1
|
Yin Z, Wei X, Cao Y, Dong Z, Long Y, Wan X. Regulatory balance between ear rot resistance and grain yield and their breeding applications in maize and other crops. J Adv Res 2024:S2090-1232(24)00479-X. [PMID: 39447642 DOI: 10.1016/j.jare.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Fungi are prevalent pathogens that cause substantial yield losses of major crops. Ear rot (ER), which is primarily induced by Fusarium or Aspergillus species, poses a significant challenge to maize production worldwide. ER resistance is regulated by several small effect quantitative trait loci (QTLs). To date, only a few ER-related genes have been identified that impede molecular breeding efforts to breed ER-resistant maize varieties. AIM OF REVIEW Our aim here is to explore the research progress and mine genic resources related to ER resistance, and to propose a regulatory model elucidating the ER-resistant mechanism in maize as well as a trade-off model illustrating how crops balance fungal resistance and grain yield. Key Scientific Concepts of Review: This review presents a comprehensive bibliometric analysis of the research history and current trends in the genetic and molecular regulation underlying ER resistance in maize. Moreover, we analyzed and discovered the genic resources by identifying 162 environmentally stable loci (ESLs) from various independent forward genetics studies as well as 1391 conservatively differentially expressed genes (DEGs) that respond to Fusarium or Aspergillus infection through multi-omics data analysis. Additionally, this review discusses the syntenies found among maize ER, wheat Fusariumhead blight (FHB), and rice Bakanaedisease (RBD) resistance-related loci, along with the significant overlap between fungal resistance loci and reported yield-related loci, thus providing valuable insights into the regulatory mechanisms underlying the trade-offs between yield and defense in crops.
Collapse
Affiliation(s)
- Zechao Yin
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
2
|
Baisakh N, Da Silva EA, Pradhan AK, Rajasekaran K. Comprehensive meta-analysis of QTL and gene expression studies identify candidate genes associated with Aspergillus flavus resistance in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1214907. [PMID: 37534296 PMCID: PMC10392829 DOI: 10.3389/fpls.2023.1214907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Aflatoxin (AF) contamination, caused by Aspergillus flavus, compromises the food safety and marketability of commodities, such as maize, cotton, peanuts, and tree nuts. Multigenic inheritance of AF resistance impedes conventional introgression of resistance traits into high-yielding commercial maize varieties. Several AF resistance-associated quantitative trait loci (QTLs) and markers have been reported from multiple biparental mapping and genome-wide association studies (GWAS) in maize. However, QTLs with large confidence intervals (CI) explaining inconsistent phenotypic variance limit their use in marker-assisted selection. Meta-analysis of published QTLs can identify significant meta-QTLs (MQTLs) with a narrower CI for reliable identification of genes and linked markers for AF resistance. Using 276 out of 356 reported QTLs controlling resistance to A. flavus infection and AF contamination in maize, we identified 58 MQTLs on all 10 chromosomes with a 66.5% reduction in the average CI. Similarly, a meta-analysis of maize genes differentially expressed in response to (a)biotic stresses from the to-date published literature identified 591 genes putatively responding to only A. flavus infection, of which 14 were significantly differentially expressed (-1.0 ≤ Log2Fc ≥ 1.0; p ≤ 0.05). Eight MQTLs were validated by their colocalization with 14 A. flavus resistance-associated SNPs identified from GWAS in maize. A total of 15 genes were physically close between the MQTL intervals and SNPs. Assessment of 12 MQTL-linked SSR markers identified three markers that could discriminate 14 and eight cultivars with resistance and susceptible responses, respectively. A comprehensive meta-analysis of QTLs and differentially expressed genes led to the identification of genes and makers for their potential application in marker-assisted breeding of A. flavus-resistant maize varieties.
Collapse
Affiliation(s)
- Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Eduardo A. Da Silva
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
- Department of Agriculture, Federal University of Lavras, Lavras, Brazil
| | - Anjan K. Pradhan
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), New Orleans, LA, United States
| |
Collapse
|
3
|
Gaikpa DS, Kessel B, Presterl T, Ouzunova M, Galiano-Carneiro AL, Mayer M, Melchinger AE, Schön CC, Miedaner T. Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:793-805. [PMID: 33274402 PMCID: PMC7925457 DOI: 10.1007/s00122-020-03731-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE High genetic variation in two European maize landraces can be harnessed to improve Gibberella ear rot resistance by integrated genomic tools. Fusarium graminearum (Fg) causes Gibberella ear rot (GER) in maize leading to yield reduction and contamination of grains with several mycotoxins. This study aimed to elucidate the molecular basis of GER resistance among 500 doubled haploid lines derived from two European maize landraces, "Kemater Landmais Gelb" (KE) and "Petkuser Ferdinand Rot" (PE). The two landraces were analyzed individually using genome-wide association studies and genomic selection (GS). The lines were genotyped with a 600-k maize array and phenotyped for GER severity, days to silking, plant height, and seed-set in four environments using artificial infection with a highly aggressive Fg isolate. High genotypic variances and broad-sense heritabilities were found for all traits. Genotype-environment interaction was important throughout. The phenotypic (r) and genotypic ([Formula: see text]) correlations between GER severity and three agronomic traits were low (r = - 0.27 to 0.20; [Formula: see text]= - 0.32 to 0.22). For GER severity, eight QTLs were detected in KE jointly explaining 34% of the genetic variance. In PE, no significant QTLs for GER severity were detected. No common QTLs were found between GER severity and the three agronomic traits. The mean prediction accuracies ([Formula: see text]) of weighted GS (wRR-BLUP) were higher than [Formula: see text] of marker-assisted selection (MAS) and unweighted GS (RR-BLUP) for GER severity. Using KE as the training set and PE as the validation set resulted in very low [Formula: see text] that could be improved by using fixed marker effects in the GS model.
Collapse
Affiliation(s)
| | - Bettina Kessel
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Thomas Presterl
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Milena Ouzunova
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | | | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Population Genetics and Seed Science, University of Hohenheim, Stuttgart, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
4
|
Sun J, Xia Y, Ming D. Whole-Genome Sequencing and Bioinformatics Analysis of Apiotrichum mycotoxinivorans: Predicting Putative Zearalenone-Degradation Enzymes. Front Microbiol 2020; 11:1866. [PMID: 32849454 PMCID: PMC7416605 DOI: 10.3389/fmicb.2020.01866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Biological detoxification techniques have been developed by using microorganisms such as bacteria, yeast, and fungi to eliminate mycotoxin contamination. However, due to the lack of molecular details of related enzymes, the underlying mechanism of detoxification of many mycotoxins remain unclear. On the other hand, the next generation sequencing technology provides a large number of genomic data of microorganisms that can degrade mycotoxins, which makes it possible to use bioinformatics technology to study the molecular details of relevant enzymes. In this paper, we report the whole-genome sequencing of Apiotrichum mycotoxinivorans (Trichosporon mycotoxinivorans in old taxonomy) and the putative Baeyer-Villiger monooxygenases (BVMOs) and carboxylester hydrolases for zearalenone (ZEA) degradation through bioinformatic analysis. In particular, we developed a working pipeline for genome-scaled prediction of substrate-specific enzyme (GPSE, available at https://github.com/JinyuanSun/GPSE), which ultimately builds homologous structural and molecular docking models to demonstrate how the relevant degrading enzymes work. We expect that the enzyme-prediction woroflow process GPSE developed in this study might help accelerate the discovery of new detoxification enzymes.
Collapse
Affiliation(s)
- Jinyuan Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Xia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
5
|
Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, Lei Y, Ni X, Huai D, Fountain JC, Njoroge S, Mahuku G, Radhakrishnan T, Zhuang W, Guo B, Liao B, Singam P, Pandey MK, Bandyopadhyay R, Varshney RK. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut ( Arachis hypogaea L.) and Maize ( Zea mays L.). Front Microbiol 2020; 11:227. [PMID: 32194520 PMCID: PMC7063101 DOI: 10.3389/fmicb.2020.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aflatoxins are secondary metabolites produced by soilborne saprophytic fungus Aspergillus flavus and closely related species that infect several agricultural commodities including groundnut and maize. The consumption of contaminated commodities adversely affects the health of humans and livestock. Aflatoxin contamination also causes significant economic and financial losses to producers. Research efforts and significant progress have been made in the past three decades to understand the genetic behavior, molecular mechanisms, as well as the detailed biology of host-pathogen interactions. A range of omics approaches have facilitated better understanding of the resistance mechanisms and identified pathways involved during host-pathogen interactions. Most of such studies were however undertaken in groundnut and maize. Current efforts are geared toward harnessing knowledge on host-pathogen interactions and crop resistant factors that control aflatoxin contamination. This study provides a summary of the recent progress made in enhancing the understanding of the functional biology and molecular mechanisms associated with host-pathogen interactions during aflatoxin contamination in groundnut and maize.
Collapse
Affiliation(s)
- Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yong Lei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture – Agriculture Research Service, Tifton, GA, United States
| | - Dongxin Huai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jake C. Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics, Lilongwe, Malawi
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | - Weijian Zhuang
- Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United States Department of Agriculture – Agricultural Research Service, Tifton, GA, United States
| | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
6
|
Pfliegler WP, Pócsi I, Győri Z, Pusztahelyi T. The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota. Front Microbiol 2020; 10:2921. [PMID: 32117074 PMCID: PMC7029702 DOI: 10.3389/fmicb.2019.02921] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/04/2019] [Indexed: 01/06/2023] Open
Abstract
Species of the highly diverse fungal genus Aspergillus are well-known agricultural pests, and, most importantly, producers of various mycotoxins threatening food safety worldwide. Mycotoxins are studied predominantly from the perspectives of human and livestock health. Meanwhile, their roles are far less known in nature. However, to understand the factors behind mycotoxin production, the roles of the toxins of Aspergilli must be understood from a complex ecological perspective, taking mold-plant, mold-microbe, and mold-animal interactions into account. The Aspergilli may switch between saprophytic and pathogenic lifestyles, and the production of secondary metabolites, such as mycotoxins, may vary according to these fungal ways of life. Recent studies highlighted the complex ecological network of soil microbiotas determining the niches that Aspergilli can fill in. Interactions with the soil microbiota and soil macro-organisms determine the role of secondary metabolite production to a great extent. While, upon infection of plants, metabolic communication including fungal secondary metabolites like aflatoxins, gliotoxin, patulin, cyclopiazonic acid, and ochratoxin, influences the fate of both the invader and the host. In this review, the role of mycotoxin producing Aspergillus species and their interactions in the ecosystem are discussed. We intend to highlight the complexity of the roles of the main toxic secondary metabolites as well as their fate in natural environments and agriculture, a field that still has important knowledge gaps.
Collapse
Affiliation(s)
- Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Gaikpa DS, Miedaner T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2721-2739. [PMID: 31440772 DOI: 10.1007/s00122-019-03412-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/13/2019] [Indexed: 05/26/2023]
Abstract
Genetic mapping, genomic profiling and bioinformatic approaches were used to identify putative resistance genes for ear rots and low mycotoxin contamination in maize. Genomic selection seems to have good perspectives. Maize is globally an indispensable crop for humans and livestock. About 30% of yield is lost by fungal diseases with Gibberella, Fusarium and Aspergillus ear rots (ERs) having a high economic impact in most maize-growing regions of the world. They reduce not only yield, but also contaminate grains with mycotoxins like deoxynivalenol, zearalenone, fumonisins and aflatoxins, respectively. These mycotoxins pose serious health problems to humans and animals. A number of studies have been conducted to dissect the genetic architecture of resistance to these three major ear rots over the past decade. The review concentrates on studies carried out to locate quantitative trait loci (QTL) and candidate genes (CG) on the maize genome as well as the application of genomic selection in maize for resistance against Fusarium graminearum, Fusarium verticillioides and Aspergillus flavus. QTL studies by linkage or genome-wide association mapping, omic technologies (genomics, proteomics, transcriptomics and metabolomics) and bioinformatics are the methods used in the current studies to propose resistance genes against ear rot pathogens. Though a number of QTL and CG are reported, only a few specific genes were found to directly confer ER resistance in maize. A combination of two or more gene identification methods would provide a more powerful and reliable tool. Genomic selection seems to be promising for ER resistance breeding, but there are only a limited number of studies in this area. A strategy that can accurately validate and predict genotypes with major effect QTL and CG for selection will be worthwhile for practical breeding against ERs and mycotoxin contamination in maize.
Collapse
Affiliation(s)
- David Sewordor Gaikpa
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.
| |
Collapse
|
8
|
Gressel J, Polturak G. Suppressing aflatoxin biosynthesis is not a breakthrough if not useful. PEST MANAGEMENT SCIENCE 2018; 74:17-21. [PMID: 28762637 DOI: 10.1002/ps.4694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Liver-affecting, carcinogenic aflatoxins produced by Aspergillus spp. are a major problem, especially in the humid developing world where storage conditions are often optimal for the fungi. Peanuts and maize have been transformed with RNAi constructs targeting Aspergillus flavus polyketide-synthase, an early key enzyme in aflatoxin biosynthesis. Aflatoxin biosynthesis was suppressed in developing immature grain, less so in late maturing grain, and it is doubtful that the technology will be effective in near dry mature grain. The infected grain was still mouldy. As Aspergillus that infects grain preharvest can continue to grow and produce aflatoxin in poorly stored grain, and grain storage insects vector further infections, this technology seems to have little potential utility in the humid tropics. The biotechnological approaches of RNAi directly targeting Aspergillus, coupled with transgenic insecticidal proteins should be far more effective. These biotechnological approaches can be used in tandem with the RNAi against polyketide-synthase, as well as with irradiation, biocontrol and better grain drying and hermetic dry storage in a controlled atmosphere. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Polturak
- Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|