1
|
Heise CM, Hagemann M, Schubert H. Photosynthetic response of Chara braunii towards different bicarbonate concentrations. PHYSIOLOGIA PLANTARUM 2024; 176:e14234. [PMID: 38439180 DOI: 10.1111/ppl.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
A variety of inorganic carbon acquisition modes have been proposed in Characean algae, however, a broadly applicable inorganic carbon uptake mechanism is unknown for the genus Chara. In the present study, we analyzed if C. braunii can efficiently use HCO3 - as a carbon source for photosynthesis. For this purpose, C. braunii was exposed to different concentrations of NaHCO3 - at different time scales. The photosynthetic electron transport through photosystem I (PSI) and II (PSII), the maximum electron transport rate (ETRmax ), the efficiency of the electron transport rate (α, the initial slope of the ETR), and the light saturation point of photosynthesis (Ek ) were evaluated. Additionally, pigment contents (chlorophyll a, chlorophyll b, and carotenoids) were determined. Bicarbonate addition positively affected ETRmax , after direct HCO3 - application, of both PSII and PSI, but this effect seems to decrease after 1 h and 24 h. Similar trends were seen for Ek , but no significant effect was observed for α. Pigment contents showed no significant changes in relation to different HCO3 - concentrations. To evaluate if cyclic electron flow around PSI was involved in active HCO3 - uptake, the ratio of PSI ETRmax /PSII ETRmax was calculated but did not show a distinctive trend. These results suggest that C. braunii can utilize NaHCO3 - in short-term periods as a carbon source but could rely on other carbon acquisition mechanisms over prolonged time periods. These observations suggest that the minor role of HCO3 - as a carbon source for photosynthesis in this alga might differentiate C. braunii from other examined Chara spp.
Collapse
Affiliation(s)
- Carolin Magdalene Heise
- Institute of Biosciences, Department of Aquatic Ecology, University of Rostock, Rostock, Germany
- Institute of Biosciences, Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Institute of Biosciences, Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Hendrik Schubert
- Institute of Biosciences, Department of Aquatic Ecology, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Bulychev AA, Eremin A, von Rüling F, Alova AV. Effects of cell excitation on photosynthetic electron flow and intercellular transport in Chara. PROTOPLASMA 2023; 260:131-143. [PMID: 35482255 DOI: 10.1007/s00709-022-01747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Impact of membrane excitability on fluidic transport of photometabolites and their cell-to-cell passage via plasmodesmata was examined by pulse-modulated chlorophyll (Chl) microfluorometry in Chara australis internodes exposed to dim background light. The cells were subjected to a series of local light (LL) pulses with a 3-min period and a 30-s pulse width, which induced Chl fluorescence transients propagating in the direction of cytoplasmic streaming along the photostimulated and the neighboring internodes. By comparing Chl fluorescence changes induced in the LL-irradiated and the adjoining internodes, the permeability of the nodal complex for the photometabolites was assessed in the resting state and after the action potential (AP) generation. The electrically induced AP had no influence on Chl fluorescence in noncalcified cell regions but disturbed temporarily the metabolite transport along the internode and caused a disproportionally strong inhibition of intercellular metabolite transmission. In chloroplasts located close to calcified zones, Chl fluorescence increased transiently after cell excitation, which indicated the deceleration of photosynthetic electron flow on the acceptor side of photosystem I. Functional distinctions of chloroplasts located in noncalcified and calcified cell areas were also manifested in different modes of LL-induced changes of Chl fluorescence, which were accompanied by dissimilar changes in efficiency of PSII-driven electron flow. We conclude that chloroplasts located near the encrusted areas and in the incrustation-free cell regions are functionally distinct even in the absence of large-scale variations of cell surface pH. The inhibition of transnodal transport after AP generation is probably due to Ca2+-regulated changes in plasmodesmal aperture.
Collapse
Affiliation(s)
| | - Alexey Eremin
- Institute of Physics, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Anna V Alova
- Faculty of Biology, Moscow State University, Moscow, Russia.
| |
Collapse
|
3
|
Domozych DS, Bagdan K. The cell biology of charophytes: Exploring the past and models for the future. PLANT PHYSIOLOGY 2022; 190:1588-1608. [PMID: 35993883 PMCID: PMC9614468 DOI: 10.1093/plphys/kiac390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.
Collapse
Affiliation(s)
| | - Kaylee Bagdan
- Department of Biology, Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
4
|
Bulychev AA, Alova AV. Microfluidic interactions involved in chloroplast responses to plasma membrane excitation in Chara. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:111-119. [PMID: 35576891 DOI: 10.1016/j.plaphy.2022.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Adaptation of plants to environmental changes involves the mechanisms of long-distance signaling. In characean algae, these mechanisms comprise the propagation of action potential (AP) and the rotational cytoplasmic streaming acting in cooperation with light-dependent exchange of ions and metabolites across the chloroplast envelope. Both excitability and cyclosis exert conspicuous effects on photosynthetic activity of chloroplasts but possible influence of cyclosis arrest on the coupling of AP stimulus to photosynthetic performance remained unexplored. In this study, fluidic interactions between anchored chloroplasts were allowed or restricted by illuminating the whole internode or a confined cell area (2 mm in diameter), respectively. Measurements of chlorophyll fluorescence parameters (F' and Fm') in cell regions located close to calcium crystal depositions revealed that the AP generation induced long-lasting Fm' oscillations that persisted in illuminated cells. The AP generation often induced the F' oscillations, whose number diminished upon the transfer of internodal cells from total to local background light. The results indicate that the AP-induced changes in photosynthetic parameters, F' in particular, have a complex origin and comprise the internal processes caused by the elevation of stromal Ca2+ concentration in the analyzed chloroplasts and the stages related to ion and metabolite exchange mediated by cytoplasmic streaming. It is supposed that the composition of flowing cytoplasm is heterogeneous due to the spatial alteration of calcified and noncalcified cell sites, but this heterogeneity is enhanced and can be visualized after the transient cessation and restoration of cytoplasmic streaming.
Collapse
Affiliation(s)
| | - Anna V Alova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
5
|
Sommer A, Hoeftberger M, Foissner I. Fluid-phase and membrane markers reveal spatio-temporal dynamics of membrane traffic and repair in the green alga Chara australis. PROTOPLASMA 2021; 258:711-728. [PMID: 33704568 PMCID: PMC8211606 DOI: 10.1007/s00709-021-01627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
We investigated the mechanisms and the spatio-temporal dynamics of fluid-phase and membrane internalization in the green alga Chara australis using fluorescent hydrazides markers alone, or in conjunction with styryl dyes. Using live-cell imaging, immunofluorescence and inhibitor studies we revealed that both fluid-phase and membrane dyes were actively taken up into the cytoplasm by clathrin-mediated endocytosis and stained various classes of endosomes including brefeldin A- and wortmannin-sensitive organelles (trans-Golgi network and multivesicular bodies). Uptake of fluorescent hydrazides was poorly sensitive to cytochalasin D, suggesting that actin plays a minor role in constitutive endocytosis in Chara internodal cells. Sequential pulse-labelling experiments revealed novel aspects of the temporal progression of endosomes in Chara internodal cells. The internalized fluid-phase marker distributed to early compartments within 10 min from dye exposure and after about 30 min, it was found almost exclusively in late endocytic compartments. Notably, fluid cargo consecutively internalized at time intervals of more than 1h, was not targeted to the same vesicular structures, but was sorted into distinct late compartments. We further found that fluorescent hydrazide dyes distributed not only to rapidly recycling endosomes but also to long-lived compartments that participated in plasma membrane repair after local laser injury. Our approach highlights the benefits of combining different fluid-phase markers in conjunction with membrane dyes in simultaneous and sequential application modus for investigating vesicle traffic, especially in organisms, which are still refractory to genetic transformation like characean algae.
Collapse
Affiliation(s)
- Aniela Sommer
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| | - Margit Hoeftberger
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Ilse Foissner
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
6
|
Foissner I, Hoeftberger M, Hoepflinger MC, Sommer A, Bulychev AA. Brefeldin A inhibits clathrin-dependent endocytosis and ion transport in Chara internodal cells. Biol Cell 2020; 112:317-334. [PMID: 32648585 DOI: 10.1111/boc.202000031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Characeae are multicellular green algae, which are closely related to higher plants. Their internodal cells are a convenient model to study membrane transport and organelle interactions. RESULTS In this study, we report on the effect of brefeldin A (BFA), an inhibitor of vesicle trafficking, on internodal cells of Chara australis. BFA induced the commonly observed agglomeration of Golgi bodies and trans Golgi network into 'brefeldin compartments' at concentrations between 6 and 500 μM and within 30-120 min treatment. In contrast to most other cells, however, BFA inhibited endocytosis and significantly decreased the number of clathrin-coated pits and clathrin-coated vesicles at the plasma membrane. BFA did not inhibit secretion of organelles at wounds induced by puncturing or local light damage but prevented the formation of cellulosic wound walls probably because of insufficient membrane recycling. We also found that BFA inhibited the formation of alkaline and acid regions along the cell surface ('pH banding pattern') which facilitates carbon uptake required for photosynthesis; we hypothesise that this is due to insufficient recycling of ion transporters. During long-term treatments over several days, BFA delayed the formation of complex 3D plasma membranes (charasomes). Interestingly, BFA had no detectable effect on clathrin-dependent charasome degradation. Protein sequence analysis suggests that the peculiar effects of BFA in Chara internodal cells are due to a mutation in the guanine-nucleotide exchange factor GNOM required for recruitment of membrane coats via activation of ADP-ribosylation factor proteins. CONCLUSIONS AND SIGNIFICANCE This work provides an overview on the effects of BFA on different processes in C. australis. It revealed similarities but also distinct differences in vesicle trafficking between higher plant and algal cells. It shows that characean internodal cells are a promising model to study interactions between seemingly distant metabolic pathways.
Collapse
Affiliation(s)
- Ilse Foissner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | | | - Aniela Sommer
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Bulychev AA, Foissner I. Inhibition of endosomal trafficking by brefeldin A interferes with long-distance interaction between chloroplasts and plasma membrane transporters. PHYSIOLOGIA PLANTARUM 2020; 169:122-134. [PMID: 31816092 PMCID: PMC7216902 DOI: 10.1111/ppl.13058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 06/01/2023]
Abstract
The huge internodal cells of the characean green algae are a convenient model to study long-range interactions between organelles via cytoplasmic streaming. It has been shown previously that photometabolites and reactive oxygen species released by illuminated chloroplasts are transmitted to remote shaded regions where they interfere with photosynthetic electron transport and the differential activity of plasma membrane transporters, and recent findings indicated the involvement of organelle trafficking pathways. In the present study, we applied pulse amplitude-modulated microscopy and pH-sensitive electrodes to study the effect of brefeldin A (BFA), an inhibitor of vesicle trafficking, on long-distance interactions in Chara australis internodal cells. These data were compared with BFA-induced changes in organelle number, size and distribution using fluorescent dyes and confocal laser scanning microscopy. We found that BFA completely and immediately inhibited endocytosis in internodal cells and induced the aggregation of organelles into BFA compartments within 30-120 min of treatment. The comparison with the physiological data suggests that the early response, the arrest of endocytosis, is related to the attenuation of differences in surface pH, whereas the longer lasting formation of BFA compartments is probably responsible for the acceleration of the cyclosis-mediated interaction between chloroplasts. These data indicate that intracellular turnover of membrane material might be important for the circulation of electric currents between functionally distinct regions in illuminated characean internodes and that translational movement of metabolites is delayed by transient binding of the transported substances to organelles.
Collapse
Affiliation(s)
| | - Ilse Foissner
- Department of BiosciencesUniversity of SalzburgSalzburgAustria
| |
Collapse
|
8
|
Eremin A, Bulychev AA, Kluge C, Harbinson J, Foissner I. PH-dependent cell-cell interactions in the green alga Chara. PROTOPLASMA 2019; 256:1737-1751. [PMID: 31367920 PMCID: PMC6820879 DOI: 10.1007/s00709-019-01392-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Characean internodal cells develop alternating patterns of acid and alkaline zones along their surface in order to facilitate uptake of carbon required for photosynthesis. In this study, we used a pH-indicating membrane dye, 4-heptadecylumbiliferone, to study the kinetics of alkaline band formation and decomposition. The differences in growth/decay kinetics suggested that growth occurred as an active, autocatalytic process, whereas decomposition was due to diffusion. We further investigated mutual interactions between internodal cells and found that their alignment parallel to each other induced matching of the pH banding patterns, which was mirrored by chloroplast activity. In non-aligned cells, the lowered photosynthetic activity was noted upon a rise of the external pH, suggesting that the matching of pH bands was due to a local elevation of membrane conductance by the high pH of the alkaline zones of neighboured cells. Finally, we show that the altered pH banding pattern caused the reorganization of the cortical cytoplasm. Complex plasma membrane elaborations (charasomes) were degraded via endocytosis, and mitochondria were moved away from the cortex when a previously acid region became alkaline and vice versa. Our data show that characean internodal cells react flexibly to environmental cues, including those originating from neighboured cells.
Collapse
Affiliation(s)
- Alexey Eremin
- Institute of Physics, Otto von Guericke University of Magdeburg, 39016, Magdeburg, Germany
| | - Alexander A Bulychev
- Department of Biophysics, Faculty of Biology, Moscow State University, Moscow, 119991, Russia
| | - Christopher Kluge
- Institute of Physics, Otto von Guericke University of Magdeburg, 39016, Magdeburg, Germany
| | - Jeremy Harbinson
- Department of Plant Sciences, University of Wageningen, 6708 PB, Wageningen, The Netherlands
| | - Ilse Foissner
- Department of Biosciences, University of Salzburg, 5020, Salzburg, Austria.
| |
Collapse
|
9
|
Intrchom W, Thakkar M, Hamilton RF, Holian A, Mitra S. Effect of Carbon Nanotube-Metal Hybrid Particle Exposure to Freshwater Algae Chlamydomonas reinhardtii. Sci Rep 2018; 8:15301. [PMID: 30333573 PMCID: PMC6193050 DOI: 10.1038/s41598-018-33674-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023] Open
Abstract
We demonstrate for the first time the toxicity of carbon nanotube (CNT) metal hybrids on freshwater algae. Carbon nanotube-silver (CNT-Ag) and platinum hybrids (CNT-Pt) were synthesized and exposed to Chlamydomonas reinhardtii (C. reinhardtii), and their toxicity was compared to the pure metal salts. Interactions between CNT-metal and algae were studied using electron microscopy and it was observed that while outer membrane of the algal cell was damaged as a result of Ag+ toxicity from pure Ag, the CNT-Ag only caused the distortion of the cell wall. It was also observed that the CNT-Ag particles could be internalized and enclosed in internal vesicles in the algal cells. Long-term exposure of the CNT-metals showed delay in algal growth. CNT-Ag at a concentration of 5.0 mg/L showed 90% growth inhibition and also showed a significant effect on photosynthetic yield with a 21% drop compared to the control. It was observed that pure silver was more toxic compared with CNT-Ag for both growth and photosynthesis in the 96-hour exposure. In general, CNT-Pt showed significantly less toxic effects on the algae than CNT-Ag. Based on this study, it is postulated that the CNT suppressed the release of Ag+ from CNT-Ag hybrids, thus reducing overall toxicity.
Collapse
Affiliation(s)
- Worawit Intrchom
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Megha Thakkar
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Raymond F Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
10
|
Pertl-Obermeyer H, Lackner P, Schulze WX, Hoepflinger MC, Hoeftberger M, Foissner I, Obermeyer G. Dissecting the subcellular membrane proteome reveals enrichment of H+ (co-)transporters and vesicle trafficking proteins in acidic zones of Chara internodal cells. PLoS One 2018; 13:e0201480. [PMID: 30157181 PMCID: PMC6114288 DOI: 10.1371/journal.pone.0201480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
The Characeae are multicellular green algae with very close relationship to land plants. Their internodal cells have been the subject of numerous (electro-)physiological studies. When exposed to light, internodal cells display alternating bands of low and high pH along their surface in order to facilitate carbon uptake required for photosynthesis. Here we investigated for the first time the subcellular membrane protein composition of acidic and alkaline regions in internodal cells of Chara australis R. Br. using MS-proteomics. The identified peptides were annotated to Chara unigenes using a custom-made Chara database generated from a transcriptome analysis and to orthologous Arabidopsis genes using TAIR (The Arabidopsis Information Resource) database. Apart from providing the first public-available, functionally-annotated sequence database for Chara australis, the proteome study, which is supported by immunodetection, identified several membrane proteins associated with acidic regions that contain a high density of specific plasma membrane (PM) invaginations, the charasomes, which locally increase the membrane area to overcome diffusion limitation in membrane transport. An increased abundance of PM H+ ATPases at charasomes is consistent with their role in the acidification of the environment, but the characean PM H+ ATPase sequence suggests a different regulation compared to higher plant PM H+ ATPases. A higher abundance of H+ co-transporters in the charasome-rich, acidic regions possibly reflects enhanced uptake of ions and nutrients. The increase in mitochondrial proteins confirms earlier findings about the accumulation of cortical mitochondria in the acidic zones. The significant enrichment of clathrin heavy chains and clathrin adaptor proteins as well as other proteins involved in trafficking indicate a higher activity of membrane transport in the charasome-rich than in charasome-poor areas. New and unexpected data, for instance the upregulation and abundance of vacuolar transporters correlating with the charasome-rich, acidic cell regions account for new perspectives in the formation of charasomes.
Collapse
Affiliation(s)
- Heidi Pertl-Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Peter Lackner
- Bioinformatics of Allergens, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Marion C. Hoepflinger
- Plant Cell Dynamics, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Margit Hoeftberger
- Plant Cell Dynamics, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Ilse Foissner
- Plant Cell Dynamics, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Gerhard Obermeyer
- Molecular Plant Biophysics and Biochemistry, Department of Biosciences, University of Salzburg, Salzburg, Austria
| |
Collapse
|
11
|
Pulido-Reyes G, Leganes F, Fernández-Piñas F, Rosal R. Bio-nano interface and environment: A critical review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3181-3193. [PMID: 28731222 DOI: 10.1002/etc.3924] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 05/25/2023]
Abstract
The bio-nano interface is the boundary where engineered nanomaterials (ENMs) meet the biological system, exerting the biological function for which they have been designed or inducing adverse effects on other cells or organisms when they reach nontarget scenarios (i.e., the natural environment). Research has been performed to determine the fate, transport, and toxic properties of ENMs, but much of it is focused on pristine or so-called as-manufactured ENMs, or else modifications of the materials were not assessed. We review the most recent progress regarding the bio-nano interface and the transformations that ENMs undergo in the environment, paying special attention to the adsorption of environmental biomolecules on the surface of ENMs. Whereas the protein corona has received considerable attention in the fields of biomedics and human toxicology, its environmental analogue (the eco-corona) has been much less studied. A section dedicated to the analytical methods for studying and characterizing the eco-corona is also presented. We conclude by presenting and discussing the key problems and knowledge gaps that need to be resolved in the near future regarding the bio-nano interface and the eco-corona. Environ Toxicol Chem 2017;36:3181-3193. © 2017 SETAC.
Collapse
Affiliation(s)
- Gerardo Pulido-Reyes
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Francisco Leganes
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|