1
|
Das AK, Hussain A, Methela NJ, Lee DS, Lee GJ, Woo YJ, Yun BW. Genome-wide characterization of nitric oxide-induced NBS-LRR genes from Arabidopsis thaliana and their association in monocots and dicots. BMC PLANT BIOLOGY 2024; 24:934. [PMID: 39379841 PMCID: PMC11462825 DOI: 10.1186/s12870-024-05587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Nitric oxide (NO) is pivotal in regulating the activity of NBS-LRR specific R genes, crucial components of the plant's immune system. It is noteworthy that previous research has not included a genome-wide analysis of NO-responsive NBS-LRR genes in plants. RESULTS The current study examined 29 NO-induced NBS-LRR genes from Arabidopsis thaliana, along with two monocots (rice and maize) and two dicots (soybean and tomato) using genome-wide analysis tools. These NBS-LRR genes were subjected to comprehensive characterization, including analysis of their physio-chemical properties, phylogenetic relationships, domain and motif identification, exon/intron structures, cis-elements, protein-protein interactions, prediction of S-Nitrosylation sites, and comparison of transcriptomic and qRT-PCR data. Results showed the diverse distribution of NBS-LRR genes across chromosomes, and variations in amino acid number, exons/introns, molecular weight, and theoretical isoelectric point, and they were found in various cellular locations like the plasma membrane, cytoplasm, and nucleus. These genes predominantly harbor the NB-ARC superfamily, LRR, LRR_8, and TIR domains, as also confirmed by motif analysis. Additionally, they feature species-specific PLN00113 superfamily and RX-CC_like domain in dicots and monocots, respectively, both responsive to defense against pathogen attacks. The NO-induced NBS-LRR genes of Arabidopsis reveal the presence of cis-elements responsive to phytohormones, light, stress, and growth, suggesting a wide range of responses mediated by NO. Protein-protein interactions, coupled with the prediction of S-Nitrosylation sites, offer valuable insights into the regulatory role of NO at the protein level within each respective species. CONCLUSION These above findings aimed to provide a thorough understanding of the impact of NO on NBS-LRR genes and their relationships with key plant species.
Collapse
Affiliation(s)
- Ashim Kumar Das
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Geum-Jin Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Youn-Ji Woo
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
2
|
Ce F, Mei J, Zhao Y, Li Q, Ren X, Song H, Qian W, Si J. Comparative Analysis of Transcriptomes Reveals Pathways and Verifies Candidate Genes for Clubroot Resistance in Brassica oleracea. Int J Mol Sci 2024; 25:9189. [PMID: 39273138 PMCID: PMC11395044 DOI: 10.3390/ijms25179189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Clubroot, a soil-borne disease caused by Plasmodiophora brassicae, is one of the most destructive diseases of Brassica oleracea all over the world. However, the mechanism of clubroot resistance remains unclear. In this research, transcriptome sequencing was conducted on root samples from both resistant (R) and susceptible (S) B. oleracea plants infected by P. brassicae. Then the comparative analysis was carried out between the R and S samples at different time points during the infection stages to reveal clubroot resistance related pathways and candidate genes. Compared with 0 days after inoculation, a total of 4991 differential expressed genes were detected from the S pool, while only 2133 were found from the R pool. Gene function enrichment analysis found that the effector-triggered immunity played a major role in the R pool, while the pathogen-associated molecular pattern triggered immune response was stronger in the S pool. Simultaneously, candidate genes were identified through weighted gene co-expression network analysis, with Bol010786 (CNGC13) and Bol017921 (SD2-5) showing potential for conferring resistance to clubroot. The findings of this research provide valuable insights into the molecular mechanisms underlying clubroot resistance and present new avenues for further research aimed at enhancing the clubroot resistance of B. oleracea through breeding.
Collapse
Affiliation(s)
- Fuquan Ce
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Yu Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qinfei Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Xuesong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Jun Si
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| |
Collapse
|
3
|
Oh ES, Park H, Lee K, Shim D, Oh MH. Comparison of Root Transcriptomes against Clubroot Disease Pathogens in a Resistant Chinese Cabbage Cultivar ( Brassica rapa cv. 'Akimeki'). PLANTS (BASEL, SWITZERLAND) 2024; 13:2167. [PMID: 39124284 PMCID: PMC11314269 DOI: 10.3390/plants13152167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the diseases that causes major economic losses in cruciferous crops worldwide. Although prevention strategies, including soil pH adjustment and crop rotation, have been used, the disease's long persistence and devastating impact continuously remain in the soil. CR varieties were developed for clubroot-resistant (CR) Chinese cabbage, and 'Akimeki' is one of the clubroot disease-resistant cultivars. However, recent studies have reported susceptibility to several Korean pathotypes in Akimeki and the destruction of the resistance to P. brassicae in many Brassica species against CR varieties, requiring the understanding of more fine-tuned plant signaling by fungal pathogens. In this study, we focused on the early molecular responses of Akimeki during infection with two P. brassicae strains, Seosan (SS) and Hoengseong2 (HS2), using RNA sequencing (RNA-seq). Among a total of 2358 DEGs, 2037 DEGs were differentially expressed following SS and HS2 infection. Gene ontology (GO) showed that 1524 and 513 genes were up-regulated following SS and HS2 inoculations, respectively. Notably, the genes of defense response and jasmonic acid regulations were enriched in the SS inoculation condition, and the genes of water transport and light intensity response were enriched in the HS2 inoculation condition. Moreover, KEGG pathways revealed that the gene expression set were related to pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) mechanisms. The results will provide valuable information for developing CR cultivars in Brassica plants.
Collapse
Affiliation(s)
- Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| | - Hyeonseon Park
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| | - Kwanuk Lee
- Department of Biology, College of Natural Sciences, Jeju National University, Jeju 63243, Republic of Korea;
| | - Donghwan Shim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea; (E.-S.O.); (H.P.)
| |
Collapse
|
4
|
Amalraj A, Baumann U, Hayes JE, Sutton T. Using RNA sequencing to unravel molecular changes underlying the defense response in chickpea induced by Phytophthora medicaginis. PHYSIOLOGIA PLANTARUM 2024; 176:e14412. [PMID: 38952339 DOI: 10.1111/ppl.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/03/2024]
Abstract
Phytophthora root rot (PRR), caused by Phytophthora medicaginis, is a major soil-borne disease of chickpea in Australia. Breeding for PRR resistance is an effective approach to avoid significant yield loss. Genetic resistance has been identified in cultivated chickpea (Cicer arietinum) and in the wild relative C. echinospermum, with previous studies identifying independent genetic loci associated with each of these sources. However, the molecular mechanisms associated with PRR resistance are not known. RNA sequencing analysis employed in this study identified changes in gene expression in roots of three chickpea genotypes grown hydroponically, early post-infection with P. medicaginis zoospores. Analyses of differentially expressed genes (DEG) identified the activation of a higher number of non-specific R-genes in a PRR-susceptible variety than in the resistant genotypes, suggesting a whole plant resistance response occurring in chickpea against the pathogen. Contrasting molecular changes in signaling profiles, proteolysis and transcription factor pathways were observed in the cultivated and wild Cicer-derived resistant genotypes. DEG patterns supported a hypothesis that increased root elongation and reduced adventitious root formation limit the pathogen entry points in the genotype containing the wild Cicer source of PRR resistance. Candidate resistance genes, including an aquaporin and a maltose transporter in the wild Cicer source and GDSL esterases/lipases in the cultivated source of resistance, were oppositely regulated. Increased knowledge of these genes and pathways will improve our understanding of molecular mechanisms controlling PRR resistance in chickpea, and support the development of elite chickpea varieties through molecular breeding approaches.
Collapse
Affiliation(s)
- Amritha Amalraj
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, SA, Australia
| | - Ute Baumann
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, SA, Australia
| | - Julie E Hayes
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, SA, Australia
| | - Tim Sutton
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI), SA, Australia
| |
Collapse
|
5
|
Ambalavanan A, Mallikarjuna MG, Bansal S, Bashyal BM, Subramanian S, Kumar A, Prakash G. Genome-wide characterization of the NBLRR gene family provides evolutionary and functional insights into blast resistance in pearl millet (Cenchrus americanus (L.) Morrone). PLANTA 2024; 259:143. [PMID: 38704489 DOI: 10.1007/s00425-024-04413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
MAIN CONCLUSION The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Aruljothi Ambalavanan
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Shilpi Bansal
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Science and Humanities, SRM Institute of Science and Technology, Modinagar, Uttar Pradesh, 201204, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sabtharishi Subramanian
- Division of Entomology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
6
|
Deokar AA, Sagi M, Tar’an B. Genetic Analysis of Partially Resistant and Susceptible Chickpea Cultivars in Response to Ascochyta rabiei Infection. Int J Mol Sci 2024; 25:1360. [PMID: 38279360 PMCID: PMC10816841 DOI: 10.3390/ijms25021360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
The molecular mechanism involved in chickpea (Cicer arietinum L.) resistance to the necrotrophic fungal pathogen Ascochyta rabiei is not well documented. A. rabiei infection can cause severe damage in chickpea, resulting in significant economic losses. Understanding the resistance mechanism against ascochyta blight can help to define strategies to develop resistant cultivars. In this study, differentially expressed genes from two partially resistant cultivars (CDC Corinne and CDC Luna) and a susceptible cultivar (ICCV 96029) to ascochyta blight were identified in the early stages (24, 48 and 72 h) of A. rabiei infection using RNA-seq. Altogether, 3073 genes were differentially expressed in response to A. rabiei infection across different time points and cultivars. A larger number of differentially expressed genes (DEGs) were found in CDC Corinne and CDC Luna than in ICCV 96029. Various transcription factors including ERF, WRKY, bHLH and MYB were differentially expressed in response to A. rabiei infection. Genes involved in pathogen detection and immune signalings such as receptor-like kinases (RLKs), Leucine-Rich Repeat (LRR)-RLKs, and genes associated with the post-infection defence response were differentially expressed among the cultivars. GO functional enrichment and pathway analysis of the DEGs suggested that the biological processes such as metabolic process, response to stimulus and catalytic activity were overrepresented in both resistant and susceptible chickpea cultivars. The expression patterns of eight randomly selected genes revealed by RNA-seq were confirmed by quantitative PCR (qPCR) analysis. The results provide insights into the complex molecular mechanism of the chickpea defence in response to the A. rabiei infection.
Collapse
Affiliation(s)
| | | | - Bunyamin Tar’an
- Crop Development Centre, Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
7
|
Ahmed R, Dey KK, Senthil-Kumar M, Modi MK, Sarmah BK, Bhorali P. Comparative transcriptome profiling reveals differential defense responses among Alternaria brassicicola resistant Sinapis alba and susceptible Brassica rapa. FRONTIERS IN PLANT SCIENCE 2024; 14:1251349. [PMID: 38304451 PMCID: PMC10831657 DOI: 10.3389/fpls.2023.1251349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
Alternaria blight is a devastating disease that causes significant crop losses in oilseed Brassicas every year. Adoption of conventional breeding to generate disease-resistant varieties has so far been unsuccessful due to the lack of suitable resistant source germplasms of cultivated Brassica spp. A thorough understanding of the molecular basis of resistance, as well as the identification of defense-related genes involved in resistance responses in closely related wild germplasms, would substantially aid in disease management. In the current study, a comparative transcriptome profiling was performed using Illumina based RNA-seq to detect differentially expressed genes (DEGs) specifically modulated in response to Alternaria brassicicola infection in resistant Sinapis alba, a close relative of Brassicas, and the highly susceptible Brassica rapa. The analysis revealed that, at 48 hpi (hours post inoculation), 3396 genes were upregulated and 23239 were downregulated, whereas at 72 hpi, 4023 genes were upregulated and 21116 were downregulated. Furthermore, a large number of defense response genes were detected to be specifically regulated as a result of Alternaria infection. The transcriptome data was validated using qPCR-based expression profiling for selected defense-related DEGs, that revealed significantly higher fold change in gene expression in S. alba when compared to B. rapa. Expression of most of the selected genes was elevated across all the time points under study with significantly higher expression towards the later time point of 72 hpi in the resistant germplasm. S. alba activates a stronger defense response reaction against the disease by deploying an array of genes and transcription factors involved in a wide range of biological processes such as pathogen recognition, signal transduction, cell wall modification, antioxidation, transcription regulation, etc. Overall, the study provides new insights on resistance of S. alba against A. brassicicola, which will aid in devising strategies for breeding resistant varieties of oilseed Brassica.
Collapse
Affiliation(s)
- Reshma Ahmed
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Kuntal Kumar Dey
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | | | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Biotechnology - Northeast Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Priyadarshini Bhorali
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
8
|
Yang Y, Wu Z, Wu Z, Li T, Shen Z, Zhou X, Wu X, Li G, Zhang Y. A near-complete assembly of asparagus bean provides insights into anthocyanin accumulation in pods. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2473-2489. [PMID: 37558431 PMCID: PMC10651155 DOI: 10.1111/pbi.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023]
Abstract
Asparagus bean (Vigna unguiculata ssp. sesquipedialis), a subspecies of V. unguiculata, is a vital legume crop widely cultivated in Asia for its tender pods consumed as vegetables. However, the existing asparagus bean assemblies still contain numerous gaps and unanchored sequences, which presents challenges to functional genomics research. Here, we present an improved reference genome sequence of an elite asparagus bean variety, Fengchan 6, achieved through the integration of nanopore ultra-long reads, PacBio high-fidelity reads, and Hi-C technology. The improved assembly is 521.3 Mb in length and demonstrates several enhancements, including a higher N50 length (46.4 Mb), an anchor ratio of 99.8%, and the presence of only one gap. Furthermore, we successfully assembled 14 telomeres and all 11 centromeres, including four telomere-to-telomere chromosomes. Remarkably, the centromeric regions cover a total length of 38.1 Mb, providing valuable insights into the complex architecture of centromeres. Among the 30 594 predicted protein-coding genes, we identified 2356 genes that are tandemly duplicated in segmental duplication regions. These findings have implications for defence responses and may contribute to evolutionary processes. By utilizing the reference genome, we were able to effectively identify the presence of the gene VuMYB114, which regulates the accumulation of anthocyanins, thereby controlling the purple coloration of the pods. This discovery holds significant implications for understanding the underlying mechanisms of color determination and the breeding process. Overall, the highly improved reference genome serves as crucial resource and lays a solid foundation for asparagus bean genomic studies and genetic improvement efforts.
Collapse
Affiliation(s)
- Yi Yang
- Vegetable Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Key Laboratory for New Technology Research of VegetablesGuangzhouChina
| | - Zhikun Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Zengxiang Wu
- Vegetable Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Key Laboratory for New Technology Research of VegetablesGuangzhouChina
| | - Tinyao Li
- Vegetable Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Key Laboratory for New Technology Research of VegetablesGuangzhouChina
| | - Zhuo Shen
- Vegetable Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Key Laboratory for New Technology Research of VegetablesGuangzhouChina
| | - Xuan Zhou
- Vegetable Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Key Laboratory for New Technology Research of VegetablesGuangzhouChina
| | - Xinyi Wu
- Institute of VegetableZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Guojing Li
- Institute of VegetableZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yan Zhang
- Vegetable Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
- Guangdong Key Laboratory for New Technology Research of VegetablesGuangzhouChina
| |
Collapse
|
9
|
Nishmitha K, Singh R, Akhtar J, Bashyal BM, Dubey SC, Tripathi A, Kamil D. Expression profiling and characterization of key RGA involved in lentil Fusarium wilt Race 5 resistance. World J Microbiol Biotechnol 2023; 39:306. [PMID: 37713019 DOI: 10.1007/s11274-023-03748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Fusarium wilt is a major threat to lentil production in India and worldwide. The presence of evolving virulent races has imposed the necessity of reliable management practices including breeding for resistance using unexplored germplasms. The magnitude of resistance by the plant is determined by rapid recognition of the pathogen and induction of defence genes. Resistance gene analogues have been key factors involved in the recognition and induction of defence response. In the present study, the expression of key RGA previously cloned was determined in three resistant accessions (L65, L83 and L90) and a susceptible accession (L27). The expression was assessed via qPCR at 24, 48 and 72 hpi against virulent race5 (CG-5). All the RGAs differentially transcribed in resistant and susceptible accession showed temporal variation. RGA Lc2, Lc8, Ln1 and Lo6 produced cDNA signals during early infection (24 hpi) predicting its involvement in recognition. LoRGA6 showed significant upregulation in L65 and L83 while downregulating in L27 and the full length of LoRGA6 loci was isolated by 5' and 3' RACE PCR. In-silico characterization revealed LoRGA6 loci code for 912 amino acids long polypeptide with a TIR motif at the N terminal and eight LRR motifs at the C terminal. The tertiary structure revealed a concave pocket-like structure at the LRR domain potentially involved in pathogen effectors interaction. The loci have ADP binding domain and ATPase activity. This has further paved the path for functional analysis of the loci by VIGS to understand the molecular mechanism of resistance.
Collapse
Affiliation(s)
- K Nishmitha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Jameel Akhtar
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S C Dubey
- Indian Council of Agricultural Research, New Delhi, 110001, India
| | - Aradhika Tripathi
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
10
|
Şahin ES, Talapov T, Ateş D, Can C, Tanyolaç MB. Genome wide association study of genes controlling resistance to Didymella rabiei Pathotype IV through genotyping by sequencing in chickpeas (Cicer arietinum). Genomics 2023; 115:110699. [PMID: 37597791 DOI: 10.1016/j.ygeno.2023.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Ascochyta blight (AB) is a major disease in chickpeas (Cicer arietinum L.) that can cause a yield loss of up to 100%. Chickpea germplasm collections at the center of origin offer great potential to discover novel sources of resistance to pests and diseases. Herein, 189 Cicer arietinum samples were genotyped via genotyping by sequencing. This chickpea collection was phenotyped for resistance to an aggressive Turkish Didymella rabiei Pathotype IV isolate. Genome-wide association studies based on different models revealed 19 single nucleotide polymorphism (SNP) associations on chromosomes 1, 2, 3, 4, 7, and 8. Although eight of these SNPs have been previously reported, to the best of our knowledge, the remaining ten were associated with AB resistance for the first time. The regions identified in this study can be addressed in future studies to reveal the genetic mechanism underlying AB resistance and can also be utilized in chickpea breeding programs to improve AB resistance in new chickpea varieties.
Collapse
Affiliation(s)
- Erdem Sefa Şahin
- Republic of Turkey, Ministry of Agriculture and Forestry, Aegean Agricultural Research Institute, Izmir, Turkey; Department of Bioengineering, Molecular Genetic Laboratory, Ege University, Izmir, Turkey
| | - Talap Talapov
- Department of Biology, Gaziantep University, Gaziantep, Turkey
| | - Duygu Ateş
- Department of Bioengineering, Molecular Genetic Laboratory, Ege University, Izmir, Turkey
| | - Canan Can
- Department of Biology, Gaziantep University, Gaziantep, Turkey
| | | |
Collapse
|
11
|
Alsamman AM, Mousa KH, Nassar AE, Faheem MM, Radwan KH, Adly MH, Hussein A, Istanbuli T, Mokhtar MM, Elakkad TA, Kehel Z, Hamwieh A, Abdelsattar M, El Allali A. Identification, characterization, and validation of NBS-encoding genes in grass pea. Front Genet 2023; 14:1187597. [PMID: 37408775 PMCID: PMC10318170 DOI: 10.3389/fgene.2023.1187597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Grass pea is a promising crop with the potential to provide food and fodder, but its genomics has not been adequately explored. Identifying genes for desirable traits, such as drought tolerance and disease resistance, is critical for improving the plant. Grass pea currently lacks known R-genes, including the nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family, which plays a key role in protecting the plant from biotic and abiotic stresses. In our study, we used the recently published grass pea genome and available transcriptomic data to identify 274 NBS-LRR genes. The evolutionary relationships between the classified genes on the reported plants and LsNBS revealed that 124 genes have TNL domains, while 150 genes have CNL domains. All genes contained exons, ranging from 1 to 7. Ten conserved motifs with lengths ranging from 16 to 30 amino acids were identified. We found TIR-domain-containing genes in 132 LsNBSs, with 63 TIR-1 and 69 TIR-2, and RX-CCLike in 84 LsNBSs. We also identified several popular motifs, including P-loop, Uup, kinase-GTPase, ABC, ChvD, CDC6, Rnase_H, Smc, CDC48, and SpoVK. According to the gene enrichment analysis, the identified genes undergo several biological processes such as plant defense, innate immunity, hydrolase activity, and DNA binding. In the upstream regions, 103 transcription factors were identified that govern the transcription of nearby genes affecting the plant excretion of salicylic acid, methyl jasmonate, ethylene, and abscisic acid. According to RNA-Seq expression analysis, 85% of the encoded genes have high expression levels. Nine LsNBS genes were selected for qPCR under salt stress conditions. The majority of the genes showed upregulation at 50 and 200 μM NaCl. However, LsNBS-D18, LsNBS-D204, and LsNBS-D180 showed reduced or drastic downregulation compared to their respective expression levels, providing further insights into the potential functions of LsNBSs under salt stress conditions. They provide valuable insights into the potential functions of LsNBSs under salt stress conditions. Our findings also shed light on the evolution and classification of NBS-LRR genes in legumes, highlighting the potential of grass pea. Further research could focus on the functional analysis of these genes, and their potential use in breeding programs to improve the salinity, drought, and disease resistance of this important crop.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mostafa M. Faheem
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Monica H. Adly
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Tamer Ahmed Elakkad
- Department of Genetics and Genetic Engineering, Faculty of Agriculture at Moshtohor, Benha University, Benha, Egypt
- Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
12
|
Genome wide identification and evolutionary analysis of vat like NBS-LRR genes potentially associated with resistance to aphids in cotton. Genetica 2023; 151:119-131. [PMID: 36717534 DOI: 10.1007/s10709-023-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
Nucleotide Binding Site - Leucine Rich Repeat (NBS-LRR) genes play a significant role in plant defense against biotic stresses and are an integral part of signal transduction pathways. Vat gene has been well reported for their role in resistance to Aphis gossypii and viruses transmitted by them. Despite their importance, Vat like NBS-LRR resistance genes have not yet been identified and studied in cotton species. This study report hundreds of orthologous Vat like NBS-LRR genes from the genomes of 18 cotton species through homology searches and the distribution of those identified genes were tend to be clustered on different chromosome. Especially, in a majority of the cases, Vat like genes were located on chromosome number 13 and they all shared two conserved NBS-LRR domains, one disease resistant domain and several repeats of LRR on the investigated cotton Vat like proteins. Gene ontology study on Vat like NBS-LRR genes revealed the molecular functions viz., ADP and protein binding. Phylogenetic analysis also revealed that Vat like sequences of two diploid species, viz., G. arboreum and G. anomalum, were closely related to the sequences of the tetraploids than all other diploids. The Vat like genes of G. aridum and G. schwendimanii were distantly related among diploids and tetraploids species. Various hormones and defense related cis-acting regulatory elements were identified from the 2 kb upstream sequences of the Vat like genes implying their defensive response towards the biotic stresses. Interestingly, G. arboreum and G. trilobum were found to have more regulatory elements than larger genomes of tetraploid cotton species. Thus, the present study provides the evidence for the evolution of Vat like genes in defense mechanisms against aphids infestation in cotton genomes and allows further characterization of candidate genes for developing aphid and aphid transmitted viruses resistant crops through cotton breeding.
Collapse
|
13
|
Yin T, Han P, Xi D, Yu W, Zhu L, Du C, Yang N, Liu X, Zhang H. Genome-wide identification, characterization, and expression profile ofNBS-LRRgene family in sweet orange (Citrussinensis). Gene 2023; 854:147117. [PMID: 36526123 DOI: 10.1016/j.gene.2022.147117] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The NBS-LRR (nucleotide-binding site-leucine-rich repeat gene) gene family, known as the plant R (resistance) gene family with the most members, plays a significant role in plant resistance to various external adversity stresses. The NBS-LRR gene family has been researched in many plant species. Citrus is one of the most vital global cash crops, the number one fruit group, and the third most traded agricultural product world wild. However, as one of the largest citrus species, a comprehensive study of the NBS-LRR gene family has not been reported on sweet oranges. METHODS In this study, NBS-LRR genes were identified from the Citrus sinensis genome (v3.0), with a comprehensive analysis of this gene family performed, including phylogenetic analysis, gene structure, cis-acting element of a promoter, and chromosomal localization, among others. The expression pattern of NBS-LRR genes was analyzed when sweet orange fruits were infected by Penicillium digitatum, employing experimental data from our research group. It first reported the expression patterns of NBS-LRR genes under abiotic stresses, using three transcript data from NCBI (National Center for Biotechnology Information). RESULTS In this study, 111 NBS-LRR genes were identified in the C. sinensis genome (v3.0) and classified into seven subfamilies according to their N-terminal and C-terminal domains. The phylogenetic tree results indicate that genes containing only the NBS structural domain are more ancient in the sweet orange NBS-LRR gene family. The chromosome localization results showed that 111 NBS-LRR genes were distributed unevenly on nine chromosomes, with the most genes distributed on chromosome 1. In addition, we identified a total of 18 tandem duplication gene pairs in the sweet orange NBS-LRR gene family, and based on the Ka/Ks ratio, all of the tandem duplication genes underwent purifying selection. Transcriptome data analysis showed a significant number of NBS-LRR genes expressed under biotic and abiotic stresses, and some reached significantly different levels of expression. It indicates that the NBS-LRR gene family is vital in resistance to biotic and abiotic stresses in sweet oranges. CONCLUSION Our study provides the first comprehensive framework on the NBS-LRR family of genes, which provides a basis for further in-depth studies on the biological functions of NBS-LRR in growth, development, and response to abiotic stresses in sweet orange.
Collapse
Affiliation(s)
- Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Peichen Han
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Dengxian Xi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Wencai Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Ling Zhu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Chaojin Du
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Na Yang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
14
|
Yang Z, Yuan L, Zhu H, Jiang J, Yang H, Li L. Small RNA profiling reveals the involvement of microRNA-mediated gene regulation in response to symbiosis in raspberry. Front Microbiol 2022; 13:1082494. [PMID: 36620006 PMCID: PMC9810812 DOI: 10.3389/fmicb.2022.1082494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Dark septate endophytes (DSEs) can form reciprocal symbioses with most terrestrial plants, providing them with mineral nutrients in exchange for photosynthetic products. Although the mechanism of plant-DSEs is well understood at the transcriptional level, little is known about their post-transcriptional regulation, and microRNAs (miRNAs) for the symbiotic process of DSE infestation of raspberry have not been identified. In this study, we comprehensively identified the miRNAs of DSE-infested raspberry symbiosis using Illumina sequencing. A total of 361 known miRNAs and 95 novel miRNAs were identified in the roots. Similar to other dicotyledons, most of the identified raspberry miRNAs were 21 nt in length. Thirty-seven miRNAs were differentially expressed during colonization after inoculation with Phialocephala fortinii F5, suggesting a possible role for these miRNAs in the symbiotic process. Notably, two miRNAs (miR171h and miR396) previously reported to be responsive to symbiotic processes in alfalfa also had altered expression during raspberry symbiosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggests that miRNAs are mainly involved in regulatory mechanisms, such as biological processes, cellular metabolic processes, biosynthesis of secondary metabolites, plant-pathogen interactions, and phytohormone signaling pathways. This study revealed the potential conservation of miRNA-mediated post-transcriptional regulation in symbiotic processes among plants and provides some novel miRNAs for understanding the regulatory mechanisms of DSE-raspberry symbiosis.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Lianmei Yuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Haifeng Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China,*Correspondence: Hongyi Yang,
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China,Lili Li,
| |
Collapse
|
15
|
Guimaraes PM, Quintana AC, Mota APZ, Berbert PS, Ferreira DDS, de Aguiar MN, Pereira BM, de Araújo ACG, Brasileiro ACM. Engineering Resistance against Sclerotinia sclerotiorum Using a Truncated NLR (TNx) and a Defense-Priming Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:3483. [PMID: 36559595 PMCID: PMC9786959 DOI: 10.3390/plants11243483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The association of both cell-surface PRRs (Pattern Recognition Receptors) and intracellular receptor NLRs (Nucleotide-Binding Leucine-Rich Repeat) in engineered plants have the potential to activate strong defenses against a broad range of pathogens. Here, we describe the identification, characterization, and in planta functional analysis of a novel truncated NLR (TNx) gene from the wild species Arachis stenosperma (AsTIR19), with a protein structure lacking the C-terminal LRR (Leucine Rich Repeat) domain involved in pathogen perception. Overexpression of AsTIR19 in tobacco plants led to a significant reduction in infection caused by Sclerotinia sclerotiorum, with a further reduction in pyramid lines containing an expansin-like B gene (AdEXLB8) potentially involved in defense priming. Transcription analysis of tobacco transgenic lines revealed induction of hormone defense pathways (SA; JA-ET) and PRs (Pathogenesis-Related proteins) production. The strong upregulation of the respiratory burst oxidase homolog D (RbohD) gene in the pyramid lines suggests its central role in mediating immune responses in plants co-expressing the two transgenes, with reactive oxygen species (ROS) production enhanced by AdEXLB8 cues leading to stronger defense response. Here, we demonstrate that the association of potential priming elicitors and truncated NLRs can produce a synergistic effect on fungal resistance, constituting a promising strategy for improved, non-specific resistance to plant pathogens.
Collapse
Affiliation(s)
- Patricia Messenberg Guimaraes
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| | | | - Ana Paula Zotta Mota
- INRAE, Institut Sophia Agrobiotech, CNRS, Université Côte d’Azur, 06903 Sophia Antipolis, France
| | | | | | | | | | | | - Ana Cristina Miranda Brasileiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Brasilia 70770-917, Brazil
| |
Collapse
|
16
|
Choudhary AK, Jain SK, Dubey AK, Kumar J, Sharma M, Gupta KC, Sharma LD, Prakash V, Kumar S. Conventional and molecular breeding for disease resistance in chickpea: status and strategies. Biotechnol Genet Eng Rev 2022:1-32. [PMID: 35959728 DOI: 10.1080/02648725.2022.2110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/21/2021] [Indexed: 11/02/2022]
Abstract
Chickpea (Cicer arietinum L.) is an important grain legume at the global level. Among different biotic stresses, diseases are the most important factor limiting its production, causing yield losses up to 100% in severe condition. The major diseases that adversely affect yield of chickpea include Fusarium wilt, Ascochyta blight and Botrytis gray mold. However, dry root rot, collar rot, Sclerotinia stem rot, rust, stunt disease and phyllody have been noted as emerging biotic threats to chickpea production in many production regions. Identification and incorporation of different morphological and biochemical traits are required through breeding to enhance genetic gain for disease resistance. In recent years, remarkable progress has been made in the development of trait-specific breeding lines, genetic and genomic resources in chickpea. Advances in genomics technologies have opened up new avenues to introgress genes from secondary and tertiary gene pools for improving disease resistance in chickpea. In this review, we have discussed important diseases, constraints and improvement strategies for enhancing disease resistance in chickpea.
Collapse
Affiliation(s)
- Arbind K Choudhary
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Shailesh Kumar Jain
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Abhishek Kumar Dubey
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Jitendra Kumar
- Division of Crop Improvement, Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | - Mamta Sharma
- Crop Protection and Seed Health, International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), Patancheru, Telangana, India
| | - Kailash Chand Gupta
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Leela Dhar Sharma
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Ved Prakash
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Saurabh Kumar
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| |
Collapse
|
17
|
Massonnet M, Vondras AM, Cochetel N, Riaz S, Pap D, Minio A, Figueroa-Balderas R, Walker MA, Cantu D. Haplotype-resolved powdery mildew resistance loci reveal the impact of heterozygous structural variation on NLR genes in Muscadinia rotundifolia. G3 GENES|GENOMES|GENETICS 2022; 12:6607591. [PMID: 35695769 PMCID: PMC9339307 DOI: 10.1093/g3journal/jkac148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022]
Abstract
Muscadinia rotundifolia cv. Trayshed is a valuable source of resistance to grape powdery mildew. It carries 2 powdery mildew resistance-associated genetic loci, Run1.2 on chromosome 12 and Run2.2 on chromosome 18. The purpose of this study was to identify candidate resistance genes associated with each haplotype of the 2 loci. Both haplotypes of each resistance-associated locus were identified, phased, and reconstructed. Haplotype phasing allowed the identification of several structural variation events between haplotypes of both loci. Combined with a manual refinement of the gene models, we found that the heterozygous structural variants affected the gene content, with some resulting in duplicated or hemizygous nucleotide-binding leucine-rich repeat genes. Heterozygous structural variations were also found to impact the domain composition of some nucleotide-binding leucine-rich repeat proteins. By comparing the nucleotide-binding leucine-rich repeat proteins at Run1.2 and Run2.2 loci, we discovered that the 2 loci include different numbers and classes of nucleotide-binding leucine-rich repeat genes. To identify powdery mildew resistance-associated genes, we performed a gene expression profiling of the nucleotide-binding leucine-rich repeat genes at Run1.2b and Run2.2 loci with or without powdery mildew present. Several nucleotide-binding leucine-rich repeat genes were constitutively expressed, suggesting a role in powdery mildew resistance. These first complete, haplotype-resolved resistance-associated loci and the candidate nucleotide-binding leucine-rich repeat genes identified by this study are new resources that can aid the development of powdery mildew-resistant grape cultivars.
Collapse
Affiliation(s)
- Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Amanda M Vondras
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Noé Cochetel
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Summaira Riaz
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Dániel Pap
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Michael Andrew Walker
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis , Davis, CA 95616, USA
| |
Collapse
|
18
|
Inturrisi F, Bayer PE, Cantila AY, Tirnaz S, Edwards D, Batley J. In silico integration of disease resistance QTL, genes and markers with the Brassica juncea physical map. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:37. [PMID: 37309382 PMCID: PMC10248627 DOI: 10.1007/s11032-022-01309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/09/2022] [Indexed: 06/14/2023]
Abstract
Brassica juncea (AABB), Indian mustard, is a source of disease resistance genes for a wide range of pathogens. The availability of reference genome sequences for B. juncea has made it possible to characterise the genomic structure and distribution of these disease resistance genes. Potentially functional disease resistance genes can be identified by co-localization with genetically mapped disease resistance quantitative trait loci (QTL). Here we identify and characterise disease resistance gene analogs (RGAs), including nucleotide-binding site-leucine-rich repeat (NLR), receptor-like kinase (RLK) and receptor-like protein (RLP) classes, and investigate their association with disease resistance QTL intervals. The molecular genetic marker sequences for four white rust (Albugo candida) disease resistance QTL, six blackleg (Leptosphaeria maculans) disease resistance QTL and BjCHI1, a gene cloned from B. juncea for hypocotyl rot disease, were extracted from previously published studies and used to compare with candidate RGAs. Our results highlight the complications for the identification of functional resistance genes, including the duplicated appearance of genetic markers for several resistance loci, including Ac2(t), AcB1-A4.1, AcB1-A5.1, Rlm6 and PhR2 in both the A and B genomes, due to the presence of homoeologous regions. Furthermore, the white rust loci, Ac2(t) and AcB1-A4.1, mapped to the same position on chromosome A04 and may be different alleles of the same gene. Despite these challenges, a total of nine candidate genomic regions hosting 14 RLPs, 28 NLRs and 115 RLKs were identified. This study facilitates the mapping and cloning of functional resistance genes for applications in crop improvement programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01309-5.
Collapse
Affiliation(s)
- Fabian Inturrisi
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Philipp E. Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Aldrin Y. Cantila
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Soodeh Tirnaz
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA Australia
| |
Collapse
|
19
|
Mohanty JK, Jha UC, Dixit GP, Parida SK. Harnessing the hidden allelic diversity of wild Cicer to accelerate genomics-assisted chickpea crop improvement. Mol Biol Rep 2022; 49:5697-5715. [PMID: 35708861 DOI: 10.1007/s11033-022-07613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Chickpea, commonly called Bengal gram or Garbanzo bean, faces a productivity crisis around the globe due to numerous biotic and abiotic stresses. The eroded genetic base of the cultivated Cicer gene pool is becoming a significant bottleneck in developing stress-resilient chickpea cultivars. In this scenario, the crop wild relatives (CWR) of chickpea, with the useful genomic wealth of their wild adaptation, give a ray of hope to improve the genetic background of the cultivated Cicer gene pool. To extrapolate these unearthed genomic diversities of wild, we require a thorough understanding of the pre-historic domestication episodes that are changing their shape with the expansion of the available scientific evidence. Keeping aforesaid in view, the current review article provides a glimpsed overview on several efforts done so far to reveal the mysterious origin and evolution of the Cicer gene pool, along with the constraints in their utilization for chickpea crop improvement. It encapsulates various stress-resilient CWR of chickpea and their use in several pre-breeding programs to develop numerous breeding populations for crop genetic enhancement. Further, this review will recapitulate the significant contributions of structural, functional and comparative genomics, pan-genomics and diverse genomics-assisted breeding strategy in dissecting the untapped trait-specific allelic/gene diversity and domestication pattern behind the CWR of chickpea, along with their potential and promises. We expect the newly explored genetic variations may be used in the breeding programs for re-wilding the cultigens' genomic background to open a new avenue for genetic gain and crop improvement capacity of chickpea.
Collapse
Affiliation(s)
- Jitendra Kumar Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- ICAR-Indian Institute of Pulse Research (IIPR), Kanpur, 208024, India
| | - G P Dixit
- ICAR-Indian Institute of Pulse Research (IIPR), Kanpur, 208024, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
20
|
Mwape VW, Khoo KHP, Chen K, Khentry Y, Newman TE, Derbyshire MC, Mather DE, Kamphuis LG. Identification of Sclerotinia stem rot resistance quantitative trait loci in a chickpea ( Cicer arietinum) recombinant inbred line population. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:634-646. [PMID: 35339205 DOI: 10.1071/fp21216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum , is one of the most economically devastating diseases in chickpea (Cicer arietinum L.). No complete resistance is available in chickpea to this disease, and the inheritance of partial resistance is not understood. Two hundred F7 recombinant inbred lines (RILs) derived from a cross between a partially resistant variety PBA HatTrick, and a highly susceptible variety Kyabra were characterised for their responses to SSR inoculation. Quantitative trait locus (QTL) analysis was conducted for the area under the disease progress curve (AUDPC) after RIL infection with S. sclerotiorum . Four QTLs on chromosomes, Ca4 (qSSR4-1, qSSR4-2), Ca6 (qSSR6-1) and Ca7 (qSSR7-1), individually accounted for between 4.2 and 15.8% of the total estimated phenotypic variation for the response to SSR inoculation. Candidate genes located in these QTL regions are predicted to be involved in a wide range of processes, including phenylpropanoid biosynthesis, plant-pathogen interaction, and plant hormone signal transduction. This is the first study investigating the inheritance of resistance to S. sclerotiorum in chickpea. Markers associated with the identified QTLs could be employed for marker-assisted selection in chickpea breeding.
Collapse
Affiliation(s)
- Virginia W Mwape
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia; and Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA 6913, Australia
| | - Kelvin H P Khoo
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Kefei Chen
- Statistics for the Australian Grains Industry - West, Curtin University, Bentley, WA 6102, Australia
| | - Yuphin Khentry
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Toby E Newman
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Mark C Derbyshire
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Lars G Kamphuis
- Centre for Crop Disease Management, Curtin University, Bentley, WA 6102, Australia; and Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Floreat, WA 6913, Australia
| |
Collapse
|
21
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Genome-wide identification and characterization of NBS-encoding genes in the sweet potato wild ancestor Ipomoea trifida (H.B.K.). Open Life Sci 2022; 17:497-511. [PMID: 35647293 PMCID: PMC9102303 DOI: 10.1515/biol-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
The most predominant type of resistance (R) genes contain nucleotide-binding sites and leucine-rich repeat (NBS-LRR) domains, characterization of which is helpful for plant resistance improvement. However, the NBS genes of Ipomoea trifida (H.B.K.) remain insufficient to date. In this study, a genome-wide analysis of the NBS-encoding gene in I. trifida (H.B.K.) was carried out. A total of 442 NBS encoding genes were identified, amounting to 1.37% of the total genes of I. trifida (H.B.K.). Based on the analysis of the domains, the identified ItfNBS genes were further classified into seven groups: CNL, NL, CN, N, TNL, TN, and RNL. Phylogenetic analysis showed that the I. trifida NBS genes clustered into three independent clades: RNL, TNL, and CNL. Chromosome location analysis revealed that the distribution of ItfNBS genes in chromosomes was uneven, with a number ranging from 3 to 45. Multiple stress-related regulatory elements were detected in the promoters of the NBS-encoding genes, and their expression profiles were obtained. The qRT-PCR analysis revealed that IbNBS10, IbNBS20, IbNBS258, and IbNBS88 responded to stem nematode infection. These results provide critical proof for further characterization and analysis of NBS-encoding genes with important functions.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| |
Collapse
|
22
|
Genetic Diversity and DNA Fingerprinting in Broccoli Carrying Multiple Clubroot Resistance Genes Based on SSR Markers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To identify cultivars quickly and accurately, DNA fingerprinting of 10 broccoli varieties was performed by using simple sequence repeat (SSR) marker technology. Highly informative and polymorphic SSR markers were screened using broccoli and rapeseed. Out of the 93 SSR marker pairs, 21 pairs were selected and found to have good polymorphism. Each marker pair generated 1 to 10 polymorphic bands with an average of 4.29. The average polymorphism information content (PIC) was 0.41 with a range from 0.16 to 0.95. Six selected marker pairs established the fingerprinting of the 10 accessions and their unique fingerprints. Cluster analysis of 10 accessions showed that the genetic similarity coefficient was between 0.57 and 0.91. They can be divided into 3 groups at the genetic similarity coefficient (GSC) of 0.73. The above results indicated that DNA fingerprinting could provide a scientific basis for the identification of broccoli polymerized multiple clubroot resistance genes. Research shows that SSR marker-based DNA fingerprinting further ensures plant seed purity.
Collapse
|
23
|
Alo F, Rani AR, Baum M, Singh S, Kehel Z, Rani U, Udupa S, Al-Sham’aa K, Alsamman AM, Istanbuli T, Attar B, Hamwieh A, Amri A. Novel Genomic Regions Linked to Ascochyta Blight Resistance in Two Differentially Resistant Cultivars of Chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:762002. [PMID: 35548283 PMCID: PMC9083910 DOI: 10.3389/fpls.2022.762002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Ascochyta blight (AB), caused by the fungal pathogen Ascochyta rabiei, is a devastating foliar disease of chickpea (Cicer arietinum L.). The genotyping-by-sequencing (GBS)-based approach was deployed for mapping QTLs associated with AB resistance in chickpea in two recombinant inbred line populations derived from two crosses (AB3279 derived from ILC 1929 × ILC 3279 and AB482 derived from ILC 1929 × ILC 482) and tested in six different environments. Twenty-one different genomic regions linked to AB resistance were identified in regions CalG02 and CalG04 in both populations AB3279 and AB482. These regions contain 1,118 SNPs significantly associated with AB resistance (p ≤ 0.001), which explained 11.2-39.3% of the phenotypic variation (PVE). Nine of the AB resistance-associated genomic regions were newly detected in this study, while twelve regions were known from previous AB studies. The proposed physical map narrows down AB resistance to consistent genomic regions identified across different environments. Gene ontology (GO) assigned these QTLs to 319 genes, many of which were associated with stress and disease resistance, and with most important genes belonging to resistance gene families such as leucine-rich repeat (LRR) and transcription factor families. Our results indicate that the flowering-associated gene GIGANTEA is a possible key factor in AB resistance in chickpea. The results have identified AB resistance-associated regions on the physical genetic map of chickpea and allowed for the identification of associated markers that will help in breeding of AB-resistant varieties.
Collapse
Affiliation(s)
- Fida Alo
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Anupalli Roja Rani
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Sarvjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Upasana Rani
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sripada Udupa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Khaled Al-Sham’aa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Alsamman M. Alsamman
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agriculture Genetic Engineering Research Institute, Giza, Egypt
| | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Basem Attar
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Ahmed Amri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| |
Collapse
|
24
|
Jha UC, Sharma KD, Nayyar H, Parida SK, Siddique KHM. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes. Int J Mol Sci 2022; 23:ijms23042217. [PMID: 35216334 PMCID: PMC8880496 DOI: 10.3390/ijms23042217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Grain legumes are a key food source for ensuring global food security and sustaining agriculture. However, grain legume production is challenged by growing disease incidence due to global climate change. Ascochyta blight (AB) is a major disease, causing substantial yield losses in grain legumes worldwide. Harnessing the untapped reserve of global grain legume germplasm, landraces, and crop wild relatives (CWRs) could help minimize yield losses caused by AB infection in grain legumes. Several genetic determinants controlling AB resistance in various grain legumes have been identified following classical genetic and conventional breeding approaches. However, the advent of molecular markers, biparental quantitative trait loci (QTL) mapping, genome-wide association studies, genomic resources developed from various genome sequence assemblies, and whole-genome resequencing of global germplasm has revealed AB-resistant gene(s)/QTL/genomic regions/haplotypes on various linkage groups. These genomics resources allow plant breeders to embrace genomics-assisted selection for developing/transferring AB-resistant genomic regions to elite cultivars with great precision. Likewise, advances in functional genomics, especially transcriptomics and proteomics, have assisted in discovering possible candidate gene(s) and proteins and the underlying molecular mechanisms of AB resistance in various grain legumes. We discuss how emerging cutting-edge next-generation breeding tools, such as rapid generation advancement, field-based high-throughput phenotyping tools, genomic selection, and CRISPR/Cas9, could be used for fast-tracking AB-resistant grain legumes to meet the increasing demand for grain legume-based protein diets and thus ensuring global food security.
Collapse
Affiliation(s)
- Uday C. Jha
- Indian Institute of Pulses Research, Kanpur 208024, India
- Correspondence: (U.C.J.); (K.H.M.S.)
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur 176062, India;
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 0172, India;
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi 110001, India;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- Correspondence: (U.C.J.); (K.H.M.S.)
| |
Collapse
|
25
|
Raman R, Warren A, Krysinska-Kaczmarek M, Rohan M, Sharma N, Dron N, Davidson J, Moore K, Hobson K. Genome-Wide Association Analyses Track Genomic Regions for Resistance to Ascochyta rabiei in Australian Chickpea Breeding Germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:877266. [PMID: 35665159 PMCID: PMC9159299 DOI: 10.3389/fpls.2022.877266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 05/05/2023]
Abstract
Ascochyta blight (AB), caused by a necrotrophic fungus, Ascochyta rabiei (syn. Phoma rabiei) has the potential to destroy the chickpea industry worldwide, due to limited sources of genetic resistance in the cultivated gene pool, high evolutionary potential of the pathogen and challenges with integrated disease management. Therefore, the deployment of stable genetic resistance in new cultivars could provide an effective disease control strategy. To investigate the genetic basis of AB resistance, genotyping-by-sequencing based DArTseq-single nucleotide polymorphism (SNP) marker data along with phenotypic data of 251 advanced breeding lines and chickpea cultivars were used to perform genome-wide association (GWAS) analysis. Host resistance was evaluated seven weeks after sowing using two highly aggressive single spore isolates (F17191-1 and TR9571) of A. rabiei. GWAS analyses based on single-locus and multi-locus mixed models and haplotyping trend regression identified twenty-six genomic regions on Ca1, Ca4, and Ca6 that showed significant association with resistance to AB. Two haplotype blocks (HB) on chromosome Ca1; HB5 (992178-1108145 bp), and HB8 (1886221-1976301 bp) were associated with resistance against both isolates. Nine HB on the chromosome, Ca4, spanning a large genomic region (14.9-56.6 Mbp) were also associated with resistance, confirming the role of this chromosome in providing resistance to AB. Furthermore, trait-marker associations in two F3 derived populations for resistance to TR9571 isolate at the seedling stage under glasshouse conditions were also validated. Eighty-nine significantly associated SNPs were located within candidate genes, including genes encoding for serine/threonine-protein kinase, Myb protein, quinone oxidoreductase, and calmodulin-binding protein all of which are implicated in disease resistance. Taken together, this study identifies valuable sources of genetic resistance, SNP markers and candidate genes underlying genomic regions associated with AB resistance which may enable chickpea breeding programs to make genetic gains via marker-assisted/genomic selection strategies.
Collapse
Affiliation(s)
- Rosy Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
- *Correspondence: Rosy Raman,
| | - Annie Warren
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Tamworth, NSW, Australia
| | | | - Maheswaran Rohan
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, Australia
| | - Nicole Dron
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Tamworth, NSW, Australia
| | - Jenny Davidson
- South Australian Research and Development Institute, Urrbrae, SA, Australia
| | - Kevin Moore
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Tamworth, NSW, Australia
| | - Kristy Hobson
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Tamworth, NSW, Australia
| |
Collapse
|
26
|
Wei X, Zhang Y, Zhao Y, Xie Z, Hossain MR, Yang S, Shi G, Lv Y, Wang Z, Tian B, Su H, Wei F, Zhang X, Yuan Y. Root Transcriptome and Metabolome Profiling Reveal Key Phytohormone-Related Genes and Pathways Involved Clubroot Resistance in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2021; 12:759623. [PMID: 34975941 PMCID: PMC8715091 DOI: 10.3389/fpls.2021.759623] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
Plasmodiophora brassicae, an obligate biotrophic pathogen-causing clubroot disease, can seriously affect Brassica crops worldwide, especially Chinese cabbage. Understanding the transcriptome and metabolome profiling changes during the infection of P. brassicae will provide key insights in understanding the defense mechanism in Brassica crops. In this study, we estimated the phytohormones using targeted metabolome assays and transcriptomic changes using RNA sequencing (RNA-seq) in the roots of resistant (BrT24) and susceptible (Y510-9) plants at 0, 3, 9, and 20 days after inoculation (DAI) with P. brassicae. Differentially expressed genes (DEGs) in resistant vs. susceptible lines across different time points were identified. The weighted gene co-expression network analysis of the DEGs revealed six pathways including "Plant-pathogen interaction" and "Plant hormone signal transduction" and 15 hub genes including pathogenic type III effector avirulence factor gene (RIN4) and auxin-responsive protein (IAA16) to be involved in plants immune response. Inhibition of Indoleacetic acid, cytokinin, jasmonate acid, and salicylic acid contents and changes in related gene expression in R-line may play important roles in regulation of clubroot resistance (CR). Based on the combined metabolome profiling and hormone-related transcriptomic responses, we propose a general model of hormone-mediated defense mechanism. This study definitely enhances our current understanding and paves the way for improving CR in Brassica rapa.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mohammad Rashed Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Lv
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Fang Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Shaw RK, Shen Y, Wang J, Sheng X, Zhao Z, Yu H, Gu H. Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in Brassica oleracea L. FRONTIERS IN PLANT SCIENCE 2021; 12:742553. [PMID: 34938304 PMCID: PMC8687090 DOI: 10.3389/fpls.2021.742553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Brassica oleracea is one of the most important species of the Brassicaceae family encompassing several economically important vegetables produced and consumed worldwide. But its sustainability is challenged by a range of pathogens, among which black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most serious and destructive seed borne bacterial disease, causing huge yield losses. Host-plant resistance could act as the most effective and efficient solution to curb black rot disease for sustainable production of B. oleracea. Recently, 'omics' technologies have emerged as promising tools to understand the host-pathogen interactions, thereby gaining a deeper insight into the resistance mechanisms. In this review, we have summarized the recent achievements made in the emerging omics technologies to tackle the black rot challenge in B. oleracea. With an integrated approach of the omics technologies such as genomics, proteomics, transcriptomics, and metabolomics, it would allow better understanding of the complex molecular mechanisms underlying black rot resistance. Due to the availability of sequencing data, genomics and transcriptomics have progressed as expected for black rot resistance, however, other omics approaches like proteomics and metabolomics are lagging behind, necessitating a holistic and targeted approach to address the complex questions of Xcc-Brassica interactions. Genomic studies revealed that the black rot resistance is a complex trait and is mostly controlled by quantitative trait locus (QTL) with minor effects. Transcriptomic analysis divulged the genes related to photosynthesis, glucosinolate biosynthesis and catabolism, phenylpropanoid biosynthesis pathway, ROS scavenging, calcium signalling, hormonal synthesis and signalling pathway are being differentially expressed upon Xcc infection. Comparative proteomic analysis in relation to susceptible and/or resistance interactions with Xcc identified the involvement of proteins related to photosynthesis, protein biosynthesis, processing and degradation, energy metabolism, innate immunity, redox homeostasis, and defence response and signalling pathways in Xcc-Brassica interaction. Specifically, most of the studies focused on the regulation of the photosynthesis-related proteins as a resistance response in both early and later stages of infection. Metabolomic studies suggested that glucosinolates (GSLs), especially aliphatic and indolic GSLs, its subsequent hydrolysis products, and defensive metabolites synthesized by jasmonic acid (JA)-mediated phenylpropanoid biosynthesis pathway are involved in disease resistance mechanisms against Xcc in Brassica species. Multi-omics analysis showed that JA signalling pathway is regulating resistance against hemibiotrophic pathogen like Xcc. So, the bonhomie between omics technologies and plant breeding is going to trigger major breakthroughs in the field of crop improvement by developing superior cultivars with broad-spectrum resistance. If multi-omics tools are implemented at the right scale, we may be able to achieve the maximum benefits from the minimum. In this review, we have also discussed the challenges, future prospects, and the way forward in the application of omics technologies to accelerate the breeding of B. oleracea for disease resistance. A deeper insight about the current knowledge on omics can offer promising results in the breeding of high-quality disease-resistant crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
28
|
Khoo KHP, Sheedy JG, Taylor JD, Croser JS, Hayes JE, Sutton T, Thompson JP, Mather DE. A QTL on the Ca7 chromosome of chickpea affects resistance to the root-lesion nematode Pratylenchus thornei. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:78. [PMID: 37309516 PMCID: PMC10236114 DOI: 10.1007/s11032-021-01271-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The root-lesion nematode Pratylenchus thornei Sher & Allen, 1953 is a damaging parasite of many crop plants, including the grain legume chickpea (Cicer arietinum L.). Within cultivated chickpea, there are no known sources of strong resistance to P. thornei, but some cultivars have partial resistance. In the research reported here, the genetic basis for differences in P. thornei resistance was analysed using a population derived by accelerated single seed descent from a cross between a partially resistant cultivar, PBA HatTrick, and a very susceptible cultivar, Kyabra. A genetic linkage map was constructed from genotyping-by-sequencing data. Two quantitative trait loci were mapped, one on the Ca4 chromosome and one on the Ca7 chromosome. The Ca7 locus had a greater and more consistent effect than the Ca4 locus. Marker assays designed for single nucleotide polymorphisms on Ca7 were applied to a panel of chickpea accessions. Some of these markers should be useful for marker-assisted selection in chickpea breeding. Haplotype analysis confirmed the Iranian landrace ICC14903 to be the source of the resistance allele in PBA HatTrick and indicated that other Australian cultivars inherited the same allele from other Iranian landraces. A candidate region was defined on the Ca7 pseudomolecule. Within that region, 69 genes have been predicted with high confidence. Among these, two have annotations related to biotic stress response. Three others have previously been reported to be expressed in roots of PBA HatTrick and Kyabra, including one that is more highly expressed in PBA HatTrick than in Kyabra. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01271-8.
Collapse
Affiliation(s)
- Kelvin H. P. Khoo
- School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064 Australia
| | - Jason G. Sheedy
- Centre for Crop Health, University of Southern Queensland, West Street, Toowoomba, QLD 4350 Australia
| | - Julian D. Taylor
- School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064 Australia
| | - Janine S. Croser
- Centre for Plant Genetics and Breeding, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Julie E. Hayes
- School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064 Australia
| | - Tim Sutton
- School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064 Australia
- South Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001 Australia
| | - John P. Thompson
- Centre for Crop Health, University of Southern Queensland, West Street, Toowoomba, QLD 4350 Australia
| | - Diane E. Mather
- School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA 5064 Australia
| |
Collapse
|
29
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Characterization of Nucleotide Binding -Site-Encoding Genes in Sweetpotato, Ipomoea batatas(L.) Lam., and Their Response to Biotic and Abiotic Stresses. Cytogenet Genome Res 2021; 161:257-271. [PMID: 34320507 DOI: 10.1159/000515834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 11/19/2022] Open
Abstract
Sweetpotato, Ipomoea batatas (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes' expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that IbNBS75, IbNBS219, and IbNBS256 respond to stem nematode infection; Ib-NBS240, IbNBS90, and IbNBS80 respond to cold stress, while IbNBS208, IbNBS71, and IbNBS159 respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
30
|
Ma Y, Chhapekar SS, Lu L, Oh S, Singh S, Kim CS, Kim S, Choi GJ, Lim YP, Choi SR. Genome-wide identification and characterization of NBS-encoding genes in Raphanus sativus L. and their roles related to Fusarium oxysporum resistance. BMC PLANT BIOLOGY 2021; 21:47. [PMID: 33461498 PMCID: PMC7814608 DOI: 10.1186/s12870-020-02803-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/16/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes are important for plant development and disease resistance. Although genome-wide studies of NBS-encoding genes have been performed in several species, the evolution, structure, expression, and function of these genes remain unknown in radish (Raphanus sativus L.). A recently released draft R. sativus L. reference genome has facilitated the genome-wide identification and characterization of NBS-encoding genes in radish. RESULTS A total of 225 NBS-encoding genes were identified in the radish genome based on the essential NB-ARC domain through HMM search and Pfam database, with 202 mapped onto nine chromosomes and the remaining 23 localized on different scaffolds. According to a gene structure analysis, we identified 99 NBS-LRR-type genes and 126 partial NBS-encoding genes. Additionally, 80 and 19 genes respectively encoded an N-terminal Toll/interleukin-like domain and a coiled-coil domain. Furthermore, 72% of the 202 NBS-encoding genes were grouped in 48 clusters distributed in 24 crucifer blocks on chromosomes. The U block on chromosomes R02, R04, and R08 had the most NBS-encoding genes (48), followed by the R (24), D (23), E (23), and F (17) blocks. These clusters were mostly homogeneous, containing NBS-encoding genes derived from a recent common ancestor. Tandem (15 events) and segmental (20 events) duplications were revealed in the NBS family. Comparative evolutionary analyses of orthologous genes among Arabidopsis thaliana, Brassica rapa, and Brassica oleracea reflected the importance of the NBS-LRR gene family during evolution. Moreover, examinations of cis-elements identified 70 major elements involved in responses to methyl jasmonate, abscisic acid, auxin, and salicylic acid. According to RNA-seq expression analyses, 75 NBS-encoding genes contributed to the resistance of radish to Fusarium wilt. A quantitative real-time PCR analysis revealed that RsTNL03 (Rs093020) and RsTNL09 (Rs042580) expression positively regulates radish resistance to Fusarium oxysporum, in contrast to the negative regulatory role for RsTNL06 (Rs053740). CONCLUSIONS The NBS-encoding gene structures, tandem and segmental duplications, synteny, and expression profiles in radish were elucidated for the first time and compared with those of other Brassicaceae family members (A. thaliana, B. oleracea, and B. rapa) to clarify the evolution of the NBS gene family. These results may be useful for functionally characterizing NBS-encoding genes in radish.
Collapse
Affiliation(s)
- Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sangheon Oh
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sonam Singh
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Chang Soo Kim
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Seungho Kim
- Neo Seed Co., 256-45 Jingeonjung-gil, Gongdo-eup, Anseong, Gyeonggi Province 17565 Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114 Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
31
|
Ma G, Song Q, Li X, Qi L. High-Density Mapping and Candidate Gene Analysis of Pl18 and Pl20 in Sunflower by Whole-Genome Resequencing. Int J Mol Sci 2020; 21:E9571. [PMID: 33339111 PMCID: PMC7765508 DOI: 10.3390/ijms21249571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Downy mildew (DM) is one of the severe biotic threats to sunflower production worldwide. The inciting pathogen, Plasmopara halstedii, could overwinter in the field for years, creating a persistent threat to sunflower. The dominant genes Pl18 and Pl20 conferring resistance to known DM races have been previously mapped to 1.5 and 1.8 cM intervals on sunflower chromosomes 2 and 8, respectively. Utilizing a whole-genome resequencing strategy combined with reference sequence-based chromosome walking and high-density mapping in the present study, Pl18 was placed in a 0.7 cM interval on chromosome 2. A candidate gene HanXRQChr02g0048181 for Pl18 was identified from the XRQ reference genome and predicted to encode a protein with typical NLR domains for disease resistance. The Pl20 gene was placed in a 0.2 cM interval on chromosome 8. The putative gene with the NLR domain for Pl20, HanXRQChr08g0210051, was identified within the Pl20 interval. SNP markers closely linked to Pl18 and Pl20 were evaluated with 96 diverse sunflower lines, and a total of 13 diagnostic markers for Pl18 and four for Pl20 were identified. These markers will facilitate to transfer these new genes to elite sunflower lines and to pyramid these genes with broad-spectrum DM resistance in sunflower breeding.
Collapse
Affiliation(s)
- Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.M.); (X.L.)
| | - Qijian Song
- USDA-Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705-2350, USA;
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.M.); (X.L.)
| | - Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102-2765, USA
| |
Collapse
|
32
|
Wei H, Liu J, Guo Q, Pan L, Chai S, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Wan H. Genomic Organization and Comparative Phylogenic Analysis of NBS-LRR Resistance Gene Family in Solanum pimpinellifolium and Arabidopsis thaliana. Evol Bioinform Online 2020; 16:1176934320911055. [PMID: 32214791 PMCID: PMC7065440 DOI: 10.1177/1176934320911055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 12/23/2022] Open
Abstract
NBS-LRR (nucleotide-binding site and leucine-rich repeat) is one of the largest resistance gene families in plants. The completion of the genome sequencing of wild tomato Solanum pimpinellifolium provided an opportunity to conduct a comprehensive analysis of the NBS-LRR gene superfamily at the genome-wide level. In this study, gene identification, chromosome mapping, and phylogenetic analysis of the NBS-LRR gene family were analyzed using the bioinformatics methods. The results revealed 245 NBS-LRRs in total, similar to that in the cultivated tomato. These genes are unevenly distributed on 12 chromosomes, and ~59.6% of them form gene clusters, most of which are tandem duplications. Phylogenetic analysis divided the NBS-LRRs into 2 subfamilies (CNL-coiled-coil NBS-LRR and TNL-TIR NBS-LRR), and the expansion of the CNL subfamily was more extensive than the TNL subfamily. Novel conserved structures were identified through conserved motif analysis between the CNL and TNL subfamilies. Compared with the NBS-LRR sequences from the model plant Arabidopsis thaliana, wide genetic variation occurred after the divergence of S. pimpinellifolium and A thaliana. Species-specific expansion was also found in the CNL subfamily in S. pimpinellifolium. The results of this study provide the basis for the deeper analysis of NBS-LRR resistance genes and contribute to mapping and isolation of candidate resistance genes in S. pimpinellifolium.
Collapse
Affiliation(s)
- Huawei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu, China
| | - Qinwei Guo
- Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Luzhao Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Songlin Chai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
33
|
Transcriptome Arofile of Brassica rapa L. Reveals the Involvement of Jasmonic Acid, Ethylene, and Brassinosteroid Signaling Pathways in Clubroot Resistance. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9100589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasmodiophora brassicae is a protozoan pathogen that causes clubroot disease in cruciferous plants, particularly Chinese cabbage (Brassica rapa). A previous study identified a clubroot resistance gene (CRd) conferring race-specific resistance to P. brassicae. However, the defense mechanisms of B. rapa against virulent vs. avirulent P. brassicae are poorly understood. In this study, we carried out a global transcriptional analysis in the clubroot-resistant Chinese cabbage inbred line “85–74” carrying the CRd gene and inoculated with avirulent (LAB-4) or virulent (SCCD-52) P. brassicae. RNA sequencing showed that “85–74” responded most rapidly to SCCD-52 infection, and the number of differentially expressed genes was much higher in SCCD-52-treated as compared to LAB-4-treated plants (5552 vs. 304). Transcriptome profiling revealed that plant hormone signal transduction and plant–pathogen interaction pathways played key roles in the late stages of P. brassicae infection. Genes relating to the salicyclic acid (SA), jasmonic acid (JA)/ethylene (ET), and brassinosteroid (BR) signaling pathways were up-regulated relative to untreated plants in response to LAB-4 infection at 8, 16, and 32 days post-inoculation (dpi) whereas JA, ET, and BR signaling-related genes were not activated in response to SCCD-52, and SA signaling-related genes were up-regulated in both LAB-4 and SCCD-52, suggesting that SA signaling is not the key factor in host resistance to avirulent P. brassicae. In addition, genes associated with phosphorylation and Ca2+ signaling pathways were down-regulated to a greater degree following LAB-4 as compared to SCCD-52 infection at 8 dpi. These results indicate that effector-triggered immunity in “85–74” is more potently activated in response to infection with avirulent P. brassicae and that JA, ET, and BR signaling are important for the host response at the late stage of infection. These findings provide insight into P. brassicae pathotype-specific defense mechanisms in cruciferous crops.
Collapse
|
34
|
Xiong J, Yang W, Chen K, Jiang C, Ma Y, Chai X, Yan G, Wang G, Yuan D, Liu Y, Bidwell SL, Zafar N, Hadjithomas M, Krishnakumar V, Coyne RS, Orias E, Miao W. Hidden genomic evolution in a morphospecies-The landscape of rapidly evolving genes in Tetrahymena. PLoS Biol 2019; 17:e3000294. [PMID: 31158217 PMCID: PMC6564038 DOI: 10.1371/journal.pbio.3000294] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/13/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
A morphospecies is defined as a taxonomic species based wholly on morphology, but often morphospecies consist of clusters of cryptic species that can be identified genetically or molecularly. The nature of the evolutionary novelty that accompanies speciation in a morphospecies is an intriguing question. Morphospecies are particularly common among ciliates, a group of unicellular eukaryotes that separates 2 kinds of nuclei—the silenced germline nucleus (micronucleus [MIC]) and the actively expressed somatic nucleus (macronucleus [MAC])—within a common cytoplasm. Because of their very similar morphologies, members of the Tetrahymena genus are considered a morphospecies. We explored the hidden genomic evolution within this genus by performing a comprehensive comparative analysis of the somatic genomes of 10 species and the germline genomes of 2 species of Tetrahymena. These species show high genetic divergence; phylogenomic analysis suggests that the genus originated about 300 million years ago (Mya). Seven universal protein domains are preferentially included among the species-specific (i.e., the youngest) Tetrahymena genes. In particular, leucine-rich repeat (LRR) genes make the largest contribution to the high level of genome divergence of the 10 species. LRR genes can be sorted into 3 different age groups. Parallel evolutionary trajectories have independently occurred among LRR genes in the different Tetrahymena species. Thousands of young LRR genes contain tandem arrays of exactly 90-bp exons. The introns separating these exons show a unique, extreme phase 2 bias, suggesting a clonal origin and successive expansions of 90-bp–exon LRR genes. Identifying LRR gene age groups allowed us to document a Tetrahymena intron length cycle. The youngest 90-bp exon LRR genes in T. thermophila are concentrated in pericentromeric and subtelomeric regions of the 5 micronuclear chromosomes, suggesting that these regions act as genome innovation centers. Copies of a Tetrahymena Long interspersed element (LINE)-like retrotransposon are very frequently found physically adjacent to 90-bp exon/intron repeat units of the youngest LRR genes. We propose that Tetrahymena species have used a massive exon-shuffling mechanism, involving unequal crossing over possibly in concert with retrotransposition, to create the unique 90-bp exon array LRR genes. Genomic comparison of ten morphologically very similar species of ciliate from the genus Tetrahymena reveals how parallel microevolutionary processes have shaped their genomes and created unique genes through retrotransposition.
Collapse
Affiliation(s)
- Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Ma
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Chai
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shelby L. Bidwell
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Nikhat Zafar
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Vivek Krishnakumar
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Robert S. Coyne
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, China
- State Key Laboratory of Freshwater Ecology and Biotechnology of China, Wuhan, China
- * E-mail:
| |
Collapse
|
35
|
Zhou Z, Bar I, Sambasivam PT, Ford R. Determination of the Key Resistance Gene Analogs Involved in Ascochyta rabiei Recognition in Chickpea. FRONTIERS IN PLANT SCIENCE 2019; 10:644. [PMID: 31191572 PMCID: PMC6546118 DOI: 10.3389/fpls.2019.00644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/29/2019] [Indexed: 05/21/2023]
Abstract
Chickpea (Cicer arietinum L.) is an important cool season food legume, however, its production is severely constrained by the foliar disease Ascochyta blight caused by the fungus Ascochyta rabiei (syn. Phoma rabiei). Several disease management options have been developed to control the pathogen, including breeding for host plant resistance. However, the pathogen population is evolving to produce more aggressive isolates. For host resistance to be effective, the plant must quickly recognize the pathogen and instigate initial defense mechanisms, optimally at the point of contact. Given that the most resistant host genotypes display rapid pathogen recognition and response, the approach taken was to assess the type, speed and pattern of recognition via Resistance Gene Analog (RGA) transcription among resistant and susceptible cultivated chickpea varieties. RGAs are key factors in the recognition of plant pathogens and the signaling of inducible defenses. In this study, a suite of RGA loci were chosen for further investigation from both published literature and from newly mined homologous sequences within the National Center for Biotechnology Information (NCBI) database. Following their validation in the chickpea genome, 10 target RGAs were selected for differential expression analysis in response to A. rabiei infection. This was performed in a set of four chickpea varieties including two resistant cultivars (ICC3996 and PBA Seamer), one moderately resistant cultivar (PBA HatTrick) and one susceptible cultivar (Kyabra). Gene expression at each RGA locus was assessed via qPCR at 2, 6, and 24 h after A. rabiei inoculation with a previously characterized highly aggressive isolate. As a result, all loci were differentially transcribed in response to pathogen infection in at least one genotype and at least one time point after inoculation. Among these, the differential expression of four RGAs was significant and consistently increased in the most resistant genotype ICC3996 immediately following inoculation, when spore germination began and ahead of penetration into the plant's epidermal tissues. Further in silico analyses indicated that the differentially transcribed RGAs function through ADP-binding within the pathogen recognition pathway. These represent clear targets for future functional validation and potential for selective resistance breeding for introgression into elite cultivars.
Collapse
Affiliation(s)
| | | | | | - Rebecca Ford
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
36
|
Garg V, Khan AW, Kudapa H, Kale SM, Chitikineni A, Qiwei S, Sharma M, Li C, Zhang B, Xin L, Kishor PK, Varshney RK. Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:914-931. [PMID: 30328278 PMCID: PMC6472043 DOI: 10.1111/pbi.13026] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 05/04/2023]
Abstract
Ascochyta blight (AB) is one of the major biotic stresses known to limit the chickpea production worldwide. To dissect the complex mechanisms of AB resistance in chickpea, three approaches, namely, transcriptome, small RNA and degradome sequencing were used. The transcriptome sequencing of 20 samples including two resistant genotypes, two susceptible genotypes and one introgression line under control and stress conditions at two time points (3rd and 7th day post inoculation) identified a total of 6767 differentially expressed genes (DEGs). These DEGs were mainly related to pathogenesis-related proteins, disease resistance genes like NBS-LRR, cell wall biosynthesis and various secondary metabolite synthesis genes. The small RNA sequencing of the samples resulted in the identification of 651 miRNAs which included 478 known and 173 novel miRNAs. A total of 297 miRNAs were differentially expressed between different genotypes, conditions and time points. Using degradome sequencing and in silico approaches, 2131 targets were predicted for 629 miRNAs. The combined analysis of both small RNA and transcriptome datasets identified 12 miRNA-mRNA interaction pairs that exhibited contrasting expression in resistant and susceptible genotypes and also, a subset of genes that might be post-transcriptionally silenced during AB infection. The comprehensive integrated analysis in the study provides better insights into the transcriptome dynamics and regulatory network components associated with AB stress in chickpea and, also offers candidate genes for chickpea improvement.
Collapse
Affiliation(s)
- Vanika Garg
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelanganaIndia
- Department of GeneticsOsmania UniversityHyderabadTelanganaIndia
| | - Aamir W. Khan
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelanganaIndia
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelanganaIndia
| | - Sandip M. Kale
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelanganaIndia
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelanganaIndia
| | | | - Mamta Sharma
- Integrated Crop ManagementICRISATPatancheruTelanganaIndia
| | | | - Baohong Zhang
- Department of BiologyEast Carolina UniversityGreenvilleNCUSA
| | | | | | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB)International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruTelanganaIndia
| |
Collapse
|
37
|
Lorang J. Necrotrophic Exploitation and Subversion of Plant Defense: A Lifestyle or Just a Phase, and Implications in Breeding Resistance. PHYTOPATHOLOGY 2019; 109:332-346. [PMID: 30451636 DOI: 10.1094/phyto-09-18-0334-ia] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breeding disease-resistant plants is a critical, environmentally friendly component of any strategy to sustainably feed and clothe the 9.8 billion people expected to live on Earth by 2050. Here, I review current literature detailing plant defense responses as they relate to diverse biological outcomes; disease resistance, susceptibility, and establishment of mutualistic plant-microbial relationships. Of particular interest is the degree to which these outcomes are a function of plant-associated microorganisms' lifestyles; biotrophic, hemibiotrophic, necrotrophic, or mutualistic. For the sake of brevity, necrotrophic pathogens and the necrotrophic phase of pathogenicity are emphasized in this review, with special attention given to the host-specific pathogens that exploit defense. Defense responses related to generalist necrotrophs and mutualists are discussed in the context of excellent reviews by others. In addition, host evolutionary trade-offs of disease resistance with other desirable traits are considered in the context of breeding for durable disease resistance.
Collapse
Affiliation(s)
- Jennifer Lorang
- Department of Botany, 2082 Cordley Hall, Oregon State University, Corvallis 97331
| |
Collapse
|
38
|
Deokar A, Sagi M, Daba K, Tar'an B. QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:275-288. [PMID: 29890030 PMCID: PMC6330535 DOI: 10.1111/pbi.12964] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 05/21/2023]
Abstract
Whole-genome sequencing-based bulked segregant analysis (BSA) for mapping quantitative trait loci (QTL) provides an efficient alternative approach to conventional QTL analysis as it significantly reduces the scale and cost of analysis with comparable power to QTL detection using full mapping population. We tested the application of next-generation sequencing (NGS)-based BSA approach for mapping QTLs for ascochyta blight resistance in chickpea using two recombinant inbred line populations CPR-01 and CPR-02. Eleven QTLs in CPR-01 and six QTLs in CPR-02 populations were mapped on chromosomes Ca1, Ca2, Ca4, Ca6 and Ca7. The QTLs identified in CPR-01 using conventional biparental mapping approach were used to compare the efficiency of NGS-based BSA in detecting QTLs for ascochyta blight resistance. The QTLs on chromosomes Ca1, Ca4, Ca6 and Ca7 overlapped with the QTLs previously detected in CPR-01 using conventional QTL mapping method. The QTLs on chromosome Ca4 were detected in both populations and overlapped with the previously reported QTLs indicating conserved region for ascochyta blight resistance across different chickpea genotypes. Six candidate genes in the QTL regions identified using NGS-based BSA on chromosomes Ca2 and Ca4 were validated for their association with ascochyta blight resistance in the CPR-02 population. This study demonstrated the efficiency of NGS-based BSA as a rapid and cost-effective method to identify QTLs associated with ascochyta blight in chickpea.
Collapse
Affiliation(s)
- Amit Deokar
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKCanada
| | - Mandeep Sagi
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKCanada
| | - Ketema Daba
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKCanada
| | - Bunyamin Tar'an
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSKCanada
| |
Collapse
|
39
|
Die JV, Castro P, Millán T, Gil J. Segmental and Tandem Duplications Driving the Recent NBS-LRR Gene Expansion in the Asparagus Genome. Genes (Basel) 2018; 9:E568. [PMID: 30477134 PMCID: PMC6316259 DOI: 10.3390/genes9120568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/07/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
Abstract
Garden asparagus is an important horticultural plant worldwide. It is, however, susceptible to a variety of diseases, which can affect the potential yield, spear quality, and lifespan of production fields. Screening studies have identified resistant germplasm. The genetic resistance is usually complex, and the genes underlying that resistance are still unknown. Most often, disease resistance is determined by resistance genes (R). The most predominant R-genes contain nucleotide binding site and leucine-rich repeat (NBS-LRR) domains. Using bioinformatics and data mining approaches, we identified and characterized 68 NBS predicted proteins encoded by 49 different loci in the asparagus genome. The NBS-encoding genes were grouped into seven distinct classes based on their domain architecture. The NBS genes are unevenly distributed through the genome and nearly 50% of the genes are present in clusters. Chromosome 6 is significantly NBS-enriched and one single cluster hosts 10% of the genes. Phylogenetic analysis points to their diversification into three families during their evolution. Recent duplications are likely to have dominated the NBS expansion with both tandem genes and duplication events across multiple chromosomes. Transcriptome sequencing data provided evidence for their transcription and tissue-specific expression. The total number of cis-regulatory elements as well as their relative positions within the NBS promoters suggests a complex transcriptional network regulating defense responses. Our study provides a strong groundwork for the isolation of candidate R-genes in garden asparagus.
Collapse
Affiliation(s)
- Jose V Die
- Department of Genetics, ETSIAM, University of Córdoba, 14071 Córdoba, Spain.
| | - Patricia Castro
- Department of Genetics, ETSIAM, University of Córdoba, 14071 Córdoba, Spain.
| | - Teresa Millán
- Department of Genetics, ETSIAM, University of Córdoba, 14071 Córdoba, Spain.
| | - Juan Gil
- Department of Genetics, ETSIAM, University of Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
40
|
Chakraborty J, Priya P, Dastidar SG, Das S. Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:111-133. [PMID: 30348309 DOI: 10.1016/j.plantsci.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Fusarium wilt is one of the most serious diseases affecting chickpea (Cicer arietinum L.). Here, we identified a putative Resistance Gene Analog (CaRGA) from chickpea, encoding a coiled-coil (CC) nucleotide-binding oligomerization domain (NB-ARC) containing leucine-rich repeat (LRR) protein (CC-NLR protein) that confers resistance against Fusarium oxysporum f. sp. ciceri race1 (Foc1). Over-expression and silencing of CaRGA in chickpea resulted in enhanced resistance and hyper-susceptibility, respectively against Foc1. Furthermore, defense response to Foc1 depends on CC-NLR interaction with WRKY64 transcription factor. CaRGA mediated wilt resistance largely compromised when WRKY64 was silenced. We also determined in planta intramolecular interactions and self-association of chickpea CC-NLR protein. The study shows CC domain suppressing auto-activation of the full-length CC-NLR protein in the absence of pathogen through self-inhibitory intramolecular interaction with NB-ARC domain, which is attenuated by self-interactions to LRR domain. Chickpea CC-NLR protein forms homocomplexes and then interacts with WRKY64. CC-NLR protein further phosphorylates WRKY64 thereby, ubiquitination and proteasome mediated degradation are protected. Phosphorylated WRKY64 with increased stability binds to EDS1 promoter and stimulates its transcription that induces in planta ectopic cell-death. The detailed analysis of CC-NLR and WRKY interactions provide a better understanding of the immune regulation by NLR proteins under biotic stresses.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Prerna Priya
- Centre of Excellence in Bioinformatics, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Shubhra Ghosh Dastidar
- Centre of Excellence in Bioinformatics, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| |
Collapse
|
41
|
Jha UC. Current advances in chickpea genomics: applications and future perspectives. PLANT CELL REPORTS 2018; 37:947-965. [PMID: 29860584 DOI: 10.1007/s00299-018-2305-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 05/27/2023]
Abstract
Chickpea genomics promises to illuminate our understanding of genome organization, structural variations, evolutionary and domestication-related insights and fundamental biology of legume crops. Unprecedented advancements of next generation sequencing (NGS) technologies have enabled in decoding of multiple chickpea genome sequences and generating huge genomic resources in chickpea both at functional and structural level. This review is aimed to update the current progress of chickpea genomics ranging from high density linkage map development, genome-wide association studies (GWAS), functional genomics resources for various traits, emerging role of abiotic stress responsive coding and non-coding RNAs after the completion of draft chickpea genome sequences. Additionally, the current efforts of whole genome re-sequencing (WGRS) approach of global chickpea germplasm to capture the global genetic diversity existing in the historically released varieties across the world and increasing the resolution of the previously identified candidate gene(s) of breeding importance have been discussed. Thus, the outcomes of these genomics resources will assist in genomics-assisted selection and facilitate breeding of climate-resilient chickpea cultivars for sustainable agriculture.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| |
Collapse
|
42
|
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. Int J Mol Sci 2018; 19:E1662. [PMID: 29867062 PMCID: PMC6032283 DOI: 10.3390/ijms19061662] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Cristina Crosatti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Vania Michelotti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Anna M Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy.
| |
Collapse
|
43
|
Kochetov AV, Glagoleva AY, Strygina KV, Khlestkina EK, Gerasimova SV, Ibragimova SM, Shatskaya NV, Vasilyev GV, Afonnikov DA, Shmakov NA, Antonova OY, Gavrilenko TA, Alpatyeva NV, Khiutti A, Afanasenko OS. Differential expression of NBS-LRR-encoding genes in the root transcriptomes of two Solanum phureja genotypes with contrasting resistance to Globodera rostochiensis. BMC PLANT BIOLOGY 2017; 17:251. [PMID: 29297325 PMCID: PMC5751396 DOI: 10.1186/s12870-017-1193-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND The characterization of major resistance genes (R genes) in the potato remains an important task for molecular breeding. However, R genes are rapidly evolving and frequently occur in genomes as clusters with complex structures, and their precise mapping and identification are complicated and time consuming. RESULTS Comparative analysis of root transcriptomes of Solanum phureja genotypes with contrasting resistance to Globodera rostochiensis revealed a number of differentially expressed genes. However, compiling a list of candidate R genes for further segregation analysis was hampered by their scarce annotation. Nevertheless, combination of transcriptomic analysis with data on predicted potato NBS-LRR-encoding genes considerably improved the quality of the results and provided a reasonable number of candidate genes that provide S. phureja with strong resistance to the potato golden cyst nematode. CONCLUSION Combination of comparative analyses of tissue-specific transcriptomes in resistant and susceptible genotypes may be used as an approach for the rapid identification of candidate potato R genes for co-segregation analysis and may be used in parallel with more sophisticated studies based on genome resequencing.
Collapse
Affiliation(s)
- Alex V Kochetov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia.
| | - Anastasiya Y Glagoleva
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Elena K Khlestkina
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | | | | | | | | | - Nikolay A Shmakov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
| | - Olga Y Antonova
- Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, 190000, Russia
| | - Tatyana A Gavrilenko
- Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, 190000, Russia
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Natalia V Alpatyeva
- Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, 190000, Russia
| | - Alexander Khiutti
- All Russian Research Institute for Plant Protection, Saint Petersburg, 196608, Russia
| | - Olga S Afanasenko
- All Russian Research Institute for Plant Protection, Saint Petersburg, 196608, Russia
| |
Collapse
|