1
|
Vargas-Cortez T, Guerrero-Molina ED, Axosco-Marin J, Vázquez-Ramos JM, Lara-Núñez A. The glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and hexokinase interact with cell cycle proteins in maize. FEBS Lett 2023; 597:2072-2085. [PMID: 37489921 DOI: 10.1002/1873-3468.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Cyclin/cyclin-dependent kinase (CDK) heterodimers have multiple phosphorylation targets and may alter the activity of these targets. Proteins from different metabolic processes are among the phosphorylation targets, that is, enzymes of central carbon metabolism. This work explores the interaction of Cyc/CDK complex members with the glycolytic enzymes hexokinase 7 (HXK7) and glyceraldehyde-3-phosphate dehydrogenase (GAP). Both enzymes interacted steadily with CycD2;2, CycB2;1 and CDKA;1 but not with CDKB1;1. However, Cyc/CDKB1;1 complexes phosphorylated both enzymes, decreasing their activities. Treatment with a CDK-specific inhibitor (RO-3306) or with lambda phosphatase after kinase assay restored total HXK7 activity, but not GAP activity. In enzymatic assays, increasing concentrations of CDKB1;1, but not of CycD2;2, CycB2;1 or CycD2;2/CDKB1;1 complex, decreased GAP activity. Cell cycle regulators may modulate carbon channeling in glycolysis by two different mechanisms: Cyc/CDK-mediated phosphorylation of targets (e.g., HXK7; canonical mechanism) or by direct and transient interaction of the metabolic enzyme (e.g., GAP) with CDKB1;1 without a Cyc partner (alternative mechanism).
Collapse
Affiliation(s)
- Teresa Vargas-Cortez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| | | | - Javier Axosco-Marin
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| | | | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
2
|
Li Y, Fan K, Shen J, Wang Y, Jeyaraj A, Hu S, Chen X, Ding Z, Li X. Glycine-Induced Phosphorylation Plays a Pivotal Role in Energy Metabolism in Roots and Amino Acid Metabolism in Leaves of Tea Plant. Foods 2023; 12:foods12020334. [PMID: 36673426 PMCID: PMC9858451 DOI: 10.3390/foods12020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Phosphorylation is the most extensive post-translational modification of proteins and thus regulates plant growth. However, the regulatory mechanism of phosphorylation modification on the growth of tea plants caused by organic nitrogen is still unclear. In order to explore the phosphorylation modification mechanism of tea plants in response to organic nitrogen, we used glycine as the only nitrogen source and determined and analyzed the phosphorylated proteins in tea plants by phosphoproteomic analysis. The results showed that the phosphorylation modification induced by glycine-supply played important roles in the regulation of energy metabolism in tea roots and amino acid metabolism in tea leaves. In roots, glycine-supply induced dephosphorylation of proteins, such as fructose-bisphosphate aldolase cytoplasmic isozyme, glyceraldehyde-3-phosphate dehydrogenase, and phosphoenolpyruvate carboxylase, resulted in increased intensity of glycolysis and decreased intensity of tricarboxylic acid cycle. In leaves, the glycine-supply changed the phosphorylation levels of glycine dehydrogenase, aminomethyltransferase, glutamine synthetase, and ferredoxin-dependent glutamate synthase, which accelerated the decomposition of glycine and enhanced the ability of ammonia assimilation. In addition, glycine-supply could improve the tea quality by increasing the intensity of amino acids, such as theanine and alanine. This research clarified the important regulatory mechanism of amino acid nitrogen on tea plant growth and development through protein phosphorylation.
Collapse
Affiliation(s)
- Yuchen Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunkai Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaotang Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.D.); (X.L.); Tel.: +86-(53)-288030231 (Z.D.); +86-(25)-84396651 (X.L.)
| |
Collapse
|
3
|
Castrejón-Godínez ML, Tovar-Sánchez E, Ortiz-Hernández ML, Encarnación-Guevara S, Martínez-Batallar ÁG, Hernández-Ortiz M, Sánchez-Salinas E, Rodríguez A, Mussali-Galante P. Proteomic analysis of Burkholderia zhejiangensis CEIB S4-3 during the methyl parathion degradation process. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105197. [PMID: 36127069 DOI: 10.1016/j.pestbp.2022.105197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Methyl parathion is an organophosphorus pesticide widely employed worldwide to control pests in agricultural and domestic environments. However, due to its intensive use, high toxicity, and environmental persistence, methyl parathion is recognized as an important ecosystem and human health threat, causing severe environmental pollution events and numerous human poisoning and deaths each year. Therefore, identifying and characterizing microorganisms capable of fully degrading methyl parathion and its degradation metabolites is a crucial environmental task for the bioremediation of pesticide-polluted sites. Burkholderia zhejiangensis CEIB S4-3 is a bacterial strain isolated from agricultural soils capable of immediately hydrolyzing methyl parathion at a concentration of 50 mg/L and degrading the 100% of the released p-nitrophenol in a 12-hour lapse when cultured in minimal salt medium. In this study, a comparative proteomic analysis was conducted in the presence and absence of methyl parathion to evaluate the biological mechanisms implicated in the methyl parathion biodegradation and resistance by the strain B. zhejiangensis CEIB S4-3. In each treatment, the changes in the protein expression patterns were evaluated at three sampling times, zero, three, and nine hours through the use of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and the differentially expressed proteins were identified by mass spectrometry (MALDI-TOF). The proteomic analysis allowed the identification of 72 proteins with differential expression, 35 proteins in the absence of the pesticide, and 37 proteins in the experimental condition in the presence of methyl parathion. The identified proteins are involved in different metabolic processes such as the carbohydrate and amino acids metabolism, carbon metabolism and energy production, fatty acids β-oxidation, and the aromatic compounds catabolism, including enzymes of the both p-nitrophenol degradation pathways (Hydroquinone dioxygenase and Hydroxyquinol 1,2 dioxygenase), as well as the overexpression of proteins implicated in cellular damage defense mechanisms such as the response and protection of the oxidative stress, reactive oxygen species defense, detoxification of xenobiotics, and DNA repair processes. According to these data, B. zhejiangensis CEIB S4-3 overexpress different proteins related to aromatic compounds catabolism and with the p-nitrophenol degradation pathways, the higher expression levels observed in the two subunits of the enzyme Hydroquinone dioxygenase, suggest a preferential use of the Hydroquinone metabolic pathway in the p-nitrophenol degradation process. Moreover the overexpression of several proteins implicated in the oxidative stress response, xenobiotics detoxification, and DNA damage repair reveals the mechanisms employed by B. zhejiangensis CEIB S4-3 to counteract the adverse effects caused by the methyl parathion and p-nitrophenol exposure.
Collapse
Affiliation(s)
- María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico.
| | - Ma Laura Ortiz-Hernández
- Misión Sustentabilidad México A.C., Priv. Laureles 6, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Sergio Encarnación-Guevara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Ángel Gabriel Martínez-Batallar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Magdalena Hernández-Ortiz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Enrique Sánchez-Salinas
- Misión Sustentabilidad México A.C., Priv. Laureles 6, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico.
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
4
|
Niu E, Ye C, Zhao W, Kondo H, Wu Y, Chen J, Andika IB, Sun L. Coat protein of Chinese wheat mosaic virus upregulates and interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase, a negative regulator of plant autophagy, to promote virus infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1631-1645. [PMID: 35713231 DOI: 10.1111/jipb.13313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is an intracellular degradation mechanism involved in antiviral defense, but the strategies employed by plant viruses to counteract autophagy-related defense remain unknown for the majority of the viruses. Herein, we describe how the Chinese wheat mosaic virus (CWMV, genus Furovirus) interferes with autophagy and enhances its infection in Nicotiana benthamiana. Yeast two-hybrid screening and in vivo/in vitro assays revealed that the 19 kDa coat protein (CP19K) of CWMV interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs), negative regulators of autophagy, which bind autophagy-related protein 3 (ATG3), a key factor in autophagy. CP19K also directly interacts with ATG3, possibly leading to the formation of a CP19K-GAPC-ATG3 complex. CP19K-GAPC interaction appeared to intensify CP19K-ATG3 binding. Moreover, CP19K expression upregulated GAPC gene transcripts and reduced autophagic activities. Accordingly, the silencing of GAPC genes in transgenic N. benthamiana reduced CWMV accumulation, whereas CP19K overexpression enhanced it. Overall, our results suggest that CWMV CP19K interferes with autophagy through the promotion and utilization of the GAPC role as a negative regulator of autophagy.
Collapse
Affiliation(s)
- Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xi'an, 712100, China
| | - Chaozheng Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xi'an, 712100, China
| | - Wanying Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xi'an, 712100, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xi'an, 712100, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xi'an, 712100, China
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| |
Collapse
|
5
|
Gao H, Niu J, Zhao W, Zhang D, Li S, Xu Y, Liu Y. The Effect and Regulation Mechanism of Powdery Mildew on Wheat Grain Carbon Metabolism. STARCH-STARKE 2022. [DOI: 10.1002/star.202100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongyun Gao
- School of Life Sciences Zhengzhou Normal University Zhengzhou 450044 China
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat Henan Agricultural University Zhengzhou 450046 China
| | - Wanyong Zhao
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou 450000 China
| | - Dale Zhang
- School of Life Sciences Henan University Kaifeng 475004 China
| | - Suoping Li
- School of Life Sciences Henan University Kaifeng 475004 China
| | - Yanhua Xu
- School of Life Sciences Zhengzhou Normal University Zhengzhou 450044 China
| | - Yumiao Liu
- School of Life Sciences Zhengzhou Normal University Zhengzhou 450044 China
| |
Collapse
|
6
|
Li L, Lyu C, Chen J, Lu Y, Yang S, Ni S, Zheng S, Yu L, Wang X, Wang Q, Lu L. Snakin-2 interacts with cytosolic glyceraldehyde-3-phosphate dehydrogenase 1 to inhibit sprout growth in potato tubers. HORTICULTURE RESEARCH 2022; 9:uhab060. [PMID: 35043182 PMCID: PMC8972991 DOI: 10.1093/hr/uhab060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/12/2021] [Indexed: 05/05/2023]
Abstract
The potato tuber is the main nutrient supply and reproductive organ; however, tuber sprouting can reduce its commercial value. Snakin-2 (StSN2) was first reported as an antimicrobial peptide that positively regulates potato disease resistance. Our recent study suggested StSN2 overexpression inhibited sprout growth, while the sprouting process was accelerated in StSN2 RNAi lines. Cytoplasmic glyceraldehyde-3- phosphate dehydrogenase 1 (StGAPC1) was identified as a candidate protein that interacts with StSN2 by coimmunoprecipitation/mass spectrometry (CoIP/MS) experiments. Here, we report that the expression levels of StSN2 and StGAPC1 decreased during sprouting compared with dormancy. Coexpression of StSN2 and StGAPC1 in bud eyes and apical buds was verified by immunofluorescence analysis of paraffin sections. In addition, interaction of StSN2 and StGAPC1 was confirmed by yeast two-hybrid, coimmunoprecipitation and split luciferase complementation assays. Overexpression of StGAPC1 depressed sprout growth, which is similar to the function of StSN2, and StSN2- and StGAPC1-overexpressing lines showed decreased glucose, fructose and galactose content. The interaction of StSN2 and StGAPC1 enhanced StGAPC1 activity and decreased its oxidative modification to inhibit sprout growth. Our results suggest that StSN2 plays a regulatory role in tuber sprout growth through interaction with StGAPC1.
Collapse
Affiliation(s)
- Liqin Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Chengcheng Lyu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Jing Chen
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Yifei Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Shiming Yang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Su Ni
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Shunlin Zheng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Liping Yu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Xiyao Wang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Qiang Wang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| | - Liming Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
| |
Collapse
|
7
|
Matiolli CC, Soares RC, Alves HLS, Abreu IA. Turning the Knobs: The Impact of Post-translational Modifications on Carbon Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 12:781508. [PMID: 35087551 PMCID: PMC8787203 DOI: 10.3389/fpls.2021.781508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants rely on the carbon fixed by photosynthesis into sugars to grow and reproduce. However, plants often face non-ideal conditions caused by biotic and abiotic stresses. These constraints impose challenges to managing sugars, the most valuable plant asset. Hence, the precise management of sugars is crucial to avoid starvation under adverse conditions and sustain growth. This review explores the role of post-translational modifications (PTMs) in the modulation of carbon metabolism. PTMs consist of chemical modifications of proteins that change protein properties, including protein-protein interaction preferences, enzymatic activity, stability, and subcellular localization. We provide a holistic view of how PTMs tune resource distribution among different physiological processes to optimize plant fitness.
Collapse
|
8
|
Mironenka J, Różalska S, Bernat P. Potential of Trichoderma harzianum and Its Metabolites to Protect Wheat Seedlings against Fusarium culmorum and 2,4-D. Int J Mol Sci 2021; 22:ijms222313058. [PMID: 34884860 PMCID: PMC8657962 DOI: 10.3390/ijms222313058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Wheat is a critically important crop. The application of fungi, such as Trichoderma harzianum, to protect and improve crop yields could become an alternative solution to synthetic chemicals. However, the interaction between the fungus and wheat in the presence of stress factors at the molecular level has not been fully elucidated. In the present work, we exposed germinating seeds of wheat (Triticum aestivum) to the plant pathogen Fusarium culmorum and the popular herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of T. harzianum or its extracellular metabolites. Then, the harvested roots and shoots were analyzed using spectrometry, 2D-PAGE, and MALDI-TOF/MS techniques. Although F. culmorum and 2,4-D were found to disturb seed germination and the chlorophyll content, T. harzianum partly alleviated these negative effects and reduced the synthesis of zearalenone by F. culmorum. Moreover, T. harzianum decreased the activity of oxidoreduction enzymes (CAT and SOD) and the contents of the oxylipins 9-Hode, 13-Hode, and 13-Hotre induced by stress factors. Under the influence of various growth conditions, changes were observed in over 40 proteins from the wheat roots. Higher volumes of proteins and enzymes performing oxidoreductive functions, such as catalase, ascorbate peroxidase, cytochrome C peroxidase, and Cu/Zn superoxide dismutase, were found in the Fusarium-inoculated and 2,4-D-treated wheat roots. Additionally, observation of the level of 12-oxo-phytodienoic acid reductase involved in the oxylipin signaling pathway in wheat showed an increase. Trichoderma and its metabolites present in the system leveled out the mentioned proteins to the control volumes. Among the 30 proteins examined in the shoots, the expression of the proteins involved in photosynthesis and oxidative stress response was found to be induced in the presence of the herbicide and the pathogen. In summary, these proteomic and metabolomic studies confirmed that the presence of T. harzianum results in the alleviation of oxidative stress in wheat induced by 2,4-D or F. culmorum.
Collapse
|
9
|
Liu Y, Fan H, Dong J, Chen J, Xu H, Zhou X. Phosphoproteomics of cold stress-responsive mechanisms in Rhododendron chrysanthum. Mol Biol Rep 2021; 49:303-312. [PMID: 34743272 DOI: 10.1007/s11033-021-06874-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND As an alpine plant, Rhododendron chrysanthum (R. chrysanthum) has evolved cold resistance mechanisms and become a valuable plant resource with the responsive mechanism of cold stress. METHODS AND RESULTS We adopt the phosphoproteomic and proteomic analysis combining with physiological measurement to illustrate the responsive mechanism of R. chrysanthum seedling under cold (4 °C) stress. After chilling for 12 h, 350 significantly changed proteins and 274 significantly changed phosphoproteins were detected. Clusters of Orthologous Groups (COG) analysis showed that significantly changed phosphoproteins and proteins indicated cold changed energy production and conversion and signal transduction. CONCLUSIONS The results indicated photosynthesis was inhibited under cold stress, but cold induced calcium-mediated signaling, reactive oxygen species (ROS) homeostasis and other transcription regulation factors could protect plants from the destruction caused by cold stress. These data provide the insight to the cold stress response and defense mechanisms of R. chrysanthum leaves at the phosphoproteome level.
Collapse
Affiliation(s)
- Yunbo Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hang Fan
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Jiawei Dong
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Jianyu Chen
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
10
|
Jamsheer K M, Kumar M, Srivastava V. SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6042-6065. [PMID: 33693699 DOI: 10.1093/jxb/erab079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
The Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Manoj Kumar
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
11
|
Hamzelou S, Melino VJ, Plett DC, Kamath KS, Nawrocki A, Larsen MR, Atwell BJ, Haynes PA. The phosphoproteome of rice leaves responds to water and nitrogen supply. Mol Omics 2021; 17:706-718. [PMID: 34291261 DOI: 10.1039/d1mo00137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scarcity of freshwater is an increasing concern in flood-irrigated rice, whilst excessive use of nitrogen fertilizers is costly and contributes to environmental pollution. To co-ordinate growth adaptation under prolonged exposure to limited water or excess nitrogen supply, plants employ complex systems for signalling and regulation of metabolic processes. There is limited information on the involvement of one of the most important post-translational modifications (PTMs), protein phosphorylation, in plant adaptation to long-term changes in resource supply. Oryza sativa cv. Nipponbare was grown under two regimes of nitrogen from the time of germination to final harvest. Twenty-five days after germination, water was withheld from half the pots in each nitrogen treatment and low water supply continued for an additional 26 days, while the remaining pots were well watered. Leaves from all four groups of plants were harvested after 51 days in order to test whether phosphorylation of leaf proteins responded to prior abiotic stress events. The dominant impact of these resources is exerted in leaves, where PTMs have been predicted to occur. Proteins were extracted and phosphopeptides were analysed by nanoLC-MS/MS analysis, coupled with label-free quantitation. Water and nitrogen regimes triggered extensive changes in phosphorylation of proteins involved in membrane transport, such as the aquaporin OsPIP2-6, a water channel protein. Our study reveals phosphorylation of several peptides belonging to proteins involved in RNA-processing and carbohydrate metabolism, suggesting that phosphorylation events regulate the signalling cascades that are required to optimize plant response to resource supply.
Collapse
Affiliation(s)
- Sara Hamzelou
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Vanessa J Melino
- King Abdullah University for Science and Technology, 2955-6990, Kingdom of Saudi Arabia
| | - Darren C Plett
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Karthik Shantharam Kamath
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia. and Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
12
|
Wang H, Narsing Rao MP, Gao Y, Li X, Gao R, Xie Y, Li Q, Li W. Insights into the endophytic bacterial community comparison and their potential role in the dimorphic seeds of halophyte Suaeda glauca. BMC Microbiol 2021; 21:143. [PMID: 33980153 PMCID: PMC8114534 DOI: 10.1186/s12866-021-02206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/19/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Seed dimorphism has been thought to be a bet-hedging strategy that helps plants survive in the disturbed environment and has been widely studied for its ecological adaptation mechanism. Many studies showed that seed-associated microorganisms play an important role in enhancing plant fitness, but information regarding endophytic bacteria associated with dimorphic seeds is limited. This study explores the influence of seed coat structure and seed phytochemical properties on the community composition and diversity of endophytic bacteria of dimorphic seeds of Suaeda glauca. In this study, we used 16S rRNA high-throughput gene sequencing method to compare the community composition and bacterial diversity between brown and black seeds of Suaeda glauca. RESULTS A significant difference was observed in seed coat structure and phytochemical properties between brown and black seeds of S. glauca. Total 9 phyla, 13 classes, 31 orders, 53 families, 102 genera were identified in the dimorphic seeds. The dominant phyla were Proteobacteria, Firmicutes, and Actinobacteria. The results showed that seed dimorphism had little impact on the diversity and richness of endophytic bacterial communities but significantly differs in the relative abundance of the bacterial community between brown and black seeds. At the phylum level, Actinobacteria tend to be enriched significantly in brown seeds. At the genus level, Rhodococcus, Ralstonia, Pelomonas and Bradyrhizobium tend to be enriched significantly in brown seeds, while Marinilactibacillus was mainly found in black seeds. Besides, brown seeds harbored a large number of bacteria with plant-growth-promoting traits, whereas black seeds presented bacteria with enzyme activities (i.e., pectinase, cellulolytic and xylanolytic activities). CONCLUSION The endophytic bacterial community compositions were significantly different between dimorphic seeds of Suaeda glauca, and play an important role in the ecological adaptation of dimorphic seeds by performing different biological function roles. The endophytic bacterial communities of the dimorphic seeds may be influenced mainly by the seed coat structureand partly by the seed phytochemical characteristics. These findings provide valuable information for better understanding of the ecological adaptation strategy of dimorphic seeds in the disturbed environment.
Collapse
Affiliation(s)
- Hongfei Wang
- The Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, No.1 Liushu South Street, Dalian, 650081, China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanli Gao
- The Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, No.1 Liushu South Street, Dalian, 650081, China
| | - Xinyang Li
- The Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, No.1 Liushu South Street, Dalian, 650081, China
| | - Rui Gao
- Dandong Forestry and Grassland Development Service Center, Dandong, 118000, China
| | - Yuanguo Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qiuli Li
- The Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University, No.1 Liushu South Street, Dalian, 650081, China.
| | - Wenjun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China. .,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
13
|
Lim H, Hwang H, Kim T, Kim S, Chung H, Lee D, Kim S, Park S, Cho W, Ji H, Lee G. Transcriptomic Analysis of Rice Plants Overexpressing PsGAPDH in Response to Salinity Stress. Genes (Basel) 2021; 12:genes12050641. [PMID: 33923067 PMCID: PMC8146104 DOI: 10.3390/genes12050641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 01/21/2023] Open
Abstract
In plants, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a main enzyme in the glycolytic pathway. It plays an essential role in glycerolipid metabolism and response to various stresses. To examine the function of PsGAPDH (Pleurotus sajor-caju GAPDH) in response to abiotic stress, we generated transgenic rice plants with single-copy/intergenic/homozygous overexpression PsGAPDH (PsGAPDH-OX) and investigated their responses to salinity stress. Seedling growth and germination rates of PsGAPDH-OX were significantly increased under salt stress conditions compared to those of the wild type. To elucidate the role of PsGAPDH-OX in salt stress tolerance of rice, an Illumina HiSeq 2000 platform was used to analyze transcriptome profiles of leaves under salt stress. Analysis results of sequencing data showed that 1124 transcripts were differentially expressed. Using the list of differentially expressed genes (DEGs), functional enrichment analyses of DEGs such as Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed. KEGG pathway enrichment analysis revealed that unigenes exhibiting differential expression were involved in starch and sucrose metabolism. Interestingly, trehalose-6-phosphate synthase (TPS) genes, of which expression was enhanced by abiotic stress, showed a significant difference in PsGAPDH-OX. Findings of this study suggest that PsGAPDH plays a role in the adaptation of rice plants to salt stress.
Collapse
Affiliation(s)
- Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Korea; (H.L.); (T.K.)
| | - Hyunju Hwang
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Taelim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Korea; (H.L.); (T.K.)
| | - Soyoung Kim
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
| | - Hoyong Chung
- 3BIGS CO. LTD., 156 Gwanggyo-ro, Suwon 16429, Korea;
| | - Daewoo Lee
- National Institute of Crop Science, Rural Development Administration, Suwon 16430, Korea;
| | - Soorin Kim
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Soochul Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
| | - Woosuk Cho
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
| | - Hyeonso Ji
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
| | - Gangseob Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea; (S.K.); (S.P.); (W.C.); (H.J.)
- Correspondence:
| |
Collapse
|
14
|
Rojas BE, Hartman MD, Figueroa CM, Iglesias AA. Proteolytic cleavage of Arabidopsis thaliana phosphoenolpyruvate carboxykinase-1 modifies its allosteric regulation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2514-2524. [PMID: 33315117 DOI: 10.1093/jxb/eraa583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis. In this work, we analyze the proteolysis of Arabidopsis thaliana PEPCK1 (AthPEPCK1) in germinating seedlings. We found that the amount of AthPEPCK1 protein peaks at 24-48 h post-imbibition. Concomitantly, we observed shorter versions of AthPEPCK1, putatively generated by metacaspase-9 (AthMC9). To study the impact of AthMC9 cleavage on the kinetic and regulatory properties of AthPEPCK1, we produced truncated mutants based on the reported AthMC9 cleavage sites. The Δ19 and Δ101 truncated mutants of AthPEPCK1 showed similar kinetic parameters and the same quaternary structure as the wild type. However, activation by malate and inhibition by glucose 6-phosphate were abolished in the Δ101 mutant. We propose that proteolysis of AthPEPCK1 in germinating seedlings operates as a mechanism to adapt the sensitivity to allosteric regulation during the sink-to-source transition.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
15
|
Cui Y, Zeng X, Xiong Q, Wei D, Liao J, Xu Y, Chen G, Zhou Y, Dong H, Wan H, Liu Z, Li J, Guo L, Jung C, He Y, Qian W. Combining quantitative trait locus and co-expression analysis allowed identification of new candidates for oil accumulation in rapeseed. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1649-1660. [PMID: 33249500 DOI: 10.1093/jxb/eraa563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In crops there are quantitative trait loci (QTLs) in which some of the causal quantitative trait genes (QTGs) have not been functionally characterized even in the model plant Arabidopsis. We propose an approach to delineate QTGs in rapeseed by coordinating expression of genes located within QTLs and known orthologs related to traits from Arabidopsis. Using this method in developing siliques 15 d after pollination in 71 lines of rapeseed, we established an acyl-lipid metabolism co-expression network with 21 modules composed of 270 known acyl-lipid genes and 3503 new genes. The core module harbored 76 known genes involved in fatty acid and triacylglycerol biosynthesis and 671 new genes involved in sucrose transport, carbon metabolism, amino acid metabolism, seed storage protein processes, seed maturation, and phytohormone metabolism. Moreover, the core module closely associated with the modules of photosynthesis and carbon metabolism. From the co-expression network, we selected 12 hub genes to identify their putative Arabidopsis orthologs. These putative orthologs were functionally analysed using Arabidopsis knockout and overexpression lines. Four knockout mutants exhibited lower seed oil content, while the seed oil content in 10 overexpression lines was significantly increased. Therefore, combining gene co-expression network analysis and QTL mapping, this study provides new insights into the detection of QTGs and into acyl-lipid metabolism in rapeseed.
Collapse
Affiliation(s)
- Yixin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiao Zeng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qing Xiong
- School of Computer and Information Science, Southwest University, Chongqing, China
| | - Dayong Wei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jinghang Liao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Yonghong Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hongli Dong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Huafang Wan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, China
| | - Christian Jung
- Plant Breeding Institute, Christian Albrechts University of Kiel, Olshausenstr., Kiel, Germany
| | - Yajun He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Kong X, Chen L, Wei T, Zhou H, Bai C, Yan X, Miao Z, Xie J, Zhang L. Transcriptome analysis of biological pathways associated with heterosis in Chinese cabbage. Genomics 2020; 112:4732-4741. [PMID: 32798717 DOI: 10.1016/j.ygeno.2020.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022]
Abstract
Chinese cabbage is an important vegetable in Asia, and high-yielding hybrids are needed to cope with the growing demand. A comparative transcriptome profiling was conducted to reveal the differentially expressed genes (DEGs) associated with heterosis in two hybrids relative to their parents. Our data suggests that heterosis is underlined by a significant upregulation of gene expression. High expression of DEGs in glycolysis and photosynthesis pathways in hybrids depicted their relation with growth and hybrid vigor. Besides, DEGs related to auxin, abscisic acid, ethylene and gibberellin were identified, implying that these hormones may boost the mechanisms of growth and developmental processes in the hybrids. Furthermore, transcription factors, including bHLH, ERF, MYB and WRKY were predicted to regulate downstream genes linked to hybrid vigor. Collectively, the present study will be helpful for a better understanding of the regulation mechanisms of heterosis to aid cabbage yield improvement.
Collapse
Affiliation(s)
- Xiaoping Kong
- Horticulture College, Gansu Agricultural University, China; Xining Vegetable Technical Service Center, China
| | - Lin Chen
- Horticulture College, Northwest A & F Sci-tech University, China
| | - Tingzhen Wei
- Xining Vegetable Technical Service Center, China
| | - Hongwei Zhou
- Xining Vegetable Technical Service Center, China
| | | | | | - Zenjian Miao
- Xining Vegetable Technical Service Center, China
| | - Jianming Xie
- Horticulture College, Gansu Agricultural University, China.
| | - Lugang Zhang
- Horticulture College, Northwest A & F Sci-tech University, China.
| |
Collapse
|
17
|
Baena-González E, Lunn JE. SnRK1 and trehalose 6-phosphate - two ancient pathways converge to regulate plant metabolism and growth. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:52-59. [PMID: 32259743 DOI: 10.1016/j.pbi.2020.01.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 05/02/2023]
Abstract
SUCROSE-NON-FERMENTING1-RELATED KINASE1 (SnRK1) belongs to a family of protein kinases that originated in the earliest eukaryotes and plays a central role in energy and metabolic homeostasis. Trehalose 6-phosphate (Tre6P) is the intermediate of trehalose biosynthesis, and has even more ancient roots, being found in all three domains of life - Archaea, Bacteria and Eukarya. In plants, the function of SnRK1 has diverged from its orthologues in fungi and animals, evolving new roles in signalling of nutrient status and abiotic stress. Tre6P has also acquired a novel function in plants as a signal and homeostatic regulator of sucrose, the dominant sugar in plant metabolism. These two ancient pathways have converged in a unique way in plants, enabling them to coordinate their metabolism, growth, and development with their environment, which is essential for their autotrophic and sessile lifestyle.
Collapse
Affiliation(s)
- Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
18
|
Yu A, Li F, Liu A. Comparative proteomic and transcriptomic analyses provide new insight into the formation of seed size in castor bean. BMC PLANT BIOLOGY 2020; 20:48. [PMID: 32000683 PMCID: PMC6993385 DOI: 10.1186/s12870-020-2249-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Little is known about the molecular basis of seed size formation in endospermic seed of dicotyledons. The seed of castor bean (Ricinus communis L.) is considered as a model system in seed biology studies because of its persistent endosperms throughout seed development. RESULTS We compared the size of endosperm and endospermic cells between ZB107 and ZB306 and found that the larger seed size of ZB107 resulted from a higher cell count in the endosperm, which occupy a significant amount of the total seed volume. In addition, fresh weight, dry weight, and protein content of seeds were remarkably higher in ZB107 than in ZB306. Comparative proteomic and transcriptomic analyses were performed between large-seed ZB107 and small-seed ZB306, using isobaric tags for relative and absolute quantification (iTRAQ) and RNA-seq technologies, respectively. A total of 1416 protein species were identified, of which 173 were determined as differentially abundant protein species (DAPs). Additionally, there were 9545 differentially expressed genes (DEGs) between ZB306 and ZB107. Functional analyses revealed that these DAPs and DEGs were mainly involved in cell division and the metabolism of carbohydrates and proteins. CONCLUSIONS These findings suggest that both cell number and storage-component accumulation are critical for the formation of seed size, providing new insight into the potential mechanisms behind seed size formation in endospermic seeds.
Collapse
Affiliation(s)
- Anmin Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People’s Republic of China
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| | - Fei Li
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 People’s Republic of China
| |
Collapse
|
19
|
Ferrero DML, Piattoni CV, Asencion Diez MD, Rojas BE, Hartman MD, Ballicora MA, Iglesias AA. Phosphorylation of ADP-Glucose Pyrophosphorylase During Wheat Seeds Development. FRONTIERS IN PLANT SCIENCE 2020; 11:1058. [PMID: 32754189 PMCID: PMC7366821 DOI: 10.3389/fpls.2020.01058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/26/2020] [Indexed: 05/23/2023]
Abstract
Starch is the dominant reserve polysaccharide accumulated in the seed of grasses (like wheat). It is the most common carbohydrate in the human diet and a material applied to the bioplastics and biofuels industry. Hence, the complete understanding of starch metabolism is critical to design rational strategies to improve its allocation in plant reserve tissues. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the key (regulated) step in the synthetic starch pathway. The enzyme comprises a small (S) and a large (L) subunit forming an S2L2 heterotetramer, which is allosterically regulated by orthophosphate, fructose-6P, and 3P-glycerate. ADP-Glc PPase was found in a phosphorylated state in extracts from wheat seeds. The amount of the phosphorylated protein increased along with the development of the seed and correlated with relative increases of the enzyme activity and starch content. Conversely, this post-translational modification was absent in seeds from Ricinus communis. In vitro, the recombinant ADP-Glc PPase from wheat endosperm was phosphorylated by wheat seed extracts as well as by recombinant Ca2+-dependent plant protein kinases. Further analysis showed that the preferential phosphorylation takes place on the L subunit. Results suggest that the ADP-Glc PPase is a phosphorylation target in seeds from grasses but not from oleaginous plants. Accompanying seed maturation and starch accumulation, a combined regulation of ADP-Glc PPase by metabolites and phosphorylation may provide an enzyme with stable levels of activity. Such concerted modulation would drive carbon skeletons to the synthesis of starch for its long-term storage, which later support seed germination.
Collapse
Affiliation(s)
- Danisa M. L. Ferrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Claudia V. Piattoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Matías D. Asencion Diez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Bruno E. Rojas
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Matías D. Hartman
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Alberto A. Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & FBCB, Santa Fe, Argentina
| |
Collapse
|
20
|
Sun R, Qin S, Zhang T, Wang Z, Li H, Li Y, Nie Y. Comparative phosphoproteomic analysis of blast resistant and susceptible rice cultivars in response to salicylic acid. BMC PLANT BIOLOGY 2019; 19:454. [PMID: 31660870 PMCID: PMC6819546 DOI: 10.1186/s12870-019-2075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/14/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Salicylic acid (SA) is a significant signaling molecule that induces rice resistance against pathogen invasion. Protein phosphorylation carries out an important regulatory function in plant defense responses, while the global phosphoproteome changes in rice response to SA-mediated defense response has not been reported. In this study, a comparative phosphoproteomic profiling was conducted by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) analysis, with two near-isogenic rice cultivars after SA treatment. RESULTS Thirty-seven phosphoprotein spots were differentially expressed after SA treatment, twenty-nine of which were identified by MALDI-TOF/TOF MS, belonging to nine functional categories. Phosphoproteins involved in photosynthesis, antioxidative enzymes, molecular chaperones were similarly expressed in the two cultivars, suggesting SA might alleviate decreases in plant photosynthesis, regulate the antioxidant defense activities, thus improving basal resistance response in both cultivars. Meanwhile, phosphoproteins related to defense, carbohydrate metabolism, protein synthesis and degradation were differentially expressed, suggesting phosphorylation regulation mediated by SA may coordinate complex cellular activities in the two cultivars. Furthermore, the phosphorylation sites of four identified phosphoproteins were verified by NanoLC-MS/MS, and phosphorylated regulation of three enzymes (cinnamoyl-CoA reductase, phosphoglycerate mutase and ascorbate peroxidase) was validated by activity determination. CONCLUSIONS Our study suggested that phosphorylation regulation mediated by SA may contribute to the different resistance response of the two cultivars. To our knowledge, this is the first report to measure rice phosphoproteomic changes in response to SA, which provides new insights into molecular mechanisms of SA-induced rice defense.
Collapse
Affiliation(s)
- Ranran Sun
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Shiwen Qin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642 China
- Research Center of Perennial Rice Engineering and Technology in Yunnan, Yunnan University, Kunming, 650500 China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhenzhong Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yanfang Nie
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642 China
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
21
|
Corregido MC, Asención Diez MD, Iglesias AÁ, Piattoni CV. New pieces to the carbon metabolism puzzle of Nitrosomonas europaea: Kinetic characterization of glyceraldehyde-3 phosphate and succinate semialdehyde dehydrogenases. Biochimie 2019; 158:238-245. [PMID: 30690134 DOI: 10.1016/j.biochi.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/19/2019] [Indexed: 02/02/2023]
Abstract
Nitrosomonas europaea is a chemolithotroph that obtains energy through the oxidation of ammonia to hydroxylamine while assimilates atmospheric CO2 to cover the cell carbon demands for growth. This microorganism plays a relevant role in the nitrogen biogeochemical cycle on Earth but its carbon metabolism remains poorly characterized. Based on sequence homology, we identified two genes (cbbG and gabD) coding for redox enzymes in N. europaea. Cloning and expression of the genes in Escherichia coli, allowed the production of recombinant enzymes purified to determine their biochemical properties. The protein CbbG is a glyceraldehyde-3-phosphate (Ga3P) dehydrogenase (Ga3PDHase) catalyzing the reversible oxidation of Ga3P to 1,3-bis-phospho-glycerate (1,3bisPGA), using specifically NAD+/NADH as cofactor. CbbG showed ∼6-fold higher Km value for 1,3bisPGA but ∼5-fold higher kcat for the oxidation of Ga3P. The protein GabD irreversibly oxidizes Ga3P to 3Pglycerate using NAD+ or NADP+, thus resembling a non-phosphorylating Ga3PDHase. However, the enzyme showed ∼6-fold higher Km value and three orders of magnitude higher catalytic efficiency with succinate semialdehyde (SSA) and NADP+. Indeed, the GabD protein identity corresponds to an SSA dehydrogenase (SSADHase). CbbG seems to be the only Ga3PDHase present in N. europaea; which would be involved in reducing triose-P during autotrophic carbon fixation. Otherwise, in cells grown under conditions deprived of ammonia and oxygen, the enzyme could catalyze the glycolytic step of Ga3P oxidation producing NADH. As an SSADHase, GabD would physiologically act producing succinate and preferentially NADPH over NADH; thus being part of an alternative pathway of the tricarboxylic acid cycle converting α-ketoglutarate to succinate. The properties determined for these enzymes contribute to better identify metabolic steps in CO2 assimilation, glycolysis and the tricarboxylic acid cycle in N. europaea. Results are discussed in the framework of metabolic pathways that launch biosynthetic intermediates relevant in the microorganism to develop and fulfill its role in nature.
Collapse
Affiliation(s)
- María Cecilia Corregido
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Matías Damián Asención Diez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Alberto Álvaro Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina.
| | - Claudia Vanesa Piattoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina; Instituto Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
22
|
Dumont S, Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:166. [PMID: 30833954 PMCID: PMC6387960 DOI: 10.3389/fpls.2019.00166] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are present at low and controlled levels under normal conditions. These reactive molecules can increase to high levels under various biotic and abiotic conditions, resulting in perturbation of the cellular redox state that can ultimately lead to oxidative or nitrosative stress. In this review, we analyze the various effects that result from alterations of redox homeostasis on plant glycolytic pathway and tricarboxylic acid (TCA) cycle. Most documented modifications caused by ROS or RNS are due to the presence of redox-sensitive cysteine thiol groups in proteins. Redox modifications include Cys oxidation, disulfide bond formation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. A growing number of proteomic surveys and biochemical studies document the occurrence of ROS- or RNS-mediated modification in enzymes of glycolysis and the TCA cycle. In a few cases, these modifications have been shown to affect enzyme activity, suggesting an operational regulatory mechanism in vivo. Further changes induced by oxidative stress conditions include the proposed redox-dependent modifications in the subcellular distribution of a putative redox sensor, NAD-glyceraldehyde-3P dehydrogenase and the micro-compartmentation of cytosolic glycolytic enzymes. Data from the literature indicate that oxidative stress may induce complex changes in metabolite pools in central carbon metabolism. This information is discussed in the context of our understanding of plant metabolic response to oxidative stress.
Collapse
|
23
|
Transcriptome approach to address low seed germination in Cyclobalanopsis gilva to save forest ecology. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|