1
|
Ali S, Tyagi A, Park S, Varshney RK, Bae H. A molecular perspective on the role of FERONIA in root growth, nutrient uptake, stress sensing and microbiome assembly. J Adv Res 2024:S2090-1232(24)00494-6. [PMID: 39505145 DOI: 10.1016/j.jare.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Roots perform multifaceted functions in plants including the movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Although crop development has greatly advanced, most current efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle. However, with the aid of high throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrates on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology. AIM OF THE REVIEW The goal of this study is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and adaptation. KEY SCIENTIFIC CONCEPTS OF REVIEW In plants, FER is a unique RLK because it can act as a multitasking sensor regulate diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving RALF peptides, calcium, ROS and hormones. We also highlight number of outstanding questions in FER mediated root responses that warrant future investigation. We believe that FER can provide novels insights for the development of future climate resilient and high yielding crops based on the modified root system.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea; Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Rajeev K Varshney
- Center of Excellence in Genomics &, Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
2
|
Calderón AA, Almagro L, Martínez-Calderón A, Ferrer MA. Transcriptional reprogramming in sound-treated Micro-Tom plants inoculated with Pseudomonas syringae pv. tomato DC3000. PHYSIOLOGIA PLANTARUM 2024; 176:e14335. [PMID: 38705728 DOI: 10.1111/ppl.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Sound vibrations (SV) are known to influence molecular and physiological processes that can improve crop performance and yield. In this study, the effects of three audible frequencies (100, 500 and 1000 Hz) at constant amplitude (90 dB) on tomato Micro-Tom physiological responses were evaluated 1 and 3 days post-treatment. Moreover, the potential use of SV treatment as priming agent for improved Micro-Tom resistance to Pseudomonas syringae pv. tomato DC3000 was tested by microarray. Results showed that the SV-induced physiological changes were frequency- and time-dependent, with the largest changes registered at 1000 Hz at day 3. SV treatments tended to alter the foliar content of photosynthetic pigments, soluble proteins, sugars, phenolic composition, and the enzymatic activity of polyphenol oxidase, peroxidase, superoxide dismutase and catalase. Microarray data revealed that 1000 Hz treatment is effective in eliciting transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after the infection with Pst DC3000. Broadly, in plants challenged with Pst DC3000, the 1000 Hz pretreatment provoked the up-regulation of unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins. In addition, in those plants, DEGs associated with enhancing plant basal immunity, such as proteinase inhibitors, pathogenesis-related proteins, and carbonic anhydrase 3, were notably up-regulated in comparison with non-SV pretreated, infected plants. These findings provide new insights into the modulation of Pst DC3000-tomato interaction by sound and open up prospects for further development of strategies for plant disease management through the reinforcement of defense mechanisms in Micro-Tom plants.
Collapse
Affiliation(s)
- Antonio A Calderón
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Lorena Almagro
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | | | - María A Ferrer
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
3
|
El-Sappah AH, Yan K, Li J. The plant is neither dumb nor deaf; it talks and hears. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38281239 DOI: 10.1111/tpj.16650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Animals and insects communicate using vibrations that are frequently too low or too high for human ears to detect. Plants and trees can communicate and sense sound. Khait et al. used a dependable recording system to capture airborne sounds produced by stressed plants. In addition to allowing plants to communicate their stress, sound aids in plant defense, development, and resilience. It also serves as a warning that danger is approaching. Demey et al. and others discussed the audit examinations that were conducted to investigate sound discernment in plants at the atomic and biological levels. The biological significance of sound in plants, the morphophysiological response of plants to sound, and the airborne noises that plants make and can hear from a few meters away were all discussed.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
4
|
Demey ML, Mishra RC, Van Der Straeten D. Sound perception in plants: from ecological significance to molecular understanding. TRENDS IN PLANT SCIENCE 2023; 28:825-840. [PMID: 37002001 DOI: 10.1016/j.tplants.2023.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
In addition to positive effects on plant growth and resilience, sound alerts plants of potential danger and aids in defense. Sound guides plants towards essential resources, like water, through phonotropic root growth. Sound also facilitates mutualistic interactions such as buzz pollination. Molecularly, sound induces Ca2+ signatures, K+ fluxes, and an increase in reactive oxygen species (ROS) levels in a mechanosensitive ion channel-dependent fashion. We review the two major open questions in the field of plant acoustics: (i) what is the ecological relevance of sound in plant life, and (ii) how is sound sensed and transduced to evoke a morphophysiological response? We highlight the clear need to combine the ecological and molecular perspectives for a more holistic approach to better understand plant behavior.
Collapse
|
5
|
de Melo HC. Plants detect and respond to sounds. PLANTA 2023; 257:55. [PMID: 36790549 DOI: 10.1007/s00425-023-04088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Specific sound patterns can affect plant development. Plants are responsive to environmental stimuli such as sound. However, little is known about their sensory apparatus, mechanisms, and signaling pathways triggered by these stimuli. Thus, it is important to understand the effect of sounds on plants and their technological potential. This review addresses the effects of sounds on plants, the sensory elements inherent to sound detection by the cell, as well as the triggering of signaling pathways that culminate in plant responses. The importance of sound standardization for the study of phytoacoustics is demonstrated. Studies on the sounds emitted or reflected by plants, acoustic stress in plants, and recognition of some sound patterns by plants are also explored.
Collapse
Affiliation(s)
- Hyrandir Cabral de Melo
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Goiás, Instituto de Ciências Biológicas. Avenida Esperança, S/N Campus Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
6
|
Peng X, Liu Y, He W, Hoppe ED, Zhou L, Xin F, Haswell ES, Pickard BG, Genin GM, Lu TJ. Acoustic radiation force on a long cylinder, and potential sound transduction by tomato trichomes. Biophys J 2022; 121:3917-3926. [PMID: 36045574 PMCID: PMC9674985 DOI: 10.1016/j.bpj.2022.08.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/27/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022] Open
Abstract
Acoustic transduction by plants has been proposed as a mechanism to enable just-in-time up-regulation of metabolically expensive defensive compounds. Although the mechanisms by which this "hearing" occurs are unknown, mechanosensation by elongated plant hair cells known as trichomes is suspected. To evaluate this possibility, we developed a theoretical model to evaluate the acoustic radiation force that an elongated cylinder can receive in response to sounds emitted by animals, including insect herbivores, and applied it to the long, cylindrical stem trichomes of the tomato plant Solanum lycopersicum. Based on perturbation theory and validated by finite element simulations, the model quantifies the effects of viscosity and frequency on this acoustic radiation force. Results suggest that acoustic emissions from certain animals, including insect herbivores, may produce acoustic radiation force sufficient to trigger stretch-activated ion channels.
Collapse
Affiliation(s)
- Xiangjun Peng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China; Department of Biomedical Engineering, Washington University, St. Louis, Missouri; NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri
| | - Yifan Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Wei He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Ethan D Hoppe
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri
| | - Lihong Zhou
- College of Life Sciences, Agricultural University of Hebei, Baoding, P. R. China
| | - Fengxian Xin
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Elizabeth S Haswell
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri; Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Barbara G Pickard
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri; Department of Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Guy M Genin
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri; NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China.
| |
Collapse
|
7
|
Kafash ZH, Khoramnejadian S, Ghotbi-Ravandi AA, Dehghan SF. Traffic noise induces oxidative stress and phytohormone imbalance in two urban plant species. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Gu X, Zhang Q, Jia Y, Cao M, Zhang W, Luo J. Enhancement of the Cd phytoremediation efficiency of Festuca arundinacea by sonic seed treatment. CHEMOSPHERE 2022; 287:132158. [PMID: 34492420 DOI: 10.1016/j.chemosphere.2021.132158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
It has been reported that both naturally occurring and artificially created sounds can alter the physiological parameters of various plants. A series of experiments were designed in the present study to estimate the physiological responses and the variation in the Cd decontamination capacity of Festuca arundinacea under sonic wave treatments. Plant seeds were treated by sound waves of frequency 200, 300, 400, 500, and 1000 Hz, and the germinated seedlings were transplanted to Cd-polluted soil. The results showed that all the sonic treatments increased the whole plant dry weight of F. arundinacea compared with that of the control, and the highest value was observed in the 200 Hz treatment. The Cd content in below-ground and aerial tissues of the species increased with increasing frequency till 400 Hz, after which they became constant. A higher proportion of senescent and dead leaf tissues was observed in the high-frequency treatment (1000 Hz), and more Cd was transferred to these failing tissues. Therefore, in the 1000 Hz treatment, a significantly greater amount of Cd could be eliminated by harvesting the senescent and dead leaf tissues of the species compared with that of the other treatments. The concentrations of dissolved organic matter (DOM) and the proportions of hydrophilic fractions which have a strong Cd affinity, in the rhizosphere soil of F. arundinacea increased with the increase in sound frequency. Cd extraction ability of DOM also increased with increasing frequency. This study indicated that a suitable sonic treatment can improve the phytoextraction efficiency of F. arundinacea, and also explained the mechanism from the perspective of the variations in soil DOM.
Collapse
Affiliation(s)
- Xiaowen Gu
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| | - Qinghua Zhang
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| | - Yifan Jia
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Wei Zhang
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
9
|
Yamazaki M, Ishida A, Suzuki Y, Aoki Y, Suzuki S, Enoki S. Ethylene Induced by Sound Stimulation Enhances Anthocyanin Accumulation in Grape Berry Skin through Direct Upregulation of UDP-Glucose: Flavonoid 3- O-Glucosyltransferase. Cells 2021; 10:2799. [PMID: 34685779 PMCID: PMC8534375 DOI: 10.3390/cells10102799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022] Open
Abstract
Global warming has resulted in the loss of anthocyanin accumulation in berry skin. Sound stimulation can be used as a potential method for enhancing fruit color development since many plants recognize sound vibration as an external stimulus and alter their physiological status in response to it. Sound stimulation (sine wave sound at 1000 Hz) enhanced anthocyanin accumulation in grape cultured cells and berry skins in field-grown grapevines at the early stage of ripening. The transcription of UFGT and ACO2, which encode the key enzymes in anthocyanin and ethylene biosynthesis, respectively, was upregulated in grape cultured cells exposed to sound stimulation. In contrast, the transcription of MybA1 and NCED1, which encode a transcription factor for UFGT and a key enzyme in abscisic acid biosynthesis, respectively, was not affected by the sound stimulation. A treatment with an ethylene biosynthesis inhibitor, aminoethoxyvinyl glycine hydrochloride, revered the enhancement of anthocyanin accumulation by sound stimulation. As the promoter assay using a GUS reporter gene demonstrated that UFGT promoter was directly activated by the ethylene-releasing compound ethephon, which enhanced anthocyanin accumulation in grape cultured cells, we conclude that sound stimulation enhanced anthocyanin accumulation through the direct upregulation of UFGT by ethylene biosynthesis. Our findings suggest that sound stimulation contributes to alleviating poor coloration in berry skin as a novel and innovative practical technique in viticulture.
Collapse
Affiliation(s)
- Mone Yamazaki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| | - Akari Ishida
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| | - Yutaka Suzuki
- Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan;
| | - Yoshinao Aoki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| | - Shunji Suzuki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| | - Shinichi Enoki
- The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu 400-0005, Yamanashi, Japan; (M.Y.); (A.I.); (Y.A.); (S.S.)
| |
Collapse
|
10
|
Uncovering Transcriptional Responses to Fractional Gravity in Arabidopsis Roots. Life (Basel) 2021; 11:life11101010. [PMID: 34685382 PMCID: PMC8539686 DOI: 10.3390/life11101010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Although many reports characterize the transcriptional response of Arabidopsis seedlings to microgravity, few investigate the effect of partial or fractional gravity on gene expression. Understanding plant responses to fractional gravity is relevant for plant growth on lunar and Martian surfaces. The plant signaling flight experiment utilized the European Modular Cultivation System (EMCS) onboard the International Space Station (ISS). The EMCS consisted of two rotors within a controlled chamber allowing for two experimental conditions, microgravity (stationary rotor) and simulated gravity in space. Seedlings were grown for 5 days under continuous light in seed cassettes. The arrangement of the seed cassettes within each experimental container results in a gradient of fractional g (in the spinning rotor). To investigate whether gene expression patterns are sensitive to fractional g, we carried out transcriptional profiling of root samples exposed to microgravity or partial g (ranging from 0.53 to 0.88 g). Data were analyzed using DESeq2 with fractional g as a continuous variable in the design model in order to query gene expression across the gravity continuum. We identified a subset of genes whose expression correlates with changes in fractional g. Interestingly, the most responsive genes include those encoding transcription factors, defense, and cell wall-related proteins and heat shock proteins.
Collapse
|
11
|
Bilas RD, Bretman A, Bennett T. Friends, neighbours and enemies: an overview of the communal and social biology of plants. PLANT, CELL & ENVIRONMENT 2021; 44:997-1013. [PMID: 33270936 DOI: 10.1111/pce.13965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Plants were traditionally seen as rather passive actors in their environment, interacting with each other only in so far as they competed for the same resources. In the last 30 years, this view has been spectacularly overturned, with a wealth of evidence showing that plants actively detect and respond to their neighbours. Moreover, there is evidence that these responses depend on the identity of the neighbour, and that plants may cooperate with their kin, displaying social behaviour as complex as that observed in animals. These plant-plant interactions play a vital role in shaping natural ecosystems, and are also very important in determining agricultural productivity. However, in terms of mechanistic understanding, we have only just begun to scratch the surface, and many aspects of plant-plant interactions remain poorly understood. In this review, we aim to provide an overview of the field of plant-plant interactions, covering the communal interactions of plants with their neighbours as well as the social behaviour of plants towards their kin, and the consequences of these interactions. We particularly focus on the mechanisms that underpin neighbour detection and response, highlighting both progress and gaps in our understanding of these fascinating but previously overlooked interactions.
Collapse
Affiliation(s)
- Roza D Bilas
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
12
|
Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH. Predictability of Biotic Stress Structures Plant Defence Evolution. Trends Ecol Evol 2021; 36:444-456. [PMID: 33468354 DOI: 10.1016/j.tree.2020.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. The stressors encountered by plants are highly dynamic but typically vary predictably due to seasonality or correlations among stressors. As plants face physiological and ecological constraints in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable patterns of stress in their life histories. Here, we discuss how plants predict adverse conditions, which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. We propose that plants commonly optimise responses to correlated sequences or combinations of herbivores and pathogens, and that the predictability of these patterns is a key factor governing plant strategies in dynamic environments.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Ghosh R, Choi B, Kwon YS, Bashir T, Bae DW, Bae H. Proteomic Changes in the Sound Vibration-Treated Arabidopsis thaliana Facilitates Defense Response during Botrytis cinerea Infection. THE PLANT PATHOLOGY JOURNAL 2019; 35:609-622. [PMID: 31832041 PMCID: PMC6901250 DOI: 10.5423/ppj.oa.11.2018.0248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Sound vibration (SV) treatment can trigger various molecular and physiological changes in plants. Previously, we showed that pre-exposure of Arabidopsis plants to SV boosts its defense response against Botrytis cinerea fungus. The present study was aimed to investigate the changes in the proteome states in the SV-treated Arabidopsis during disease progression. Proteomics analysis identified several upregulated proteins in the SV-infected plants (i.e., SV-treated plants carrying Botrytis infection). These upregulated proteins are involved in a plethora of biological functions, e.g., primary metabolism (i.e., glycolysis, tricarboxylic acid cycle, ATP synthesis, cysteine metabolism, and photosynthesis), redox homeostasis, and defense response. Additionally, our enzyme assays confirmed the enhanced activity of antioxidant enzymes in the SV-infected plants compared to control plants. Broadly, our results suggest that SV pre-treatment evokes a more efficient defense response in the SV-infected plants by modulating the primary metabolism and reactive oxygen species scavenging activity.
Collapse
Affiliation(s)
- Ritesh Ghosh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541,
Korea
| | - Bosung Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541,
Korea
| | - Young Sang Kwon
- Environmental Toxicology Research Center, Korea Institute of Toxicology, Jinju 52834,
Korea
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541,
Korea
| | - Dong-Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju 52828,
Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541,
Korea
| |
Collapse
|
14
|
Veits M, Khait I, Obolski U, Zinger E, Boonman A, Goldshtein A, Saban K, Seltzer R, Ben-Dor U, Estlein P, Kabat A, Peretz D, Ratzersdorfer I, Krylov S, Chamovitz D, Sapir Y, Yovel Y, Hadany L. Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecol Lett 2019; 22:1483-1492. [PMID: 31286633 PMCID: PMC6852653 DOI: 10.1111/ele.13331] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/07/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
Can plants sense natural airborne sounds and respond to them rapidly? We show that Oenothera drummondii flowers, exposed to playback sound of a flying bee or to synthetic sound signals at similar frequencies, produce sweeter nectar within 3 min, potentially increasing the chances of cross pollination. We found that the flowers vibrated mechanically in response to these sounds, suggesting a plausible mechanism where the flower serves as an auditory sensory organ. Both the vibration and the nectar response were frequency‐specific: the flowers responded and vibrated to pollinator sounds, but not to higher frequency sound. Our results document for the first time that plants can rapidly respond to pollinator sounds in an ecologically relevant way. Potential implications include plant resource allocation, the evolution of flower shape and the evolution of pollinators sound. Finally, our results suggest that plants may be affected by other sounds as well, including anthropogenic ones.
Collapse
Affiliation(s)
- Marine Veits
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Itzhak Khait
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Uri Obolski
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Eyal Zinger
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Aya Goldshtein
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Kfir Saban
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Rya Seltzer
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Udi Ben-Dor
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Paz Estlein
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Areej Kabat
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Dor Peretz
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Ittai Ratzersdorfer
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Slava Krylov
- School of Mechanical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel Chamovitz
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Yuval Sapir
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Khait I, Obolski U, Yovel Y, Hadany L. Sound perception in plants. Semin Cell Dev Biol 2019; 92:134-138. [PMID: 30965110 DOI: 10.1016/j.semcdb.2019.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
Can plants perceive sound? And what sounds are they likely to be "listening" to? The environment of plants includes many informative sounds, produced by biotic and abiotic sources. An ability to respond to these sounds could thus have a significant adaptive value for plants. We suggest the term phytoacoustics to describe the emerging field exploring sound emission and sound detection in plants, and review the recent studies published on these topics. We describe evidence of plant responses to sounds, varying from changes in gene expression to changes in pathogen resistance and nectar composition. The main focus of this review is the effect of airborne sounds on living plants. We also review work on sound emissions by plants, and plant morphological adaptations to sound. Finally, we discuss the ecological contexts where response to sound would be most advantageous to plants.
Collapse
Affiliation(s)
- I Khait
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - U Obolski
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Y Yovel
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - L Hadany
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
16
|
Body MJA, Neer WC, Vore C, Lin CH, Vu DC, Schultz JC, Cocroft RB, Appel HM. Caterpillar Chewing Vibrations Cause Changes in Plant Hormones and Volatile Emissions in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:810. [PMID: 31297123 PMCID: PMC6607473 DOI: 10.3389/fpls.2019.00810] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/05/2019] [Indexed: 05/08/2023]
Abstract
Plant perception of insect feeding involves integration of the multiple signals involved: wounding, oral secretions, and substrate borne feeding vibrations. Although plant responses to wounding and oral secretions have been studied, little is known about how signals from the rapidly transmitted vibrations caused by chewing insect feeding are integrated to produce effects on plant defenses. In this study, we examined whether 24 h of insect feeding vibrations caused changes in levels of phytohormones and volatile organic compounds (VOCs) produced by leaves of Arabidopsis thaliana when they were subjected to just feeding vibrations or feeding vibrations and wounding + methyl jasmonate (MeJA), compared to their respective controls of silent sham or wounding + MeJA. We showed that feeding vibrations alone caused a decrease in the concentrations of most phytohormones, compared to those found in control plants receiving no vibrations. When feeding vibrations were combined with wounding and application of MeJA, the results were more complex. For hormones whose levels were induced by wounding and MeJA (jasmonic acid, indole-3-butyric acid), the addition of feeding vibrations caused an even larger response. If the level of hormone was unchanged by wounding and MeJA compared with controls, then the addition of feeding vibrations had little effect. The levels of some VOCs were influenced by the treatments. Feeding vibrations alone caused an increase in β-ionone and decrease in methyl salicylate, and wounding + MeJA alone caused a decrease in benzaldehyde and methyl salicylate. When feeding vibrations were combined with wounding + MeJA, the effects on β-ionone and methyl salicylate were similar to those seen with feeding vibrations alone, and levels of benzaldehyde remained low as seen with wounding + MeJA alone. The widespread downregulation of plant hormones observed in this study is also seen in plant responses to cold, suggesting that membrane fluidity changes and/or downstream signaling may be common to both phenomena.
Collapse
Affiliation(s)
- Mélanie J. A. Body
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Environmental Sciences, The University of Toledo, Toledo, OH, United States
| | - William C. Neer
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Caitlin Vore
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Cornell Cooperative Extension Erie County, East Aurora, NY, United States
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO, United States
| | - Danh C. Vu
- School of Natural Resources, University of Missouri, Columbia, MO, United States
| | - Jack C. Schultz
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Environmental Sciences, The University of Toledo, Toledo, OH, United States
| | - Reginald B. Cocroft
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Heidi M. Appel
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Environmental Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Heidi M. Appel,
| |
Collapse
|
17
|
Jung J, Kim SK, Kim JY, Jeong MJ, Ryu CM. Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:25. [PMID: 29441077 PMCID: PMC5797535 DOI: 10.3389/fpls.2018.00025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/08/2018] [Indexed: 05/26/2023]
Abstract
Sound is ubiquitous in nature. Recent evidence supports the notion that naturally occurring and artificially generated sound waves contribute to plant robustness. New information is emerging about the responses of plants to sound and the associated downstream signaling pathways. Here, beyond chemical triggers which can improve plant health by enhancing plant growth and resistance, we provide an overview of the latest findings, limitations, and potential applications of sound wave treatment as a physical trigger to modulate physiological traits and to confer an adaptive advantage in plants. We believe that sound wave treatment is a new trigger to help protect plants against unfavorable conditions and to maintain plant fitness.
Collapse
Affiliation(s)
- Jihye Jung
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Joo Y. Kim
- National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
18
|
Basu D, Haswell ES. Plant mechanosensitive ion channels: an ocean of possibilities. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:43-48. [PMID: 28750206 PMCID: PMC5714682 DOI: 10.1016/j.pbi.2017.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 05/19/2023]
Abstract
Mechanosensitive ion channels, transmembrane proteins that directly couple mechanical stimuli to ion flux, serve to sense and respond to changes in membrane tension in all branches of life. In plants, mechanosensitive channels have been implicated in the perception of important mechanical stimuli such as osmotic pressure, touch, gravity, and pathogenic invasion. Indeed, three established families of plant mechanosensitive ion channels play roles in cell and organelle osmoregulation and root mechanosensing - and it is likely that many other channels and functions await discovery. Inspired by recent discoveries in bacterial and animal systems, we are beginning to establish the conserved and the unique ways in which mechanosensitive channels function in plants.
Collapse
Affiliation(s)
- Debarati Basu
- Department of Biology, Mailcode 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Mailcode 1137, Washington University in Saint Louis, Saint Louis, MO 63130, USA.
| |
Collapse
|
19
|
López-Ribera I, Vicient CM. Drought tolerance induced by sound in Arabidopsis plants. PLANT SIGNALING & BEHAVIOR 2017; 12:e1368938. [PMID: 28829683 PMCID: PMC5647969 DOI: 10.1080/15592324.2017.1368938] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 05/26/2023]
Abstract
We examined the responses of sound-treated arabidopsis adult plants to water deprivation and the associated changes on gene expression. The survival of drought-induced plants was significantly higher in the sound treated plants (24,8%) compared with plants kept in silence (13,3%). RNA-seq revealed significant upregulation of 87 genes including 32 genes involved in abiotic stress responses, 31 involved in pathogen responses, 11 involved in oxidation-reduction processes, 5 involved in the regulation of transcription, 2 genes involved in protein phosphorylation/dephosphorylation and 13 involved in jasmonic acid or ethylene synthesis or responses. In addition, 2 genes involved in the responses to mechanical stimulus were also induced by sound, suggesting that touch and sound have at least partially common perception and signaling events.
Collapse
Affiliation(s)
- Ignacio López-Ribera
- Department of Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Carlos M. Vicient
- Department of Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
20
|
Abstract
There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Mailbox 1137, Saint Louis, MO, 63130, USA.
| |
Collapse
|
21
|
Hamant O, Haswell ES. Life behind the wall: sensing mechanical cues in plants. BMC Biol 2017. [PMID: 28697754 DOI: 10.1186/s12915-017-0403-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Mailbox 1137, Saint Louis, MO, 63130, USA.
| |
Collapse
|
22
|
Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Sci Rep 2017; 7:2527. [PMID: 28559545 PMCID: PMC5449397 DOI: 10.1038/s41598-017-02556-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 04/13/2017] [Indexed: 01/24/2023] Open
Abstract
Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants like gene expression, hormonal modulation, induced antioxidant activity and calcium spiking. It also alters the seed germination and growth of plants. In this study, we investigated the effects of SV on the resistance of Arabidopsis thaliana against Botrytis cinerea infection. The microarray analysis was performed on infected Arabidopsis plants pre-exposed to SV of 1000 Hertz with 100 decibels. Broadly, the transcriptomic analysis revealed up-regulation of several defense and SA-responsive and/or signaling genes. Quantitative real-time PCR (qRT-PCR) analysis of selected genes also validated the induction of SA-mediated response in the infected Arabidopsis plants pre-exposed to SV. Corroboratively, hormonal analysis identified the increased concentration of salicylic acid (SA) in the SV-treated plants after pathogen inoculation. In contrast, jasmonic acid (JA) level in the SV-treated plants remained stable but lower than control plants during the infection. Based on these findings, we propose that SV treatment invigorates the plant defense system by regulating the SA-mediated priming effect, consequently promoting the SV-induced resistance in Arabidopsis against B. cinerea.
Collapse
|