(s)
- Lifang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan People’s Republic of China
- School of Life Science, Yunnan University, Kunming, China
| | - Zhenyan Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan People’s Republic of China
| | - Changkun Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan People’s Republic of China
| | - Zhengshan He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Zhirong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Jing Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yunheng Ji
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan People’s Republic of China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan China
| |
Collapse
|
30
|
Jiang Y, Yang Y, Lu Z, Wan D, Ren G. Interspecific delimitation and relationships among four Ostrya species based on plastomes. BMC Genet 2019; 20:33. [PMID: 30866795 PMCID: PMC6417023 DOI: 10.1186/s12863-019-0733-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/01/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Ostrya (Betulaceae) contains eight species and four of them are distributed in China. However, studies based on limited informative sites of several chloroplast markers failed to resolve interspecific delimitation and relationships among the four Chinese species. In this study, we aimed to use the whole chloroplast genomes to address these two issues. RESULTS We assembled and annotated 33 complete chloroplast genomes (plastomes) of the four Chinese species, representing 17 populations across most of their geographical distributions. Each species contained samples of several individuals that cover most of geographic distributions of the species. All plastomes are highly conserved in genome structure and gene order, with a total length of 158-159 kb and 122 genes. Phylogenetic analyses of whole plastomes, non-coding regions and protein-coding genes produced almost the same topological relationships. In contrast to the well-delimitated species boundary inferred from the nuclear ITS sequence variations, three of the four species are non-monophyletic in the plastome trees, which is consistent with previous studies based on a few chloroplast markers. CONCLUSIONS The high incongruence between the ITS and plastome trees may suggest the widespread occurrences of hybrid introgression and incomplete lineage sorting during the divergence of these species. In addition, the plastomes with more informative sites compared with a few chloroplast markers still failed to resolve the phylogenetic relationships of the four species, and further studies involving population genomic data may be needed to better understand their evolutionary histories.
Collapse
Affiliation(s)
- Yanyou Jiang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zhiqiang Lu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
31
|
Gao X, Zhang X, Meng H, Li J, Zhang D, Liu C. Comparative chloroplast genomes of Paris Sect. Marmorata: insights into repeat regions and evolutionary implications. BMC Genomics 2018; 19:878. [PMID: 30598104 PMCID: PMC6311911 DOI: 10.1186/s12864-018-5281-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Species of Paris Sect. Marmorata are valuable medicinal plants to synthesize steroidal saponins with effective pharmacological therapy. However, the wild resources of the species are threatened by plundering exploitation before the molecular genetics studies uncover the genomes and evolutionary significance. Thus, the availability of complete chloroplast genome sequences of Sect. Marmorata is necessary and crucial to the understanding the plastome evolution of this section and facilitating future population genetics studies. Here, we determined chloroplast genomes of Sect. Marmorata, and conducted the whole chloroplast genome comparison. Results This study presented detailed sequences and structural variations of chloroplast genomes of Sect. Marmorata. Over 40 large repeats and approximately 130 simple sequence repeats as well as a group of genomic hotspots were detected. Inverted repeat contraction of this section was inferred via comparing the chloroplast genomes with the one of P. verticillata. Additionally, almost all the plastid protein coding genes were found to prefer ending with A/U. Mutation bias and selection pressure predominately shaped the codon bias of most genes. And most of the genes underwent purifying selection, whereas photosynthetic genes experienced a relatively relaxed purifying selection. Conclusions Repeat sequences and hotspot regions can be scanned to detect the intraspecific and interspecific variability, and selected to infer the phylogenetic relationships of Sect. Marmorata and other species in subgenus Daiswa. Mutation and natural selection were the main forces to drive the codon bias pattern of most plastid protein coding genes. Therefore, this study enhances the understanding about evolution of Sect. Marmorata from the chloroplast genome, and provide genomic insights into genetic analyses of Sect. Marmorata. Electronic supplementary material The online version of this article (10.1186/s12864-018-5281-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyang Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Menglun, 666303, Yunnan, China
| | - Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Menglun, 666303, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghu Meng
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Menglun, 666303, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Menglun, 666303, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Menglun, 666303, Yunnan, China.
| |
Collapse
|
32
|
Liu C, Yang Z, Yang L, Yang J, Ji Y. The complete plastome of Panax stipuleanatus: Comparative and phylogenetic analyses of the genus Panax (Araliaceae). PLANT DIVERSITY 2018; 40:265-276. [PMID: 30740573 PMCID: PMC6317490 DOI: 10.1016/j.pld.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 06/03/2023]
Abstract
Panax stipuleanatus (Araliaceae) is an endangered and medicinally important plant endemic to China. However, phylogenetic relationships within the genus Panax have remained unclear. In this study, we sequenced the complete plastome of P. stipuleanatus and included previously reported Panax plastomes to better understand the relationships between species and plastome evolution within the genus Panax. The plastome of P. stipuleanatus is 156,069 base pairs (bp) in length, consisting of a pair of inverted repeats (IRs, each 25,887 bp) that divide the plastome into a large single copy region (LSC, 86,126 bp) and a small single copy region (SSC, 8169 bp). The plastome contains 114 unigenes (80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes). Comparative analyses indicated that the plastome gene content and order, as well as the expansion/contraction of the IR regions, are all highly conserved within Panax. No significant positive selection in the plastid protein-coding genes was observed across the eight Panax species, suggesting the Panax plastomes may have undergone a strong purifying selection. Our phylogenomic analyses resulted in a phylogeny with high resolution and supports for Panax. Nine protein-coding genes and 10 non-coding regions presented high sequence divergence, which could be useful for identifying different Panax species.
Collapse
Affiliation(s)
- Changkun Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhenyan Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lifang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Life Science, Yunnan University, Kunming 650091, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunheng Ji
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
33
|
Wu XM, Zuo ZT, Zhang QZ, Wang YZ. Classification of Paris species according to botanical and geographical origins based on spectroscopic, chromatographic, conventional chemometric analysis and data fusion strategy. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Givnish TJ, Zuluaga A, Spalink D, Soto Gomez M, Lam VKY, Saarela JM, Sass C, Iles WJD, de Sousa DJL, Leebens-Mack J, Chris Pires J, Zomlefer WB, Gandolfo MA, Davis JI, Stevenson DW, dePamphilis C, Specht CD, Graham SW, Barrett CF, Ané C. Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. AMERICAN JOURNAL OF BOTANY 2018; 105:1888-1910. [PMID: 30368769 DOI: 10.1002/ajb2.1178] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/03/2018] [Indexed: 05/03/2023]
Abstract
PREMISE OF THE STUDY We present the first plastome phylogeny encompassing all 77 monocot families, estimate branch support, and infer monocot-wide divergence times and rates of species diversification. METHODS We conducted maximum likelihood analyses of phylogeny and BAMM studies of diversification rates based on 77 plastid genes across 545 monocots and 22 outgroups. We quantified how branch support and ascertainment vary with gene number, branch length, and branch depth. KEY RESULTS Phylogenomic analyses shift the placement of 16 families in relation to earlier studies based on four plastid genes, add seven families, date the divergence between monocots and eudicots+Ceratophyllum at 136 Mya, successfully place all mycoheterotrophic taxa examined, and support recognizing Taccaceae and Thismiaceae as separate families and Arecales and Dasypogonales as separate orders. Only 45% of interfamilial divergences occurred after the Cretaceous. Net species diversification underwent four large-scale accelerations in PACMAD-BOP Poaceae, Asparagales sister to Doryanthaceae, Orchidoideae-Epidendroideae, and Araceae sister to Lemnoideae, each associated with specific ecological/morphological shifts. Branch ascertainment and support across monocots increase with gene number and branch length, and decrease with relative branch depth. Analysis of entire plastomes in Zingiberales quantifies the importance of non-coding regions in identifying and supporting short, deep branches. CONCLUSIONS We provide the first resolved, well-supported monocot phylogeny and timeline spanning all families, and quantify the significant contribution of plastome-scale data to resolving short, deep branches. We outline a new functional model for the evolution of monocots and their diagnostic morphological traits from submersed aquatic ancestors, supported by convergent evolution of many of these traits in aquatic Hydatellaceae (Nymphaeales).
Collapse
Affiliation(s)
- Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | | | - Daniel Spalink
- Department of Ecosystem Science, Texas A&M University, College Station, Texas, 77840, USA
| | - Marybel Soto Gomez
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | - Chodon Sass
- The University and Jepson Herbarium, University of California-Berkeley, Berkeley, California, 94720, USA
| | - William J D Iles
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Danilo José Lima de Sousa
- Departamento de Ciéncias Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, 44036-900, Brazil
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, 65211, USA
| | - Wendy B Zomlefer
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Maria A Gandolfo
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Jerrold I Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | | | - Claude dePamphilis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Chelsea D Specht
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
35
|
Park S, An B, Park S. Reconfiguration of the plastid genome in Lamprocapnos spectabilis: IR boundary shifting, inversion, and intraspecific variation. Sci Rep 2018; 8:13568. [PMID: 30206286 PMCID: PMC6134119 DOI: 10.1038/s41598-018-31938-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022] Open
Abstract
We generated a complete plastid genome (plastome) sequence for Lamprocapnos spectabilis, providing the first complete plastome from the subfamily Fumarioideae (Papaveraceae). The Lamprocapnos plastome shows large differences in size, structure, gene content, and substitution rates compared with two sequenced Papaveraceae plastomes. We propose a model that explains the major rearrangements observed, involving at least six inverted repeat (IR) boundary shifts and five inversions, generating a number of gene duplications and relocations, as well as a two-fold expansion of the IR and miniaturized small single-copy region. A reduction in the substitution rates for genes transferred from the single-copy regions to the IR was observed. Accelerated substitution rates of plastid accD and clpP were detected in the Lamprocapnos plastome. The accelerated substitution rate for the accD gene was correlated with a large insertion of amino acid repeat (AAR) motifs in the middle region, but the forces driving the higher substitution rate of the clpP gene are unclear. We found a variable number of AARs in Lamprocapnos accD and ycf1 genes within individuals, and the repeats were associated with coiled-coil regions. In addition, comparative analysis of three Papaveraceae plastomes revealed loss of rps15 in Papaver, and functional replacement to the nucleus was identified.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
36
|
Meng XX, Xian YF, Xiang L, Zhang D, Shi YH, Wu ML, Dong GQ, Ip SP, Lin ZX, Wu L, Sun W. Complete Chloroplast Genomes from Sanguisorba: Identity and Variation Among Four Species. Molecules 2018; 23:E2137. [PMID: 30149578 PMCID: PMC6225366 DOI: 10.3390/molecules23092137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 11/25/2022] Open
Abstract
The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405⁻85,557 bp), small single-copy regions (SSC; 18,550⁻18,768 bp), and a pair of inverted repeats (IRs; 25,576⁻25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39⁻53 long repeats and 79⁻91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.
Collapse
Affiliation(s)
- Xiang-Xiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, N.T., Hong Kong, China.
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Dong Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yu-Hua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ming-Li Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Gang-Qiang Dong
- Amway (China) Botanical Research and Development Center, Wuxi 214145, China.
| | - Siu-Po Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, N.T., Hong Kong, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, N.T., Hong Kong, China.
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, N.T., Hong Kong, China.
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
37
|
The complete plastome sequence of Rubus takesimensis endemic to Ulleung Island, Korea: Insights into molecular evolution of anagenetically derived species in Rubus (Rosaceae). Gene 2018; 668:221-228. [PMID: 29787822 DOI: 10.1016/j.gene.2018.05.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Previous phylogenetic studies have suggested that Rubus takesimensis (Rosaceae), which is endemic to Ulleung Island, Korea, is closely related to R. crataegifolius, which is broadly distributed across East Asia. A recent phylogeographic study also suggested the possible polyphyletic origins of R. takesimensis from multiple source populations of its continental progenitor R. crataegifolius in China, Japan, Korea, and the Russian Far East. However, even though the progenitor-derivative relationship between R. crataegifolius and R. takesimensis has been established, little is known about the chloroplast genome (i.e., plastome) evolution of anagenetically derived species on oceanic islands and their continental progenitor species. In the present study, we characterized the complete plastome of R. takesimensis and compared it to those of R. crataegifolius and four other Rubus species. The R. takesimensis plastome was 155,760 base pairs (bp) long, a total of 46 bp longer than the plastome of R. crataegifolius (28 from LSC and 18 from SSC). No structural or content rearrangements were found between the species pairs. Four highly variable intergenic regions (rpl32/trnL, rps4/trnT, trnT/trnL, and psbZ/trnG) were identified between R. takesimensis and R. crataegifolius. Compared to the plastomes of other congeneric species (R. corchorifolius, R. fockeanus, and R. niveus), six highly variable intergenic regions (ndhC/psaC, rps16/trnQ, trnK/rps16, trnL/trnF, trnM/atpE, and trnQ/psbK) were also identified. A total of 116 simple sequence repeats (SSRs), including 48 mononucleotide, 64 dinucleotide, and four trinucleotide repeat motifs were characterized in R. takesimensis. The plastome resources generated by the present study will help to elucidate plastome evolution within the genus and to resolve phylogenetic relationships within highly complex and reticulated lineages. Phylogenetic analysis supported both the monophyly of Rubus and the sister relationship between R. crataegifolius and R. takesimensis.
Collapse
|
38
|
The Complete Chloroplast Genome Sequences of Aconitum pseudolaeve and Aconitum longecassidatum, and Development of Molecular Markers for Distinguishing Species in the Aconitum Subgenus Lycoctonum. Molecules 2017; 22:molecules22112012. [PMID: 29160852 PMCID: PMC6150344 DOI: 10.3390/molecules22112012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/19/2017] [Indexed: 11/24/2022] Open
Abstract
Aconitum pseudolaeve Nakai and Aconitum longecassidatum Nakai, which belong to the Aconitum subgenus Lycoctonum, are distributed in East Asia and Korea. Aconitum species are used in herbal medicine and contain highly toxic components, including aconitine. A. pseudolaeve, an endemic species of Korea, is a commercially valuable material that has been used in the manufacture of cosmetics and perfumes. Although Aconitum species are important plant resources, they have not been extensively studied, and genomic information is limited. Within the subgenus Lycoctonum, which includes A. pseudolaeve and A. longecassidatum, a complete chloroplast (CP) genome is available for only one species, Aconitum barbatum Patrin ex Pers. Therefore, we sequenced the complete CP genomes of two Aconitum species, A. pseudolaeve and A. longecassidatum, which are 155,628 and 155,524 bp in length, respectively. Both genomes have a quadripartite structure consisting of a pair of inverted repeated regions (51,854 and 52,108 bp, respectively) separated by large single-copy (86,683 and 86,466 bp) and small single-copy (17,091 and 16,950 bp) regions similar to those in other Aconitum CP genomes. Both CP genomes consist of 112 unique genes, 78 protein-coding genes, 4 ribosomal RNA (rRNA) genes, and 30 transfer RNA (tRNA) genes. We identified 268 and 277 simple sequence repeats (SSRs) in A. pseudolaeve and A. longecassidatum, respectively. We also identified potential 36 species-specific SSRs, 53 indels, and 62 single-nucleotide polymorphisms (SNPs) between the two CP genomes. Furthermore, a comparison of the three Aconitum CP genomes from the subgenus Lycoctonum revealed highly divergent regions, including trnK-trnQ, ycf1-ndhF, and ycf4-cemA. Based on this finding, we developed indel markers using indel sequences in trnK-trnQ and ycf1-ndhF. A. pseudolaeve, A. longecassidatum, and A. barbatum could be clearly distinguished using the novel indel markers AcoTT (Aconitum trnK-trnQ) and AcoYN (Aconitum ycf1-ndhF). These two new complete CP genomes provide useful genomic information for species identification and evolutionary studies of the Aconitum subgenus Lycoctonum.
Collapse
|
39
|
Yang Z, Ji Y. Comparative and Phylogenetic Analyses of the Complete Chloroplast Genomes of Three Arcto-Tertiary Relicts: Camptotheca acuminata, Davidia involucrata, and Nyssa sinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1536. [PMID: 28955348 PMCID: PMC5601906 DOI: 10.3389/fpls.2017.01536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/22/2017] [Indexed: 05/08/2023]
Abstract
The Arcto-Tertiary relict genera, Camptotheca, Davidia, and Nyssa represent deep lineages in the asterid order Cornales. Recent phylogenetic studies suggested that these genera should be placed in a newly circumscribed family, Nyssaceae. However, because these analyses were based upon a few genes, it is prudent and necessary to examine further evidence before adopting this taxonomic treatment. In this study, we determined the complete chloroplast (cp) genomes of Camptotheca acuminata, Davidia involucrata, and Nyssa sinensis. Their cp genomes ranged from 156,672 to 158,409 bp, which included 115 genes, and their genome features were highly similar to those of other species within the order Cornales. The phylogenetic relationships among the genera Camptotheca, Davidia, Nyssa, and 23 related taxa in the asterids were analyzed based on 73 protein-coding genes from the cp genomes. All of the previously recognized major clades (namely Cornales, Ericales, Campanulids, and Lamiids) in the asterids, as well as their relationships, were recovered with robust support. A clade including the genera Davidia, Nyssa, Camptotheca, and Diplopanax, was resolved as a well-supported monophyletic group, which was fully separated from the family Cornaceae by the family Hydrangeaceae. Our results provide novel evidence to support the acceptance of the family Nyssaceae outlined by the updated Angiosperm Phylogeny Group.
Collapse
Affiliation(s)
| | - Yunheng Ji
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| |
Collapse
|
40
|
Chloroplast Genomic Resource of Paris for Species Discrimination. Sci Rep 2017; 7:3427. [PMID: 28611359 PMCID: PMC5469780 DOI: 10.1038/s41598-017-02083-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/06/2017] [Indexed: 01/23/2023] Open
Abstract
Paris is famous in China for its medicinal value and has been included in the Chinese Pharmacopoeia. Inaccurate identification of these species could confound their effective exploration, conservation, and domestication. Due to the plasticity of the morphological characteristics, correct identification among Paris species remains problematic. In this regard, we report the complete chloroplast genome of P. thibetica and P. rugosa to develop highly variable molecular markers. Comparing three chloroplast genomes, we sought out the most variable regions to develop the best cpDNA barcodes for Paris. The size of Paris chloroplast genome ranged from 162,708 to 163,200 bp. A total of 134 genes comprising 81 protein coding genes, 45 tRNA genes and 8 rRNA genes were observed in all three chloroplast genomes. Eight rapidly evolving regions were detected, as well as the difference of simple sequence repeats (SSR) and repeat sequence. Two regions of the coding gene ycf1, ycf1a and ycf1b, evolved the quickest and were proposed as core barcodes for Paris. The complete chloroplast genome sequences provide more integrated and adequate information for better understanding the phylogenetic pattern and improving efficient discrimination during species identification.
Collapse
|
41
|
Do HDK, Kim JH. A Dynamic Tandem Repeat in Monocotyledons Inferred from a Comparative Analysis of Chloroplast Genomes in Melanthiaceae. FRONTIERS IN PLANT SCIENCE 2017; 8:693. [PMID: 28588587 PMCID: PMC5438981 DOI: 10.3389/fpls.2017.00693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 05/27/2023]
Abstract
Chloroplast genomes (cpDNA) are highly valuable resources for evolutionary studies of angiosperms, since they are highly conserved, are small in size, and play critical roles in plants. Slipped-strand mispairing (SSM) was assumed to be a mechanism for generating repeat units in cpDNA. However, research on the employment of different small repeated sequences through SSM events, which may induce the accumulation of distinct types of repeats within the same region in cpDNA, has not been documented. Here, we sequenced two chloroplast genomes from the endemic species Heloniopsis tubiflora (Korea) and Xerophyllum tenax (USA) to cover the gap between molecular data and explore "hot spots" for genomic events in Melanthiaceae. Comparative analysis of 23 complete cpDNA sequences revealed that there were different stages of deletion in the rps16 region across the Melanthiaceae. Based on the partial or complete loss of rps16 gene in cpDNA, we have firstly reported potential molecular markers for recognizing two sections (Veratrum and Fuscoveratrum) of Veratrum. Melathiaceae exhibits a significant change in the junction between large single copy and inverted repeat regions, ranging from trnH_GUG to a part of rps3. Our results show an accumulation of tandem repeats in the rpl23-ycf2 regions of cpDNAs. Small conserved sequences exist and flank tandem repeats in further observation of this region across most of the examined taxa of Liliales. Therefore, we propose three scenarios in which different small repeated sequences were used during SSM events to generate newly distinct types of repeats. Occasionally, prior to the SSM process, point mutation event and double strand break repair occurred and induced the formation of initial repeat units which are indispensable in the SSM process. SSM may have likely occurred more frequently for short repeats than for long repeat sequences in tribe Parideae (Melanthiaceae, Liliales). Collectively, these findings add new evidence of dynamic results from SSM in chloroplast genomes which can be useful for further evolutionary studies in angiosperms. Additionally, genomics events in cpDNA are potential resources for mining molecular markers in Liliales.
Collapse
Affiliation(s)
| | - Joo-Hwan Kim
- Plant Systematics Laboratory, Department of Biological Science, Gachon UniversitySeongnam, South Korea
| |
Collapse
|