1
|
Coêlho ES, Everthon da Silva Ribeiro J, Oliveira PHA, Lopes WDA, Oliveira AKD, Souza MDF, Lins H, Benedito CP, Silveira LM, Barros Júnior AP, Valadão Silva D. Chemical Desiccation in the Preharvest of Cowpea: A Study of How the Time of Application Interferes in the Enzymatic and Physiological Aspects of Seedlings from Desiccated Plants. ACS OMEGA 2024; 9:34893-34904. [PMID: 39157107 PMCID: PMC11325495 DOI: 10.1021/acsomega.4c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Chemical desiccation in the preharvest of grains and seeds is commonly used in production fields. Using herbicides for this purpose is a viable alternative to reduce beans' exposure to adverse crop conditions. Our objectives were to evaluate (1) the efficacy of herbicides for accelerated defoliation of cowpea, (2) the impact of herbicide application on antioxidant enzyme activity and protein and amino acid contents in seeds, and (3) the effects of different herbicide application schedules on the physiological aspects of seeds. In the first experiment, in addition to the control treatment (without herbicides), seven herbicides and two mixtures were applied at night: diquat, flumioxazin, diquat + flumioxazin, glufosinate ammonium, saflufenacil, carfentrazone, diquat + carfentrazone, atrazine, and glyphosate. Diquat and its mixtures showed greater efficacy in anticipating the harvest. Flumioxazin and diquat alone reduced amino acid content by 61.72 and 51.44%, respectively. The same trend was observed for total soluble proteins. The activity of antioxidant enzymes (CAT, POD, PPO) increased, indicating oxidative stress caused by diquat and flumioxazin. In the second experiment, we tested three application times (6 a.m., 12 p.m., 6 p.m.) with diquat, diquat + flumioxazin, and diquat + carfentrazone. The lowest damage to chlorophyll a was at 6 a.m.; other times reduced photosynthetic pigments and increased carotenoid content. Total soluble sugars decreased by 27.74% with nocturnal application of diquat + flumioxazin. Our data indicate that herbicide use for desiccation affects seed quality. These findings highlight the need for selecting appropriate herbicides and application times. Future research should explore long-term impacts on crop yield and quality.
Collapse
Affiliation(s)
- Ester
dos Santos Coêlho
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - João Everthon da Silva Ribeiro
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | | | - Welder de Araújo
Rangel Lopes
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Anna Kézia
Soares de Oliveira
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | | | - Hamurábi
Anizio Lins
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Clarisse Pereira Benedito
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Lindomar Maria
da Silveira
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Aurélio Paes Barros Júnior
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Daniel Valadão Silva
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| |
Collapse
|
2
|
Tittlemier SA, Bestvater L, Chan J, Timofeiev V, Richter A, Wang K, Ruan Y, Izydorczyk M, Fu BX. Diverging fates of cadmium and glyphosate during pasta cooking. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1459-1469. [PMID: 37812147 DOI: 10.1080/19440049.2023.2264976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Durum wheat cultivars with varying abilities to accumulate cadmium were grown and treated in the field with a glyphosate-containing herbicide at different stages of maturity to produce grain with higher and lower concentrations of cadmium (0.066-0.214 mg/kg) and glyphosate (0.474-0.874 mg/kg). The grain was milled, and fractions were analysed for cadmium and glyphosate. The highest concentrations for both cadmium and glyphosate were associated with bran and shorts, although the percentage of total cadmium mass in bran (23-25%) was less than glyphosate (38%). The preparation of dried pasta from semolina and flour milling fractions reduced concentrations by a factor of 1.8 for glyphosate and 1.4 for cadmium. Dried pasta was cooked and analysed along with the cooking water for cadmium and glyphosate at seven-time points from 0 to 15 min. Concentrations of glyphosate in cooked pasta decreased significantly with cooking time; no decrease was observed for cadmium concentrations. Analysis of cooking water demonstrated that glyphosate migrated from pasta to the cooking water. After 15 min of cooking, approximately 73% of the total glyphosate mass had transferred from pasta to cooking water. Over the same time period, only 5% of the total cadmium mass had transferred from pasta to cooking water.
Collapse
Affiliation(s)
- Sheryl A Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | - Lianna Bestvater
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | - Jason Chan
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | - Valentina Timofeiev
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | - Anja Richter
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | - Kun Wang
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Marta Izydorczyk
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | - Bin Xiao Fu
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Abo-Shady AM, Osman MEAH, Gaafar RM, Ismail GA, El-Nagar MMF. Cyanobacteria as a Valuable Natural Resource for Improved Agriculture, Environment, and Plant Protection. WATER, AIR, AND SOIL POLLUTION 2023; 234:313. [PMID: 37192997 PMCID: PMC10156578 DOI: 10.1007/s11270-023-06331-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/21/2023] [Indexed: 05/18/2023]
Abstract
Taking into consideration, the challenges faced by the environment and agro-ecosystem make increased for suggestions more reliable methods to help increase food security and deal with difficult environmental problems. Environmental factors play a critical role in the growth, development, and productivity of crop plants. Unfavorable changes in these factors, such as abiotic stresses, can result in plant growth deficiencies, yield reductions, long-lasting damage, and even death of the plants. In reflection of this, cyanobacteria are now considered important microorganisms that can improve the fertility of soils and the productivity of crop plants due to their different features like photosynthesis, great biomass yield, ability to fix the atmospheric N2, capability to grow on non-arable lands, and varied water sources. Furthermore, numerous cyanobacteria consist of biologically active substances like pigments, amino acids, polysaccharides, phytohormones, and vitamins that support plant growth enhancement. Many studies have exposed the probable role of these compounds in the alleviation of abiotic stress in crop plants and have concluded with evidence of physiological, biochemical, and molecular mechanisms that confirm that cyanobacteria can decrease the stress and induce plant growth. This review discussed the promising effects of cyanobacteria and their possible mode of action to control the growth and development of crop plants as an effective method to overcome different stresses. Graphical Abstract
Collapse
Affiliation(s)
- Atef M. Abo-Shady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | | - Reda M. Gaafar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Gehan A. Ismail
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | |
Collapse
|
4
|
Germination of Triticum aestivum L.: Effects of Soil–Seed Interaction on the Growth of Seedlings. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6020037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Seed size, sowing depth, and seed disinfection can affect seed germination and seedling establishment, which, in turn, can directly affect crop growth and yield. The current study was comprised of two experiments, the first of which was conducted in the laboratory, and a second which was performed under glasshouse conditions. The objective of these experiments was to investigate the effects of seed size, sowing depth, and seed disinfection on seed germination and initial seedling growth of selected wheat (Triticum aestivum L.) cultivars. The treatments in laboratory experiment were arranged in a completely randomized design, which included: (Ι) four wheat cultivars (Pishgam, Haydari, Soissons, and Mihan), (ΙΙ) two seed size classes (x < 2.25 mm, and x > 2.25 mm), and two disinfection treatments (no-disinfection and disinfection), (ΙΙΙ) with five replicates. In addition to the aforementioned treatments, the effect of planting depth (4, 6, and 8 cm) was also investigated in the subsequent glasshouse experiment. The best results were obtained at a sowing depth of 4 cm, in the non-disinfected treatment, using large seeds. In contrast, the lowest percentage and speed of seed germination and vigor index were observed in seeds sown at 8 cm depth, in the disinfected seed treatment, using small seeds. Large seeds contain larger nutrient stores which may improve seed germination indices, which would therefore result in improved percentage and speed of seed germination, followed by faster coleoptile and seedling growth, higher seedling dry weight and seed vigor. These data also illustrated that seed disinfection in the Pishgam and Haydari cultivars had inhibitory effects upon coleoptile growth and seedling length, which could be related to the fungicide’s chemical composition. Unlike other cultivars, disinfection did not show a significant effect on the Soissons cultivar. Based on our data, in order to improve both the speed of wheat seed germination and subsequent plant growth and development; it is necessary to select high-quality, large seeds, planted at a specific planting depth, which have been treated with an effective disinfectant; all of which will be specific for the wheat cultivar in question. Overall, the current study has provided useful information on the effect size seed, sowing depth, and disinfection have upon germination characteristics and seedling growth of wheat cultivars, which can form the basis for future field scale trails.
Collapse
|
5
|
Diddi N, Lai L, Brookbank BP, Hussain S, Nambara E, Todd C, Nourimand M, Tar'an B, Song D, Holbrook L, Doshi K, Loewen MC, Luna EK, Shipp J, Leach JE, Robinson SJ, Abrams SR. 3'-(Phenyl alkynyl) analogs of abscisic acid: synthesis and biological activity of potent ABA antagonists. Org Biomol Chem 2021; 19:2978-2985. [PMID: 33729254 DOI: 10.1039/d1ob00166c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the synthesis and biological testing of 3'-(phenyl alkynyl) abscisic ABA analogs, a new class of potent ABA antagonists. These ABA analogs incorporate a rigid framework of eight carbon atoms attached at the 3'-carbon atom of ABA that prevents folding of the ABA analog-bound receptor required for ABA signalling. The two-step synthesis is based upon the optimized conversion of natural (S)-ABA to 3'-iodo ABA which can be coupled to phenyl acetylenes using Sonogashira conditions, or to styryl compounds through Suzuki chemistry. The parent 3'-(phenyl alkynyl) ABA analog 7 was obtained in 29% yield, 74% yield based on recovered starting material. In a lentil seed germination assay, compound 7 was found to have more potent activity than other known 3'-substituted ABA antagonists to date. In a structure activity study parasubstituted phenyl alkynyl analogs had comparable activity to the analog 7 while the 3'-styryl ABA 18 was only slightly less active. Analog 7 overcame ABA inhibition of germination and seedling growth in a wide range of mono and dicot plant species, including canola, lentil, soybean, rice, wheat, barley, cannabis and canary seed. 3'-(Phenyl alkynyl) ABA analogs have numerous potential practical agricultural applications including promoting ripening of crops, dormancy breaking of seeds and woody perennials, as well as promoting seed germination, and growth under stress conditions as demonstrated in this report.
Collapse
Affiliation(s)
- Naveen Diddi
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ribeiro JPO, Medeiros ADD, Caliari IP, Trancoso ACR, Miranda RMD, Freitas FCLD, Silva LJD, Dias DCFDS. FT-NIR and linear discriminant analysis to classify chickpea seeds produced with harvest aid chemicals. Food Chem 2020; 342:128324. [PMID: 33069535 DOI: 10.1016/j.foodchem.2020.128324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/15/2022]
Abstract
Spectroscopy and machine learning (ML) algorithms have provided significant advances to the modern food industry. Instruments focusing on near-infrared spectroscopy allow obtaining information about seed and grain chemical composition, which can be related to changes caused by field pesticides. We investigated the potential of FT-NIR spectroscopy combined with Linear Discriminant Analysis (LDA) to discriminate chickpea seeds produced using different desiccant herbicides at harvest anticipation. Five herbicides applied at three moments of the plant reproductive stage were utilized. The NIR spectra obtained from individual seeds were used to build ML models based on LDA algorithm. The models developed to identify the herbicide and the plant phenological stage at which it was applied reached 94% in the independent validation set. Thus, the LDA models developed using near-infrared spectral data provided to be efficient, quick, non-destructive, and accurate to identify differences between seeds due to pre-harvest herbicides application.
Collapse
|
7
|
Khazaei H, Subedi M, Nickerson M, Martínez-Villaluenga C, Frias J, Vandenberg A. Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods 2019; 8:E391. [PMID: 31487958 PMCID: PMC6769807 DOI: 10.3390/foods8090391] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 11/17/2022] Open
Abstract
Grain legumes are widely recognized as staple sources of dietary protein worldwide. Lentil seeds are an excellent source of plant-based proteins and represent a viable alternative to animal and soybean proteins for food processing formulations. Lentil proteins provide not only dietary amino acids but are also a source of bioactive peptides that provide health benefits. This review focuses on the current knowledge of seed protein, extraction and isolation methods, bioactive peptides, and food applications of lentil protein. Lentil is the most rapidly expanding crop for direct human consumption, and has potential for greater impact as a protein source for food processing applications. Improvements in lentil protein quality, amino acid composition, and processing fractions will enhance the nutritional quality of this rapidly expanding crop globally.
Collapse
Affiliation(s)
- Hamid Khazaei
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Maya Subedi
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Mike Nickerson
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Cristina Martínez-Villaluenga
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
8
|
Subedi M, Bett KE, Khazaei H, Vandenberg A. Genetic Mapping of Milling Quality Traits in Lentil ( Lens culinaris Medik.). THE PLANT GENOME 2018; 11:170092. [PMID: 30025017 DOI: 10.3835/plantgenome2017.10.0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Milling qualities are key traits for the red lentil ( Medik.) industry as price is largely determined by recovery yield. milling involves removal of the seed coat and splitting of the cotyledon to produce either splits or footballs (cotyledons still attached). The objectives of the study were to determine the heritability of the milling traits dehulling efficiency (DE), milling recovery (MR), and football recovery (FR) and to identify the genomic regions controlling them. We used a lentil recombinant inbred population from the cross 'CDC Robin' × '946a-46', which have contrasting seed characteristics. The mapping population consists of 127 F-derived lentil recombinant inbred lines that were phenotyped for milling quality parameters from four site-years in Saskatchewan, Canada. A total of 534 single nucleotide polymorphism markers, seven simple sequence repeat markers, and four morphological markers were used for quantitative trait locus (QTL) mapping. The broad-sense heritability was moderate for DE and MR and relatively low for FR. Milling quality traits were significantly correlated with seed shape (seed diameter and seed plumpness). Multiple QTLs for milling traits were detected in six of seven linkage groups (LGs). The most stable QTLs governing DE and MR were clustered on LGs 1, 2, 3, and 7, whereas FR QTLs were clustered on LGs 4, 5, 6, and 7. The molecular markers identified for these traits could be used for improving milling quality in lentil breeding programs.
Collapse
|
9
|
Khazaei H, Fedoruk M, Caron CT, Vandenberg A, Bett KE. Single Nucleotide Polymorphism Markers Associated with Seed Quality Characteristics of Cultivated Lentil. THE PLANT GENOME 2018; 11:170051. [PMID: 29505642 DOI: 10.3835/plantgenome2017.06.0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The dimensions of lentil ( Medik.) seeds are important quality parameters that are major determinants of market preference, cooking time, and post-harvest milling quality. Knowledge of the genetic control of traits related to seed dimensions would be useful for crop improvement. The principal aim of this study was to identify single nucleotide polymorphism (SNP) markers linked to genes that control seed diameter, seed thickness, and seed plumpness. Association mapping analysis with SNP markers was used to study the seed dimensions of 138 diverse cultivated lentil accessions grown at two locations in Saskatchewan, Canada, in 2011 and 2012. Six marker-trait associations were shown to be significant for the studied seed dimension characteristics. Two SNP markers closely associated with seed diameter across locations and years identified in previous work were validated in this study. Three additional marker-seed thickness associations were identified. Using the association mapping strategy, we confirmed the presence of two genomic regions controlling seed diameter and plumpness. This information can be used worldwide as a resource for lentil seed quality improvement programs.
Collapse
|