1
|
Adhikari S, Mudalige A, Phillips L, Lee H, Bernal-Galeano V, Gruszewski H, Westwood JH, Park SY. Agrobacterium-mediated Cuscuta campestris transformation as a tool for understanding plant-plant interactions. THE NEW PHYTOLOGIST 2024. [PMID: 39360397 DOI: 10.1111/nph.20140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Cuscuta campestris, a stem parasitic plant, has served as a valuable model plant for the exploration of plant-plant interactions and molecular trafficking. However, a major barrier to C. campestris research is that a method to generate stable transgenic plants has not yet been developed. Here, we describe the development of a Cuscuta transformation protocol using various reporter genes (GFP, GUS, or RUBY) and morphogenic genes (CcWUS2 and CcGRF/GIF), leading to a robust protocol for Agrobacterium-mediated C. campestris transformation. The stably transformed and regenerated RUBY C. campestris plants produced haustoria, the signature organ of parasitic plants, and these were functional in forming host attachments. The locations of T-DNA integration in the parasite genome were confirmed through TAIL-PCR. Transformed C. campestris also produced flowers and viable transgenic seeds exhibiting betalain pigment, providing proof of germline transmission of the RUBY transgene. Furthermore, RUBY is not only a useful selectable marker for the Agrobacterium-mediated transformation, but may also provide insight into the movement of molecules from C. campestris to the host during parasitism. Thus, the protocol for transformation of C. campestris reported here overcomes a major obstacle to Cuscuta research and opens new possibilities for studying parasitic plants and their interactions with hosts.
Collapse
Affiliation(s)
- Supral Adhikari
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Asha Mudalige
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Lydia Phillips
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Hyeyoung Lee
- Division of Animal Science, University of Missouri, Columbia, MO, 65211, USA
| | - Vivian Bernal-Galeano
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hope Gruszewski
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - So-Yon Park
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Kang Y, Li Y, Zhang T, Wang P, Liu W, Zhang Z, Yu W, Wang J, Wang J, Zhou Y. Integrated metabolome, full-length sequencing, and transcriptome analyses unveil the molecular mechanisms of color formation of the canary yellow and red bracts of Bougainvillea × buttiana 'Chitra'. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1441-1461. [PMID: 37648415 DOI: 10.1111/tpj.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Bougainvillea is a typical tropical flower of great ornamental value due to its colorful bracts. The molecular mechanism behind color formation is not well-understood. Therefore, this research conducted metabolome analysis, transcriptome analysis, and multi-flux full-length sequencing in two color bracts of Bougainvillea × buttiana 'Chitra' to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs). Overall, 261 SDMs, including 62 flavonoids and 26 alkaloids, were detected, and flavonols and betalains were significantly differentially accumulated among the two bracts. Furthermore, the complete-length transcriptome of Bougainvillea × buttiana was also developed, which contained 512 493 non-redundant isoforms. Among them, 341 210 (66.58%) displayed multiple annotations in the KOG, GO, NR, KEGG, Pfam, Swissprot, and NT databases. RNA-seq findings revealed that 3610 DEGs were identified between two bracts. Co-expression analysis demonstrated that the DEGs and SDMs involved in flavonol metabolism (such as CHS, CHI, F3H, FLS, CYP75B1, kaempferol, and quercetin) and betacyanin metabolism (DODA, betanidin, and betacyanins) were the main contributors for the canary yellow and red bract formation, respectively. Further investigation revealed that several putative transcription factors (TFs) might interact with the promoters of the genes mentioned above. The expression profiles of the putative TFs displayed that they may positively and negatively regulate the structural genes' expression profiles. The data revealed a potential regulatory network between important genes, putative TFs, and metabolites in the flavonol and betacyanin biosynthesis of Bougainvillea × buttiana 'Chitra' bracts. These findings will serve as a rich genetic resource for future studies that could create new color bracts.
Collapse
Affiliation(s)
- Yuqian Kang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441057, Hubei, People's Republic of China
| | - Peng Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wen Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Zhao Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wengang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| |
Collapse
|
3
|
Zhao Y, Han J, Tan J, Yang Y, Li S, Gou Y, Luo Y, Li T, Xiao W, Xue Y, Hao Y, Xie X, Liu Y, Zhu Q. Efficient assembly of long DNA fragments and multiple genes with improved nickase-based cloning and Cre/loxP recombination. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1983-1995. [PMID: 35767383 PMCID: PMC9491458 DOI: 10.1111/pbi.13882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Functional genomics, synthetic biology and metabolic engineering require efficient tools to deliver long DNA fragments or multiple gene constructs. Although numerous DNA assembly methods exist, most are complicated, time-consuming and expensive. Here, we developed a simple and flexible strategy, unique nucleotide sequence-guided nicking endonuclease (UNiE)-mediated DNA assembly (UNiEDA), for efficient cloning of long DNAs and multigene stacking. In this system, a set of unique 15-nt 3' single-strand overhangs were designed and produced by nicking endonucleases (nickases) in vectors and insert sequences. We introduced UNiEDA into our modified Cre/loxP recombination-mediated TransGene Stacking II (TGSII) system to generate an improved multigene stacking system we call TGSII-UNiE. Using TGSII-UNiE, we achieved efficient cloning of long DNA fragments of different sizes and assembly of multiple gene cassettes. Finally, we engineered and validated the biosynthesis of betanin in wild tobacco (Nicotiana benthamiana) leaves and transgenic rice (Oryza sativa) using multigene stacking constructs based on TGSII-UNiE. In conclusion, UNiEDA is an efficient, convenient and low-cost method for DNA cloning and multigene stacking, and the TGSII-UNiE system has important application prospects for plant functional genomics, genetic engineering and synthetic biology research.
Collapse
Affiliation(s)
- Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yaqian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Shuangchun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yajun Gou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yuyu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Tie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Wenyu Xiao
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yang Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yu Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
4
|
Zhao X, Zhang Y, Long T, Wang S, Yang J. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 2022; 12:871. [PMID: 36144275 PMCID: PMC9506007 DOI: 10.3390/metabo12090871] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Anthocyanins, carotenoids, and betalains are known as the three major pigments in the plant kingdom. Anthocyanins are flavonoids derived from the phenylpropanoid pathway. They undergo acylation and glycosylation in the cytoplasm to produce anthocyanin derivatives and deposits in the cytoplasm. Anthocyanin biosynthesis is regulated by the MBW (comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40) complex. Carotenoids are fat-soluble terpenoids whose synthetic genes also are regulated by the MBW complex. As precursors for the synthesis of hormones and nutrients, carotenoids are not only synthesized in plants, but also synthesized in some fungi and bacteria, and play an important role in photosynthesis. Betalains are special water-soluble pigments that exist only in Caryophyllaceae plants. Compared to anthocyanins and carotenoids, the synthesis and regulation mechanism of betalains is simpler, starting from tyrosine, and is only regulated by MYB (myeloblastosis). Recently, a considerable amount of novel information has been gathered on the regulation of plant pigment biosynthesis, specifically with respect to aspects. In this review, we summarize the knowledge and current gaps in our understanding with a view of highlighting opportunities for the development of pigment-rich plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueran Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Tuan Long
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shouchuang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
A Genome-Wide Identification Study Reveals That HmoCYP76AD1, HmoDODAα1 and HmocDOPA5GT Involved in Betalain Biosynthesis in Hylocereus. Genes (Basel) 2021; 12:genes12121858. [PMID: 34946807 PMCID: PMC8702118 DOI: 10.3390/genes12121858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Betalains are water-soluble nitrogen-containing pigments with multiple bioactivities. Pitayas are the only at large-scale commercially grown fruit containing abundant betalains for consumers. Currently, the key genes involved in betalain biosynthesis remain to be fully elucidated. Moreover, genome-wide analyses of these genes in betalain biosynthesis are not available in betalain-producing plant species. In this study, totally 53 genes related to betalain biosynthesis were identified from the genome data of Hylocereus undatus. Four candidate genes i.e., one cytochrome P-450 R gene (HmoCYP76AD1), two L-DOPA 4,5-dioxygenase genes (HmoDODAα1 and HmoDODAα2), and one cyclo-DOPA 5-O glucosyltransferase gene (HmocDOPA5GT) were initially screened according to bioinformatics and qRT-PCR analyses. Silencing HmoCYP76AD1, HmoDODAα1, HmoDODAα2 or HmocDOPA5GT resulted in loss of red pigment. HmoDODAα1 displayed a high level of L-DOPA 4,5-dioxygenase activity to produce betalamic acid and formed yellow betaxanthin. Co-expression of HmoCYP76AD1, HmoDODAα1 and HmocDOPA5GT in Nicotiana benthamiana and yeast resulted in high abundance of betalain pigments with a red color. These results suggested that HmoCYP76AD1, HmoDODAα1, and HmocDOPA5GT play key roles in betalain biosynthesis in Hylocereus. The results of the present study provide novel genes for molecular breeding programs of pitaya.
Collapse
|
6
|
Timoneda A, Yunusov T, Quan C, Gavrin A, Brockington SF, Schornack S. MycoRed: Betalain pigments enable in vivo real-time visualisation of arbuscular mycorrhizal colonisation. PLoS Biol 2021; 19:e3001326. [PMID: 34260583 PMCID: PMC8312983 DOI: 10.1371/journal.pbio.3001326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 07/26/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Arbuscular mycorrhiza (AM) are mutualistic interactions formed between soil fungi and plant roots. AM symbiosis is a fundamental and widespread trait in plants with the potential to sustainably enhance future crop yields. However, improving AM fungal association in crop species requires a fundamental understanding of host colonisation dynamics across varying agronomic and ecological contexts. To this end, we demonstrate the use of betalain pigments as in vivo visual markers for the occurrence and distribution of AM fungal colonisation by Rhizophagus irregularis in Medicago truncatula and Nicotiana benthamiana roots. Using established and novel AM-responsive promoters, we assembled multigene reporter constructs that enable the AM-controlled expression of the core betalain synthesis genes. We show that betalain colouration is specifically induced in root tissues and cells where fungal colonisation has occurred. In a rhizotron setup, we also demonstrate that betalain staining allows for the noninvasive tracing of fungal colonisation along the root system over time. We present MycoRed, a useful innovative method that will expand and complement currently used fungal visualisation techniques to advance knowledge in the field of AM symbiosis.
Collapse
Affiliation(s)
- Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Temur Yunusov
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Clement Quan
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Aleksandr Gavrin
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
7
|
Chen L, Xia W, Song J, Wu M, Xu Z, Hu X, Zhang W. Enhanced thermotolerance of Arabidopsis by chitooligosaccharides-induced CERK1n-ERc fusion gene. PLANT SIGNALING & BEHAVIOR 2020; 15:1816322. [PMID: 32902365 PMCID: PMC7671037 DOI: 10.1080/15592324.2020.1816322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Heat stress is a major growth-limiting factor for most crops over the world. Chitin elicitor receptor kinase 1 (CERK1) is a chitin/chitooligosaccharides receptor, and ERECTA (ER) plays a crucial role in plant resistance to heat stress. In the present study, a chitooligosaccharides-induced CERK1n-ERc fusion gene was designed and synthesized, in which the extracellular domain and transmembrane domain of CERK1 gene is connected with the response region of ER gene. We successfully constructed the CERK1n-ERc fusion gene by Overlap PCR and introduced it into Arabidopsis by Agrobacterium-medicated infection. Genetically modified (GM) plants had a greater germination rate and germination index, as well as a shorter mean germination time, indicating that they had a better thermotolerance compared with the wild-type (WT) lines under heat stress. Moreover, the GM lines showed a lower level of hydrogen peroxide (H2O2) and relative electrolyte leakage (REL), suggesting that they were in better state compared with the WT plants when exposed to high temperature. UPLC-MS/MS was employed to assess the phytohormone level, suggesting that the GM lines acquired a better thermotolerance via jasmonic acid (JA) signaling pathways. In general, we constructed a COS-induced fusion gene to enhance the thermotolerance of Arabidopsis during seed germination and postgermination growth.
Collapse
Affiliation(s)
- Linxiao Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Xia
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Jinxing Song
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengqi Wu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhizhen Xu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangyang Hu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Lichman BR. The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 2020; 38:103-129. [PMID: 32745157 DOI: 10.1039/d0np00031k] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
9
|
Xie F, Hua Q, Chen C, Zhang L, Zhang Z, Chen J, Zhang R, Zhao J, Hu G, Zhao J, Qin Y. Transcriptomics-based identification and characterization of glucosyltransferases involved in betalain biosynthesis in Hylocereus megalanthus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:112-124. [PMID: 32413806 DOI: 10.1016/j.plaphy.2020.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 05/19/2023]
Abstract
Pitaya (Hylocereus spp.) is the only commercial cultivation of fruit containing abundant betalains for consumer. Betalains are water-soluble nitrogen-containing pigments with high nutritional value and bioactivities. In this study, contents of betaxanthins and betacyanins were compared between 'Guanhuabai' (H. undatus) and 'Huanglong' (H. megalanthus) pitayas and key genes involved in betalain biosynthesis were screened from 'Huanglong' pitaya by RNA-Seq technology. Twenty-nine candidate genes related to betalain biosynthesis were obtained from the transcriptome data. Based on expression characteristics and sequence analyses, HmB5GT1 and HmHCGT2 were further analyzed. HmB5GT1 and HmHCGT2 were both conserved in 'PSPG-box' and localized in nucleus. Silencing of HmB5GT1 and HmHCGT2 resulted in a significant reduction in betacyanin and betaxanthin contents. Those results suggested that HmB5GT1 and HmHCGT2 are possibly involved in betalain biosynthesis in H. megalanthus. The present work provides new information on betalain biosynthesis in Hylocereus at the transcriptional level.
Collapse
Affiliation(s)
- Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qingzhu Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Canbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lulu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhike Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Junsheng Zhao
- Institute of Fruit Science in Maoming, Maoming, 525000, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Gómez-Maqueo A, Welti-Chanes J, Cano MP. Release mechanisms of bioactive compounds in fruits submitted to high hydrostatic pressure: A dynamic microstructural analysis based on prickly pear cells. Food Res Int 2020; 130:108909. [DOI: 10.1016/j.foodres.2019.108909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|
11
|
Lin Z, Yan J, Su J, Liu H, Hu C, Li G, Wang F, Lin Y. Novel OsGRAS19 mutant, D26, positively regulates grain shape in rice (Oryza sativa). FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:857-868. [PMID: 31146805 DOI: 10.1071/fp18266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/10/2019] [Indexed: 05/23/2023]
Abstract
Grain size is an important factor in rice yield. Several genes related to grain size have been reported, but most of them are determined by quantitative trail loci (QTL) traits. Gene D26 is a novel site mutation of OsGRAS19 and involved in the brassinosteroid (BR) signalling pathway. However, whether D26 is involved in the process of rice reproductive development remains unclear. Here, gene cloning and functional analysis revealed that D26 has an obvious regulatory effect on grain size. Overexpression or CRISP/Cas9 mutant of D26 also showed that grain size was positively influenced. Cellular analyses show that D26 modulates grain size by promoting cell division and regulating the cell number in the upper epidermis of the glume. The overexpression results further suggest that the level of D26 expression positively impacts grain length and leaf angles and that the expression of several known grain size genes is involved in the regulation. Based on our results, D26, as a transcription factor, effectively improves rice grain shape.
Collapse
Affiliation(s)
- Zhimin Lin
- Department of Bioengineering and Biotechnology, School of Chemical Engineering, Huaqiao University, Xiamen 361021, China; and Fujian Academy of Agricultural Sciences Biotechnology Institute, Key Laboratory of Genetic Engineering for Agriculture, Fuzhou 350003, China
| | - Jingwan Yan
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Key Laboratory of Genetic Engineering for Agriculture, Fuzhou 350003, China
| | - Jun Su
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Key Laboratory of Genetic Engineering for Agriculture, Fuzhou 350003, China
| | - Huaqing Liu
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Key Laboratory of Genetic Engineering for Agriculture, Fuzhou 350003, China
| | - Changquan Hu
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Key Laboratory of Genetic Engineering for Agriculture, Fuzhou 350003, China
| | - Gang Li
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Key Laboratory of Genetic Engineering for Agriculture, Fuzhou 350003, China
| | - Feng Wang
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Key Laboratory of Genetic Engineering for Agriculture, Fuzhou 350003, China; and Corresponding authors. Emails: ;
| | - Yi Lin
- Department of Bioengineering and Biotechnology, School of Chemical Engineering, Huaqiao University, Xiamen 361021, China; and Corresponding authors. Emails: ;
| |
Collapse
|
12
|
Polturak G, Aharoni A. "La Vie en Rose": Biosynthesis, Sources, and Applications of Betalain Pigments. MOLECULAR PLANT 2018; 11:7-22. [PMID: 29081360 DOI: 10.1016/j.molp.2017.10.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 05/19/2023]
Abstract
Betalains are tyrosine-derived red-violet and yellow pigments found exclusively in plants of the Caryophyllales order, which have drawn both scientific and economic interest. Nevertheless, research into betalain chemistry, biochemistry, and function has been limited as comparison with other major classes of plant pigments such as anthocyanins and carotenoids. The core biosynthetic pathway of this pigment class has only been fully elucidated in the past few years, opening up the possibility for betalain pigment engineering in plants and microbes. In this review, we discuss betalain metabolism in light of recent advances in the field, with a current survey of characterized genes and enzymes that take part in betalain biosynthesis, catabolism, and transcriptional regulation, and an outlook of what is yet to be discovered. A broad view of currently used and potential new sources for betalains, including utilization of natural sources or metabolic engineering, is provided together with a summary of potential applications of betalains in research and commercial use.
Collapse
Affiliation(s)
- Guy Polturak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
13
|
Chen N, Teng XL, Xiao XG. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal. FRONTIERS IN PLANT SCIENCE 2017; 8:1345. [PMID: 28824680 PMCID: PMC5539789 DOI: 10.3389/fpls.2017.01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.
Collapse
|