1
|
Wang F, Yao G, Li J, Zhu W, Li Z, Sun Z, Xin P. Mining and expression analysis of color related genes in Bougainvillea glabra bracts based on transcriptome sequencing. Sci Rep 2024; 14:24491. [PMID: 39424873 PMCID: PMC11489674 DOI: 10.1038/s41598-024-73964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
Bract coloration is one of the key ornamental traits in Bougainvillea, yet research has predominantly focused on phenotypic color traits and pigment composition, with limited understanding of the molecular mechanisms underlying color formation. This gap hinders the improvement and innovation in bract coloration. To elucidate the regulatory mechanisms of bract coloration in Bougainvillea and to enhance the utilization of its germplasm resources, this study employed the Illumina Novaseq 6000 sequencing platform to conduct transcriptomic sequencing on 21 samples of bracts exhibiting seven distinct phenotypes. Comparative analysis against Nr, Pfam, EggNOG, GO, and KEGG databases annotated 90,279 unigenes. The highest annotation rates were achieved with the Nr (40.13%), GO (30.44%), and EggNOG (25.64%) databases. Among the species annotated, Beta vulgaris (20.08%) and Chenopodium quinoa (14.58%) shared the highest homology with Bougainvillea bract transcriptomes. WGCNA analysis identified 12 positively correlated tissue-specific modules, of which 2 are related to bract color formation. By comparing transcriptome data and genes within these specific modules against the KEGG database, a total of 321 unigenes associated with bract color formation in Bougainvillea were discovered. Among these, 220 unigenes are involved in anthocyanin synthesis, 43 unigenes are involved in betalain synthesis, 23 unigenes are annotated as Chlorophyll a-b binding protein genes, and 35 unigenes participate in carotenoid synthesis. Quantitative real-time PCR (qRT-PCR) validation of 16 differentially expressed genes (DEGs) including PAL2, CHS1, ANS, BZ1, 6GT, CDOPA5GT, ANR, CHS2, and DOPA, revealed significant expression differences among magenta, yellow, white, and cherry-colored bracts, suggesting their potential as candidate genes for bract color development. This study not only enriches the transcriptomic data of Bougainvillea but also identifies genes associated with bract coloration, providing a valuable theoretical basis for future gene cloning, genetic engineering, and breeding efforts in Bougainvillea.
Collapse
Affiliation(s)
- Fei Wang
- Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, 650200, China
| | - GuoQiong Yao
- State-owned Weidu Forest Farm of Guangxi, Laibin, 545700, China
| | - JianYun Li
- Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, 650200, China
| | - Wen Zhu
- Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, 650200, China
| | - ZiHan Li
- Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, 650200, China
| | - ZhengHai Sun
- Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, 650200, China.
| | - PeiYao Xin
- Southwest Landscape Architecture Engineering Technology Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, 650200, China.
| |
Collapse
|
2
|
Vignesh P, Mahadevaiah C, Selvamuthu K, Mahadeva Swamy HK, Sreenivasa V, Appunu C. Comparative genome-wide characterization of salt responsive micro RNA and their targets through integrated small RNA and de novo transcriptome profiling in sugarcane and its wild relative Erianthus arundinaceus. 3 Biotech 2024; 14:24. [PMID: 38162015 PMCID: PMC10756875 DOI: 10.1007/s13205-023-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Soil salinity and saline irrigation water are major constraints in sugarcane affecting the production of cane and sugar yield. To understand the salinity induced responses and to identify novel genomic resources, integrated de novo transcriptome and small RNA sequencing in sugarcane wild relative, Erianthus arundinaceus salt tolerant accession IND 99-907 and salt-sensitive sugarcane genotype Co 97010 were performed. A total of 362 known miRNAs belonging to 62 families and 353 miRNAs belonging to 63 families were abundant in IND 99-907 and Co 97010 respectively. The miRNA families such as miR156, miR160, miR166, miR167, miR169, miR171, miR395, miR399, miR437 and miR5568 were the most abundant with more than ten members in both genotypes. The differential expression analysis of miRNA reveals that 221 known miRNAs belonging to 48 families and 130 known miRNAs belonging to 42 families were differentially expressed in IND 99-907 and Co 97010 respectively. A total of 12,693 and 7982 miRNA targets against the monoploid mosaic genome and a total of 15,031 and 12,152 miRNA targets against the de novo transcriptome were identified for differentially expressed known miRNAs of IND 99-907 and Co 97010 respectively. The gene ontology (GO) enrichment analysis of the miRNA targets revealed that 24, 12 and 14 enriched GO terms (FDR < 0.05) for biological process, molecular function and cellular component respectively. These miRNAs have many targets that associated in regulation of biotic and abiotic stresses. Thus, the genomic resources generated through this study are useful for sugarcane crop improvement through biotechnological and advanced breeding approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03867-7.
Collapse
Affiliation(s)
- Palanisamy Vignesh
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Channappa Mahadevaiah
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
- ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089 India
| | - Kannan Selvamuthu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Venkatarayappa Sreenivasa
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
3
|
Yao P, Zhang C, Zhang D, Qin T, Xie X, Liu Y, Liu Z, Bai J, Bi Z, Cui J, Liang J, Sun C. Characterization and Identification of Drought-Responsive ABA-Aldehyde Oxidase (AAO) Genes in Potato ( Solanum tuberosum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3809. [PMID: 38005706 PMCID: PMC10674669 DOI: 10.3390/plants12223809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Abscisic acid (ABA) is an important stress hormone that affects plants' tolerance to stress. Changes in the content of abscisic can have an impact on plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a crucial role in the final step in the synthesis of abscisic acid; therefore, understanding the function of the AAO gene family is of great significance for insight into plants' response to abiotic stresses. In this study, Solanum tuberosum AAO (StAAO) members were exhaustively explored using genome databases, and nine StAAOs were identified. Chromosomal location analysis indicated that StAAO genes mapped to 4 of the 14 potato chromosomes. Further analyses of gene structure and motif composition showed that members of the specific StAAO subfamily showed relatively conserved characteristics. Phylogenetic relationship analysis indicated that StAAOs proteins were divided into three major clades. Promoter analysis showed that most StAAO promoters contained cis-elements related to abiotic stress response and plant hormones. The results of tissue-specific expression analysis indicated that StAAO4 was predominantly expressed in the roots. Analysis of transcriptome data revealed that StAAO2/4/6 genes responded significantly to drought treatments. Moreover, further qRT-PCR analysis results indicated that StAAO2/4/6 not only significantly responded to drought stress but also to various phytohormone (ABA, SA, and MeJA) and abiotic stresses (salt and low temperature), albeit with different expression patterns. In summary, our study provides comprehensive insights into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of the StAAO gene family. These findings lay the foundation for a deeper understanding of the StAAO gene family and offer a potential genetic resource for breeding drought-resistant potato varieties.
Collapse
Affiliation(s)
- Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Chunli Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaofei Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junmei Cui
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Jingwen Liang
- Planning and Finance Department, Gansu Agricultural University, Lanzhou 730070, China;
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Zhi J, Zeng J, Wang Y, Zhao H, Wang G, Guo J, Wang Y, Chen M, Yang G, He G, Chen X, Chang J, Li Y. A multi-omic resource of wheat seed tissues for nutrient deposition and improvement for human health. Sci Data 2023; 10:269. [PMID: 37164961 PMCID: PMC10172328 DOI: 10.1038/s41597-023-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/03/2023] [Indexed: 05/12/2023] Open
Abstract
As a globally important staple crop, wheat seeds provide us with nutrients and proteins. The trend of healthy dietary has become popular recently, emphasizing the consumption of whole-grain wheat products and the dietary benefits. However, the dynamic changes in nutritional profiles of different wheat seed regions (i.e., the embryo, endosperm and outer layers) during developmental stages and the molecular regulation have not been well studied. Here, we provide this multi-omic resource of wheat seeds and describe the generation, technical assessment and preliminary analyses. This resource includes a time-series RNA-seq dataset of the embryo, endosperm and outer layers of wheat seeds and their corresponding metabolomic dataset, covering the middle and late stages of seed development. Our RNA-seq experiments profile the expression of 63,708 genes, while the metabolomic data includes the abundance of 984 metabolites. We believe that this was the first reported transcriptome and metabolome dataset of wheat seeds that helps understand the molecular regulation of the deposition of beneficial nutrients and hence improvements for nutritional and processing quality traits.
Collapse
Affiliation(s)
- Jingjing Zhi
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guoli Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Jing Guo
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Li J, Qiao H, Yin P, Liu M, Yang Y, Li K, Yang L, Yang C, Zhao L, Zhou S, Liu Y, Zhou C, Wang G. Increasingly amplified stimulation mediated by TaNAC69-B is crucial for the leaf senescence in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:570-590. [PMID: 36815286 DOI: 10.1111/tpj.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/10/2023] [Indexed: 05/10/2023]
Abstract
Leaf senescence involves massive multidimensional alterations, such as nutrient redistribution, and is closely related to crop yield and quality. No apical meristem, Arabidopsis transcription activation factor, and Cup-shaped cotyledon (NAC)-type transcription factors integrate various signals and modulate an enormous number of target genes to ensure the appropriate progression of leaf senescence. However, few leaf senescence-related NACs have been functionally characterized in wheat. Based on our previous RNA-sequencing (RNA-seq) data, we focused on a NAC family member, TaNAC69-B, which is increasingly expressed during leaf senescence in wheat. Overexpression of TaNAC69-B led to precocious leaf senescence in wheat and Arabidopsis, and affected several agricultural traits in transgenic wheat. Moreover, impaired expression of TaNAC69-B by virus-induced gene silencing retarded the leaf senescence in wheat. By RNA-seq and quantitative real-time polymerase chain reaction analysis, we confirmed that some abscisic acid (ABA) biosynthesis genes, including AAO3 and its ortholog in wheat, TraesCS2B02G270600 (TaAO3-B), were elevated by the overexpression of TaNAC69-B. Consistently, we observed more severe ABA-induced leaf senescence in TaNAC69-B-OE wheat and Arabidopsis plants. Furthermore, we determined that TaNAC69-B bound to the NAC binding site core (CGT) on the promoter regions of AAO3 and TaAO3-B. Moreover, we confirmed elevated ABA levels in TaNAC69-B-OE wheat lines. Although TaNAC69-B shares 39.83% identity (amino acid) with AtNAP, TaNAC69-B did not completely restore the delayed leaf senescence in the atnap mutant. Collectively, our results revealed a positive feedback loop, consisting of TaNAC69-B, ABA biosynthesis and leaf senescence, that is essential for the regulation of leaf senescence in wheat.
Collapse
Affiliation(s)
- Jingkun Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hualiang Qiao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meng Liu
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yifan Yang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Le Yang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chaosha Yang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lifeng Zhao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuo Zhou
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Yongwei Liu
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaption, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
6
|
Huang H, Ji H, Ju S, Lin W, Li J, Lv X, Lin L, Guo L, Qiu D, Yan J, Ma X. Pantranscriptome combined with phenotypic quantification reveals germplasm kinship and regulation network of bract color variation in Bougainvillea. FRONTIERS IN PLANT SCIENCE 2022; 13:1018846. [PMID: 36466294 PMCID: PMC9713818 DOI: 10.3389/fpls.2022.1018846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Bracts are the metamorphic non-flower organ in angiosperm plants. The variation of the color and shape of bracts was found to be neo-functionalized (i.e., similar to petals), garnering research interest as a pollinator attractor. Bougainvillea is known for its specialized, large, and colorful bracts, which contrast with its tiny colorless flowers. As a plant whose bracts vary greatly in terms of coloration, the molecular mechanisms for Bougainvillea bract coloration and polychroism are largely unknown. The lack of genomic information for Bougainvillea largely hinders studies into the evolution and genetic basis of bract color variation. In this study, a pan-transcriptome of bracts obtained from 18 Bougainvillea glabra accessions was employed to investigate the global population-level germplasm kinship and the gene regulation network for bract color variation. Our results showed that the bracts of B. glabra accessions have largely differentiated International Commission on Illumination (CIE) L-a-b values. Moreover, germplasm kinship detected using principal component analysis, phylogeny, and admixture analysis showed three optimal subgroups, two of them distinctly clustered, which were not directly correlated with bract color variation at the population level. Differentially expressed genes (DEGs) between accessions of high vs. low L-a-b values revealed several considerable upregulated genes related to bract color L-a-b variation. A weighted gene co-expression network was constructed, and eight co-expressed regulation modules were identified that were highly correlated with variation in bract CIE L-a-b color values. Several candidate DEGs and co-expressed hub genes (e.g., GERD, SGR, ABCA3, GST, CYP76AD1, CYP76C, and JAZ) that were tightly associated with bract color variation were eventually determined responsible for L-a-b colorations, which might be the core regulation factors contributing to the B. glabra bract color variation. This study provides valuable insights into the research on germplasm kinship, population-level pan-transcriptome expression profiles, and the molecular basis of color variation of key innovative bracts in horticultural Bougainvillea.
Collapse
Affiliation(s)
- Huaxing Huang
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Yuanshan Institute of Bougainvillea in Longhai, Zhangzhou, China
| | - Hongli Ji
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Song Ju
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijin Guo
- International Magnesium Institute, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianyong Yan
- Yuanshan Institute of Bougainvillea in Longhai, Zhangzhou, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Label-Free Quantitative Proteomics Reveal the Involvement of PRT6 in Arabidopsis thaliana Seed Responsiveness to Ethylene. Int J Mol Sci 2022; 23:ijms23169352. [PMID: 36012613 PMCID: PMC9409418 DOI: 10.3390/ijms23169352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
In Arabidopsis thaliana, the breaking of seed dormancy in wild type (Col-0) by ethylene at 100 μL L-1 required at least 30 h application. A mutant of the proteolytic N-degron pathway, lacking the E3 ligase PROTEOLYSIS 6 (PRT6), was investigated for its role in ethylene-triggered changes in proteomes during seed germination. Label-free quantitative proteomics was carried out on dormant wild type Col-0 and prt6 seeds treated with (+) or without (-) ethylene. After 16 h, 1737 proteins were identified, but none was significantly different in protein levels in response to ethylene. After longer ethylene treatment (30 h), 2552 proteins were identified, and 619 Differentially Expressed Proteins (DEPs) had significant differences in protein abundances between ethylene treatments and genotypes. In Col, 587 DEPs were enriched for those involved in signal perception and transduction, reserve mobilization and new material generation, which potentially contributed to seed germination. DEPs up-regulated by ethylene in Col included S-adenosylmethionine synthase 1, methionine adenosyltransferase 3 and ACC oxidase involved in ethylene synthesis and of Pyrabactin Resistance1 acting as an ABA receptor, while DEPs down-regulated by ethylene in Col included aldehyde oxidase 4 involved in ABA synthesis. In contrast, in prt6 seeds, ethylene did not result in strong proteomic changes with only 30 DEPs. Taken together, the present work demonstrates that the proteolytic N-degron pathway is essential for ethylene-mediated reprogramming of seed proteomes during germination.
Collapse
|
8
|
Soudani S, Poza-Carrión C, De la Cruz Gómez N, González-Coloma A, Andrés MF, Berrocal-Lobo M. Essential Oils Prime Epigenetic and Metabolomic Changes in Tomato Defense Against Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2022; 13:804104. [PMID: 35422834 PMCID: PMC9002333 DOI: 10.3389/fpls.2022.804104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/07/2022] [Indexed: 05/10/2023]
Abstract
In this work, we studied the direct and indirect plant protection effects of an Artemisia absinthium essential oil (AEO) on tomato seedlings against Fusarium oxysporum sp. oxysporum radicis lycopersici (Fol). AEO exhibited a toxic effect in vitro against Fol. Additionally, tomato seedlings germinated from seeds pretreated with AEO and grown hydroponically were protected against Fol. Plant disease symptoms, including, water and fresh weight loss, tissue necrosis, and chlorosis were less pronounced in AEO-treated seedlings. AEO also contributed to plant defenses by increasing callose deposition and the production of reactive oxygen species (ROS) on seed surfaces without affecting seed germination or plant development. The essential oil seed coating also primed a durable tomato seedling defense against the fungus at later stages of plant development. RNA-seq and metabolomic analysis performed on seedlings after 12 days showed that the AEO treatment on seeds induced transcriptomic and metabolic changes. The metabolomic analysis showed an induction of vanillic acid, coumarin, lycopene, oleamide, and an unknown metabolite of m/z 529 in the presence of Fol. The StNRPD2 gene, the second largest component of RNA polymerases IV and V directly involved in de novo cytosine methylation by RNA-directed DNA methylation (RdDM), was highly induced in the presence of AEO. The host methionine cycle (MTC) controlling trans-methylation reactions, was also altered by AEO through the high induction of S-adenosyl methionine transferases (SAMts). Our results suggest that AEO treatment could induce de novo epigenetic changes in tomato, modulating the speed and extent of its immune response to Fol. The EO-seed coating could be a new strategy to prime durable tomato resistance, compatible with other environmentally friendly biopesticides.
Collapse
Affiliation(s)
- Serine Soudani
- Department of Systems and Natural Resources, School of Forestry Engineering and Natural Environment, Polytechnical University of Madrid, Madrid, Spain
| | - César Poza-Carrión
- Department of Systems and Natural Resources, School of Forestry Engineering and Natural Environment, Polytechnical University of Madrid, Madrid, Spain
| | - Noelia De la Cruz Gómez
- Department of Systems and Natural Resources, School of Forestry Engineering and Natural Environment, Polytechnical University of Madrid, Madrid, Spain
| | - Azucena González-Coloma
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Fé Andrés
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Marta Berrocal-Lobo
- Department of Systems and Natural Resources, School of Forestry Engineering and Natural Environment, Polytechnical University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Wu J, Kamanga BM, Zhang W, Xu Y, Xu L. Research progress of aldehyde oxidases in plants. PeerJ 2022; 10:e13119. [PMID: 35356472 PMCID: PMC8958963 DOI: 10.7717/peerj.13119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
Plant aldehyde oxidases (AOs) are multi-functional enzymes, and they could oxidize abscisic aldehyde into ABA (abscisic acid) or indole acetaldehyde into IAA (indoleacetic acid) as the last step, respectively. AOs can be divided into four groups based on their biochemical and physiological functions. In this review, we summarized the recent studies about AOs in plants including the motif information, biochemical, and physiological functions. Besides their role in phytohormones biosynthesis and stress response, AOs could also involve in reactive oxygen species homeostasis, aldehyde detoxification and stress tolerance.
Collapse
Affiliation(s)
- Jun Wu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Blair Moses Kamanga
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Yanhao Xu
- Hubei Academy of Agricultural Science, Wuhan, China
| | - Le Xu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
10
|
Sano N, Marion-Poll A. ABA Metabolism and Homeostasis in Seed Dormancy and Germination. Int J Mol Sci 2021; 22:5069. [PMID: 34064729 PMCID: PMC8151144 DOI: 10.3390/ijms22105069] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Abscisic acid (ABA) is a key hormone that promotes dormancy during seed development on the mother plant and after seed dispersal participates in the control of dormancy release and germination in response to environmental signals. The modulation of ABA endogenous levels is largely achieved by fine-tuning, in the different seed tissues, hormone synthesis by cleavage of carotenoid precursors and inactivation by 8'-hydroxylation. In this review, we provide an overview of the current knowledge on ABA metabolism in developing and germinating seeds; notably, how environmental signals such as light, temperature and nitrate control seed dormancy through the adjustment of hormone levels. A number of regulatory factors have been recently identified which functional relationships with major transcription factors, such as ABA INSENSITIVE3 (ABI3), ABI4 and ABI5, have an essential role in the control of seed ABA levels. The increasing importance of epigenetic mechanisms in the regulation of ABA metabolism gene expression is also described. In the last section, we give an overview of natural variations of ABA metabolism genes and their effects on seed germination, which could be useful both in future studies to better understand the regulation of ABA metabolism and to identify candidates as breeding materials for improving germination properties.
Collapse
Affiliation(s)
| | - Annie Marion-Poll
- IJPB Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
11
|
Malchikov PN, Myasnikova MG. [The content of yellow pigments in durum wheat (Titicum durum Desf.) grains: biosynthesis, genetic control, marker selection]. Vavilovskii Zhurnal Genet Selektsii 2021; 24:501-511. [PMID: 33659834 PMCID: PMC7716578 DOI: 10.18699/vj20.642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Зерно с высоким содержанием каротиноидных пигментов ценится за ярко-желтый цвет пасты,
производимой из него, и провитаминную (витамин А) и антиоксидантную активность пигментов. Цель настоя-
щего обзора – обобщение современных знаний о биосинтезе и генетическом контроле накопления пигментов
в зерне твердой пшеницы и оценка основных результатов исследований и селекции за последние двадцать
лет за рубежом и в России. Признак «концентрация каротиноидных пигментов в зерне» (Ypc) относится к раз-
ряду количественных. Тем не менее превалирование сильных аддитивных эффектов генов и высокая насле-
дуемость способствовали значительному прогрессу в селекции по этому признаку. Методами молекулярного
маркирования локусов количественных признаков (QTL), контролирующих синтез каротиноидных пигментов
и значения индекса желтизны (IY), установлено их распределение по всем хромосомам генома твердой пшеницы.
Основные генетические локусы, определяющие более 60 % варьирования признака, были картированы
в хромосомах 7AL и 7BL. Вклад этих локусов связан с аллельными вариациями, влияющими на активность
фермента фитоенсинтетазы (PSY). В других хромосомах были локализованы минорные генетические факторы,
из которых наиболее значимы QTL, расположенные в хромосомах 3AS (ассоциирован с геном LCYE-ликопин-
ε-циклаза) и 4ВS (аллель Lpx-B1.1c). При этом показано, что аллель Lpx-B1.1c вносит вклад в снижение актив-
ности липоксигеназы, окисляющей каротиноиды в процессе изготовления конечных продуктов. Рассмотрены
и обсуждены проблемы использования молекулярных маркеров в селекционных программах, нацеленных на
увеличение концентрации пигментов в зерне и улучшение цветовых характеристик пасты.
Collapse
Affiliation(s)
- P N Malchikov
- Samara Federal Research Scientific Center of the Russian Academy of Sciences, Samara Scientific Research Agriculture Institute named after N.M. Tulaikov, Bezenchuk, Samara region, Russi
| | - M G Myasnikova
- Samara Federal Research Scientific Center of the Russian Academy of Sciences, Samara Scientific Research Agriculture Institute named after N.M. Tulaikov, Bezenchuk, Samara region, Russi
| |
Collapse
|
12
|
Shi X, Tian Q, Deng P, Zhang W, Jing W. The rice aldehyde oxidase OsAO3 gene regulates plant growth, grain yield, and drought tolerance by participating in ABA biosynthesis. Biochem Biophys Res Commun 2021; 548:189-195. [PMID: 33647795 DOI: 10.1016/j.bbrc.2021.02.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Abscisic acid (ABA) regulates many aspects of plant growth and development and the responses to abiotic stresses. Arabidopsis aldehyde oxidase 3 (AAO3) catalyzes the final step of ABA biosynthesis. We cloned and functionally characterized a novel aldehyde oxidase gene, OsAO3, the rice homolog of AAO3. OsAO3 was expressed in germinated seeds, roots, leaves, and floral organs, particularly in vascular tissues and guard cells, and its expression was significantly induced by exogenous ABA and mannitol. Mutation and overexpression of OsAO3 decreased and increased ABA levels, respectively, in seedling shoots and roots under both normal and drought stress conditions. The osao3 mutant exhibited earlier seed germination, increased seedling growth, and decreased drought tolerance compared to the wild-type, OsAO3-overexpressing lines exhibited the opposite phenotype. Mutation and overexpression of OsAO3 increased and decreased grain yield, respectively, by affecting panicle number per plant, spikelet number per panicle, and spikelet fertility. Thus, OsAO3 may participate in ABA biosynthesis, and is essential for regulation of seed germination, seedling growth, grain yield, and drought tolerance in rice.
Collapse
Affiliation(s)
- Xingyu Shi
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quanxiang Tian
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Deng
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wen Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
David Wesley S, Helena Maria André B, Clerici MTPS. Gluten-free rice & bean biscuit: characterization of a new food product. Heliyon 2021; 7:e05956. [PMID: 33521353 PMCID: PMC7820923 DOI: 10.1016/j.heliyon.2021.e05956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/08/2019] [Accepted: 01/08/2021] [Indexed: 10/25/2022] Open
Abstract
As the market does not offer a portable and long-lasting product combining rice and beans in a single preparation, this study intends to characterize a new and alternative gluten-free biscuit, based on the most classic Brazilian staple food: rice and beans. For that, six formulations were designed to test using those ingredients as raw flours and cooked grains. One of them, formulated with wheat flour served as control. After baking, biscuits were submitted to instrumental, physicochemical, and consumer's sensory tests. Tests showed that when cooked beans substituted dried beans flour, the notes of acceptance increased and nutritional profile improved significantly (p < 0.05), which demonstrated to be an innovative use to bakery ingredients. One of the formulations even superseded the acceptance of the control formulation. At least two of the rice and beans formulations presented physicochemical profiles close to the control, with good protein (±10 g/100g) and mineral (±5 g/100g) contents, also being a food source of fibers (±8.2 g/100g), meaning they can bring potential benefits to people on gluten-restricted diets and celiac consumers, as well as to Brazilians who could consume rice and beans, now in a new versatile way.
Collapse
Affiliation(s)
- Silva David Wesley
- Food and Nutrition Department, Food Engineering Faculty, State University of Campinas, Brazil
| | | | - Maria Teresa Pedrosa Silva Clerici
- Food Technology Department, Food Engineering Faculty, State University of Campinas, Depan, FEA, UNICAMP, State University of Campinas, Brazil
| |
Collapse
|
14
|
Francesconi S, Balestra GM. The modulation of stomatal conductance and photosynthetic parameters is involved in Fusarium head blight resistance in wheat. PLoS One 2020; 15:e0235482. [PMID: 32603342 PMCID: PMC7326183 DOI: 10.1371/journal.pone.0235482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/17/2020] [Indexed: 11/18/2022] Open
Abstract
Fusarium head blight (FHB) is one of the most devastating fungal diseases affecting grain crops and Fusarium graminearum is the most aggressive causal species. Several evidences shown that stomatal closure is involved in the first line of defence against plant pathogens. However, there is very little evidence to show that photosynthetic parameters change in inoculated plants. The aim of the present study was to study the role of stomatal regulation in wheat after F. graminearum inoculation and explore its possible involvement in FHB resistance. RT-qPCR revealed that genes involved in stomatal regulation are induced in the resistant Sumai3 cultivar but not in the susceptible Rebelde cultivar. Seven genes involved in the positive regulation of stomatal closure were up-regulated in Sumai3, but it is most likely, that two genes, TaBG and TaCYP450, involved in the negative regulation of stomatal closure, were strongly induced, suggesting that FHB response is linked to cross-talk between the genes promoting and inhibiting stomatal closure. Increasing temperature of spikes in the wheat genotypes and a decrease in photosynthetic efficiency in Rebelde but not in Sumai3, were observed, confirming the hypothesis that photosynthetic parameters are related to FHB resistance.
Collapse
Affiliation(s)
- Sara Francesconi
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Giorgio Mariano Balestra
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
15
|
Phytoene synthase 1 ( Psy-1) and lipoxygenase 1 ( Lpx-1) Genes Influence on Semolina Yellowness in Wheat Mediterranean Germplasm. Int J Mol Sci 2020; 21:ijms21134669. [PMID: 32630023 PMCID: PMC7369853 DOI: 10.3390/ijms21134669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Phytoene synthase 1 (Psy1) and lipoxygenase 1 (Lpx-1) are key genes involved in the synthesis and catalysis of carotenoid pigments in durum wheat, regulating the increase and decrease in these compounds, respectively, resulting in the distinct yellow color of semolina and pasta. Here, we reported new haplotype variants and/or allele combinations of these two genes significantly affecting yellow pigment content in grain and semolina through their effect on carotenoid pigments. To reach the purpose of this work, three complementary approaches were undertaken: the identification of QTLs associated to carotenoid content on a recombinant inbred line (RIL) population, the characterization of a Mediterranean panel of accessions for Psy1 and Lpx-1 genes, and monitoring the expression of Psy1 and Lpx-1 genes during grain filling on two genotypes with contrasting yellow pigments. Our data suggest that Psy1 plays a major role during grain development, contributing to semolina yellowness, and Lpx-1 appears to be more predominant at post-harvest stages and during pasta making.
Collapse
|
16
|
Ashokkumar K, Govindaraj M, Karthikeyan A, Shobhana VG, Warkentin TD. Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition. Front Genet 2020; 11:414. [PMID: 32547594 PMCID: PMC7274173 DOI: 10.3389/fgene.2020.00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
Globally, two billion people suffer from micronutrient deficiencies. Cereal grains provide more than 50% of the daily requirement of calories in human diets, but they often fail to provide adequate essential minerals and vitamins. Cereal crop production in developing countries achieved remarkable yield gains through the efforts of the Green Revolution (117% in rice, 30% in wheat, 530% in maize, and 188% in pearl millet). However, modern varieties are often deficient in essential micronutrients compared to traditional varieties and land races. Breeding for nutritional quality in staple cereals is a challenging task; however, biofortification initiatives combined with genomic tools increase the feasibility. Current biofortification breeding activities include improving rice (for zinc), wheat (for zinc), maize (for provitamin A), and pearl millet (for iron and zinc). Biofortification is a sustainable approach to enrich staple cereals with provitamin A, carotenoids, and folates. Significant genetic variation has been found for provitamin A (96-850 μg and 12-1780 μg in 100 g in wheat and maize, respectively), carotenoids (558-6730 μg in maize), and folates in rice (11-51 μg) and wheat (32.3-89.1 μg) in 100 g. This indicates the prospects for biofortification breeding. Several QTLs associated with carotenoids and folates have been identified in major cereals, and the most promising of these are presented here. Breeding for essential nutrition should be a core objective of next-generation crop breeding. This review synthesizes the available literature on folates, provitamin A, and carotenoids in rice, wheat, maize, and pearl millet, including genetic variation, trait discovery, QTL identification, gene introgressions, and the strategy of genomics-assisted biofortification for these traits. Recent evidence shows that genomics-assisted breeding for grain nutrition in rice, wheat, maize, and pearl millet crops have good potential to aid in the alleviation of micronutrient malnutrition in many developing countries.
Collapse
Affiliation(s)
| | - Mahalingam Govindaraj
- Crop Improvement program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - V. G. Shobhana
- Crop Improvement program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Thomas D. Warkentin
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Colasuonno P, Marcotuli I, Blanco A, Maccaferri M, Condorelli GE, Tuberosa R, Parada R, de Camargo AC, Schwember AR, Gadaleta A. Carotenoid Pigment Content in Durum Wheat ( Triticum turgidum L. var durum): An Overview of Quantitative Trait Loci and Candidate Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1347. [PMID: 31787991 PMCID: PMC6853866 DOI: 10.3389/fpls.2019.01347] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/27/2019] [Indexed: 05/21/2023]
Abstract
Carotenoid pigment content is an important quality trait as it confers a natural bright yellow color to pasta preferred by consumers (whiteness vs. yellowness) and nutrients, such as provitamin A and antioxidants, essential for human diet. The main goal of the present review is to summarize the knowledge about the genetic regulation of the accumulation of pigment content in durum wheat grain and describe the genetic improvements obtained by using breeding approaches in the last two decades. Although carotenoid pigment content is a quantitative character regulated by various genes with additive effects, its high heritability has facilitated the durum breeding progress for this quality trait. Mapping research for yellow index and yellow pigment content has identified quantitative trait loci (QTL) on all wheat chromosomes. The major QTL, accounting for up to 60%, were mapped on 7L homoeologous chromosome arms, and they are explained by allelic variations of the phytoene synthase (PSY) genes. Minor QTL were detected on all chromosomes and associated to significant molecular markers, indicating the complexity of the trait. Despite there being currently a better knowledge of the mechanisms controlling carotenoid content and composition, there are gaps that require further investigation and bridging to better understand the genetic architecture of this important trait. The development and the utilization of molecular markers in marker-assisted selection (MAS) programs for improving grain quality have been reviewed and discussed.
Collapse
Affiliation(s)
- Pasqualina Colasuonno
- Department of Agricultural and Environmental Science (DISAAT), University of Bari “Aldo Moro”, Bari, Italy
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science (DISAAT), University of Bari “Aldo Moro”, Bari, Italy
| | - Antonio Blanco
- Department of Agricultural and Environmental Science (DISAAT), University of Bari “Aldo Moro”, Bari, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | | | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Roberto Parada
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adriano Costa de Camargo
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés R. Schwember
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science (DISAAT), University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
18
|
Jiang CC, Zhang YF, Lin YJ, Chen Y, Lu XK. Illumina ® Sequencing Reveals Candidate Genes of Carotenoid Metabolism in Three Pummelo Cultivars ( Citrus Maxima) with Different Pulp Color. Int J Mol Sci 2019; 20:ijms20092246. [PMID: 31067703 PMCID: PMC6539737 DOI: 10.3390/ijms20092246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/27/2019] [Accepted: 05/05/2019] [Indexed: 01/15/2023] Open
Abstract
Pummelo (Citrus maxima) is one of important fruit trees, which belongs to Citrus species. The fruits of different pummelo cultivars have different colors and differ in the contents of carotenoid. Our results clearly showed that ‘Huangjinmiyou’ (HJMY) has the highest content of β-carotene, followed by ‘Hongroumiyou’ (HRMY) and ‘Guanximiyou’ (GXMY). Lycopene is dominantly accumulated in HRMY. However, the molecular mechanism underlying the carotenoid accumulation in pummelo flesh is not fully understood. In this study, we used the RNA-Seq technique to investigate the candidate genes of carotenoid metabolism in the flesh of pummelo cv. GXMY and its mutants HRMY and HJMY in three development periods of fruit. After data assembly and bioinformatic analysis, a total of 357 genes involved in biosynthesis of secondary metabolites were isolated, of which 12 differentially expressed genes (DEGs) are involved in carotenoid biosynthesis. Among these 12 DEGs, phytoene synthase (PSY2), lycopene β-cyclase (LYCB2), lycopene Ɛ-cyclase (LYCE), carotenoid cleavage dioxygenases (CCD4), 9-cis-epoxycarotenoid dioxygenase (NCED2), aldehyde oxidase 3 (AAO3), and ABA 8′-hydroxylases (CYP707A1) are the most distinct DEGs in three pummelo cultivars. The co-expression analysis revealed that the expression patterns of several transcription factors such as bHLH, MYB, ERF, NAC and WRKY are highly correlated with DEGs, which are involved in carotenoid biosynthesis. In addition, the expression patterns of 22 DEGs were validated by real-time quantitative PCR (RT-qPCR) and the results are highly concordant with the RNA-Seq results. Our results provide a global vision of transcriptomic profile among three pummelo cultivars with different pulp colors. These results would be beneficial to further study the molecular mechanism of carotenoid accumulation in pummelo flesh and help the breeding of citrus with high carotenoid content.
Collapse
Affiliation(s)
- Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Yan-Fang Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Yan-Jin Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| | - Yuan Chen
- Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
| | - Xin-Kun Lu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
19
|
Müller TM, Böttcher C, Glawischnig E. Dissection of the network of indolic defence compounds in Arabidopsis thaliana by multiple mutant analysis. PHYTOCHEMISTRY 2019; 161:11-20. [PMID: 30798200 DOI: 10.1016/j.phytochem.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Characteristic for cruciferous plants is the synthesis of a complex array of defence-related indolic compounds. In Arabidopsis, these include indol-3-ylmethyl glucosinolates (IMGs), as well as stress-inducible indole-3-carbaldehyde (ICHO)/indole-3-carboxylic acid (ICOOH) derivatives and camalexin. Key enzymes in the biosynthesis of the inducible metabolites are the cytochrome P450 enzymes CYP71A12, CYP71A13 and CYP71B6 and Arabidopsis Aldehyde Oxidase 1 (AAO1). Multiple mutants in the corresponding genes were generated and their metabolic phenotypes were comprehensively analysed in untreated, UV exposed and silver nitrate-treated leaves. Most strikingly, ICOOH and ICHO derivatives synthesized in response to UV exposure were not metabolically related. While ICHO concentrations correlated with IMGs, ICOOH derivatives were anti-correlated with IMGs and partially dependent on CYP71B6. The AAO1 genotype was shown to not only be important for ICHO metabolism but also for the accumulation of 4-pyridoxic acid, suggesting a dual role of AAO1 in vitamin B6 metabolism and IMG degradation in Arabidopsis.
Collapse
Affiliation(s)
- Teresa M Müller
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Christoph Böttcher
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Str. 19, 14195 Berlin, Germany
| | - Erich Glawischnig
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; Microbial Biotechnology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany.
| |
Collapse
|