1
|
Li G, Sun X, Zhu X, Wu B, Hong H, Xin Z, Xin X, Peng J, Jiang S. Selection and Validation of Reference Genes in Virus-Infected Sweet Potato Plants. Genes (Basel) 2023; 14:1477. [PMID: 37510381 PMCID: PMC10379385 DOI: 10.3390/genes14071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Quantitative real-time PCR (qRT-PCR) in sweet potatoes requires accurate data normalization; however, there are insufficient studies on appropriate reference genes for gene expression analysis. We examined variations in the expression of eight candidate reference genes in the leaf and root tissues of sweet potatoes (eight nonvirus-infected or eight virus-infected samples). Parallel analyses with geNorm, NormFinder, and Best-Keeper show that different viral infections and origin tissues affect the expression levels of these genes. Based on the results of the evaluation of the three software, the adenosine diphosphate-ribosylation factor is suitable for nonvirus or virus-infected sweet potato leaves. Cyclophilin and ubiquitin extension proteins are suitable for nonvirus-infected sweet potato leaves. Phospholipase D1 alpha is suitable for virus-infected sweet potato leaves. Actin is suitable for roots of nonvirus-infected sweet potatoes. Glyceraldehyde-3-phosphate dehydrogenase is suitable for virus-infected sweet potato roots. The research provides appropriate reference genes for further analysis in leaf and root samples of viruses in sweet potatoes.
Collapse
Affiliation(s)
- Guangyan Li
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaohui Sun
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaoping Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Bin Wu
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Hong
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhimei Xin
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiangqi Xin
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shanshan Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Lu L, Tang Y, Xu H, Qian Y, Tao J, Zhao D. Selection and verification of reliable internal reference genes in stem development of herbaceous peony ( Paeonia lactiflora Pall.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:773-782. [PMID: 37520813 PMCID: PMC10382430 DOI: 10.1007/s12298-023-01325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 08/01/2023]
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) has emerged in the cut flower market due to its beautiful appearance. The bending flower stems caused by a lack of mechanical strength is the main problem restricting the development of the cut P. lactiflora industry. So it is of great worth to reveal the basis of stem development changes in P. lactiflora to improve its cut flower quality. Quantitative research on gene expression characteristics can provide clues for understanding their biological functions, and the screening of relatively stable expression genes is a prerequisite for the quantitative study of gene expression characteristics. Thus, it is necessary to find appropriate genes during stem development so as to analyze the qRT‒PCR results. In this study, 10 genes were screened, and these genes expressed stably in stems of different stem strengths at three different developmental stages. Then, their expressions were evaluated by RefFinder, BestKeeper, NormFinder, and GeNorm programs. The results demonstrated that γ-tubulin (γ-TUB) was the most suitable gene, followed by α-tubulin (α-TUB) and β-D-glucosidase (β-GUS), whereas histone H3 (His) was the least suitable gene. Besides, the temporal and spatial expression characteristics of PlCOMT1, the key gene concerned with the synthesis of cell wall fillers in P. lactiflora, were also used to evaluate the suitability of genes. Consequently, γ-TUB and α-TUB are the two best combinations during stem development, and their combination can be used for the stem development of P. lactiflora. These findings will provide a reference for the selection of genes related to stem development and the study of molecular mechanisms related to stem development in P. lactiflora. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01325-5.
Collapse
Affiliation(s)
- Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Huajie Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yi Qian
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
3
|
Pang X, Chen J, Xu Y, Liu J, Zhong Y, Wang L, Zheng J, Wan H. Genome-wide characterization of ascorbate peroxidase gene family in pepper ( Capsicum annuum L.) in response to multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1189020. [PMID: 37251751 PMCID: PMC10210635 DOI: 10.3389/fpls.2023.1189020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Pepper is widely grown all over the world, so it faces many abiotic stresses, such as drought, high temperature, low temperature, salt damage, and so on. Stresses causing the accumulation of reactive oxidative species (ROS) in plants are removed by antioxidant defense systems, and ascorbate peroxidase (APX) is an important antioxidant enzyme. Therefore, the present study performed genome-wide identification of the APX gene family in pepper. We identified nine members of the APX gene family in the pepper genome according to the APX proteins' conserved domain in Arabidopsis thaliana. The physicochemical property analysis showed that CaAPX3 had the longest protein sequence and the largest molecular weight of all genes, while CaAPX9 had the shortest protein sequence and the smallest MW. The gene structure analysis showed that CaAPXs were composed of seven to 10 introns. The CaAPX genes were divided into four groups. The APX genes of groups I and IV were localized in the peroxisomes and chloroplasts, respectively; the group II genes were localized in the chloroplasts and mitochondria; and the group III genes were located in the cytoplasm and extracell. The conservative motif analysis showed that all APX genes in the pepper had motif 2, motif 3, and motif 5. The APX gene family members were distributed on five chromosomes (Chr. 2, 4, 6, 8, and 9). The cis-acting element analysis showed that most CaAPX genes contain a variety of cis-elements related to plant hormones and abiotic stress. RNA-seq expression analysis showed that the expression patterns of nine APXs were different in vegetative and reproductive organs at different growth and development stages. In addition, the qRT-PCR analysis of the CaAPX genes revealed significant differential expression in response to high temperature, low temperature, and salinity stresses in leaf tissue. In conclusion, our study identified the APX gene family members in the pepper and predicted the functions of this gene family, which would provide resources for further functional characterization of CaAPX genes.
Collapse
Affiliation(s)
- Xin Pang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Jun Chen
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu, China
| | - Yangmin Zhong
- Institute of Crops, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Linlin Wang
- Institute of Crops, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Jiaqiu Zheng
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Marinov O, Nomberg G, Sarkar S, Arya GC, Karavani E, Zelinger E, Manasherova E, Cohen H. Microscopic and metabolic investigations disclose the factors that lead to skin cracking in chili-type pepper fruit varieties. HORTICULTURE RESEARCH 2023; 10:uhad036. [PMID: 37799628 PMCID: PMC10548408 DOI: 10.1093/hr/uhad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/20/2023] [Indexed: 10/07/2023]
Abstract
The hydrophobic cuticle encasing the fruit skin surface plays critical roles during fruit development and post-harvest. Skin failure often results in the fruit surface cracking and forming a wound-periderm tissue made of suberin and lignin. The factors that make the fruit skin susceptible to cracking have yet to be fully understood. Herein, we investigated two varieties of chili peppers (Capsicum annuum L.), Numex Garnet, whose fruit has intact skin, and Vezena Slatka, whose fruit has cracked skin. Microscopical observations, gas chromatography-mass spectrometry, biochemical and gene expression assays revealed that Vezena Slatka fruit form a thicker cuticle with greater levels of cutin monomers and hydroxycinnamic acids, and highly express key cutin-related genes. The skin of these fruit also had a lower epidermal cell density due to cells with very large perimeters, and highly express genes involved in epidermal cell differentiation. We demonstrate that skin cracking in the Vezena Slatka fruit is accompanied by a spatial accumulation of lignin-like polyphenolic compounds, without the formation of a typical wound-periderm tissues made of suberized cells. Lastly, we establish that skin cracking in chili-type pepper significantly affects fruit quality during post-harvest storage in a temperature-dependent manner. In conclusion, our data highlight cuticle thickness and epidermal cell density as two critical factors determining fruit skin susceptibility to cracking in chili-type pepper fruit.
Collapse
Affiliation(s)
- Ofir Marinov
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Nomberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sutanni Sarkar
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Eldad Karavani
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Einat Zelinger
- Center for Scientific Imaging (CSI), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
5
|
Santos M, Diánez F, Sánchez-Montesinos B, Huertas V, Moreno-Gavira A, Esteban García B, Garrido-Cárdenas JA, Gea FJ. Biocontrol of Diseases Caused by Phytophthora capsici and P. parasitica in Pepper Plants. J Fungi (Basel) 2023; 9:jof9030360. [PMID: 36983528 PMCID: PMC10051450 DOI: 10.3390/jof9030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The main objective of this study was to evaluate the ability of Trichoderma aggressivum f. europaeum, T. longibrachiatum, Paecilomyces variotii, and T. saturnisporum as biological control agents (BCAs) against diseases caused by P. capsici and P. parasitica in pepper. For this purpose, their antagonistic activities were evaluated both in vitro and in vivo. We analysed the expression patterns of five defence related genes, CaBGLU, CaRGA1, CaBPR1, CaPTI1, and CaSAR8.2, in leaves. All BCAs showed a high in vitro antagonistic activity, significantly reducing the mycelial growth of P. capsici and P. parasitica. The treatments with T. aggressivum f. europaeum, T. longibrachiatum, and P. variotii substantially reduced the severity of the disease caused by P. capsici by 54, 76, and 70%, respectively, and of the disease caused by P. parasitica by 66, 55, and 64%, respectively. T. saturnisporum had the lowest values of disease reduction. Reinoculation with the four BCAs increased the control of both plant pathogens. Markedly different expression patterns were observed in the genes CaBGLU, CaRGA1, and CaSAR8.2. Based on the results, all four BCAs under study could be used as a biological alternative to chemicals for the control of P. capsici and P. parasitica in pepper with a high success rate.
Collapse
Affiliation(s)
- Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
- Correspondence: ; Tel.: +34-628188339
| | - Fernando Diánez
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
| | - Brenda Sánchez-Montesinos
- Departamento de Agronomía, División Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Guanajuato, Mexico
| | - Victoria Huertas
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
| | - Alejandro Moreno-Gavira
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
| | - Belén Esteban García
- Departamento de Biología y Geología, Edificio CITE IIB, Universidad de Almería, 04120 Almería, Spain
| | - José A. Garrido-Cárdenas
- Departamento de Biología y Geología, Edificio CITE IIB, Universidad de Almería, 04120 Almería, Spain
| | - Francisco J. Gea
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), Quintanar del Rey, 16220 Cuenca, Spain
| |
Collapse
|
6
|
Zaghdoud C, Ollio I, Solano CJ, Ochoa J, Suardiaz J, Fernández JA, Martínez Ballesta MDC. Red LED Light Improves Pepper ( Capsicum annuum L.) Seed Radicle Emergence and Growth through the Modulation of Aquaporins, Hormone Homeostasis, and Metabolite Remobilization. Int J Mol Sci 2023; 24:ijms24054779. [PMID: 36902208 PMCID: PMC10002511 DOI: 10.3390/ijms24054779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Red LED light (R LED) is an efficient tool to improve seed germination and plant growth under controlled environments since it is more readily absorbed by photoreceptors' phytochromes compared to other wavelengths of the spectrum. In this work, the effect of R LED on the radicle emergence and growth (Phase III of germination) of pepper seeds was evaluated. Thus, the impact of R LED on water transport through different intrinsic membrane proteins, via aquaporin (AQP) isoforms, was determined. In addition, the remobilization of distinct metabolites such as amino acids, sugars, organic acids, and hormones was analysed. R LED induced a higher germination speed index, regulated by an increased water uptake. PIP2;3 and PIP2;5 aquaporin isoforms were highly expressed and could contribute to a faster and more effective hydration of embryo tissues, leading to a reduction of the germination time. By contrast, TIP1;7, TIP1;8, TIP3;1 and TIP3;2 gene expressions were reduced in R LED-treated seeds, pointing to a lower need for protein remobilization. NIP4;5 and XIP1;1 were also involved in radicle growth but their role needs to be elucidated. In addition, R LED induced changes in amino acids and organic acids as well as sugars. Therefore, an advanced metabolome oriented to a higher energetic metabolism was observed, conditioning better seed germination performance together with a rapid water flux.
Collapse
Affiliation(s)
- Chokri Zaghdoud
- Bureau de Transfert de Technologie (BuTT), Université de Gafsa, Gafsa 2112, Tunisia
| | - Irene Ollio
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203 Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202 Cartagena, Spain
| | - Cristóbal J. Solano
- División of Innovation in Telematic Systems and Electronic Technology (DINTEL), Technical University of Cartagena, Campus Muralla del Mar, s/n, E-30202 Cartagena, Spain
| | - Jesús Ochoa
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203 Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202 Cartagena, Spain
| | - Juan Suardiaz
- División of Innovation in Telematic Systems and Electronic Technology (DINTEL), Technical University of Cartagena, Campus Muralla del Mar, s/n, E-30202 Cartagena, Spain
| | - Juan A. Fernández
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203 Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202 Cartagena, Spain
| | - María del Carmen Martínez Ballesta
- Ingeniería Agronómica, Technical University of Cartagena, Paseo Alfonso XIII 48, E-30203 Cartagena, Spain
- Recursos Fitogenéticos, Instituto de Biotecnología Vegetal, Edificio I+D+i, E-30202 Cartagena, Spain
- Correspondence: ; Tel.: +34-968-325457
| |
Collapse
|
7
|
Gaete-Eastman C, Mattus-Araya E, Herrera R, Moya-León MA. Evaluation of reference genes for transcript normalization in Fragaria chiloensis fruit and vegetative tissues. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1535-1544. [PMID: 36389093 PMCID: PMC9530087 DOI: 10.1007/s12298-022-01227-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
UNLABELLED Quantitative real-time PCR (RT-qPCR) is used extensively in gene expression studies. For adequate comparisons, the identification and use of reliable reference genes are crucial. Nevertheless, the availability of such genes in strawberry species is limited and has yet to be described for the Chilean strawberry, Fragaria chiloensis. In this study, the expression dynamics of a set of 10 candidate reference genes were analyzed in various F. chiloensis vegetative tissues (root, runners, stem, leaf, and flower), and fruits at different ripening stages or subjected to different hormonal treatments (ABA, auxin). The expression stability of candidate genes was examined by a series of algorithms, such as geNorm, NormFinder, BestKeeper, and ΔCt, for comparisons and rankings. Finally, by using RefFinder, a comprehensive and comparative ranking of the four methods was achieved. The results highlight that the expression stability of candidate reference genes fluctuates depending on tissue type, fruit stage, and hormonal treatment. As reference genes, the use of FcCHP2 and FcACTIN1 is recommended for F. chiloensis vegetative tissues; FcDBP and FcCHP1 for fruit ripening stages; FcGAPDH and FcDBP for fruit subjected to ABA and NDGA treatments; FcCHP1 and FcCHP2 for fruit under AUXIN and TIBA treatments; and FcDBP and FcCHP2 when all fruit stages and hormonal treatments are compared. If just one reference gene is employed as a normalizer, FcDBP should be chosen as it is the most stable internal control in most conditions. Therefore, the present study delivers a set of reliable reference genes for RT-qPCR expression analysis in F. chiloensis tissues and fruits subjected to several hormonal treatments. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01227-y.
Collapse
Affiliation(s)
- Carlos Gaete-Eastman
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Elena Mattus-Araya
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Raúl Herrera
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Alejandra Moya-León
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
8
|
Zheng Q, Wang X, Qi Y, Ma Y. Selection and validation of reference genes for qRT-PCR analysis during fruit ripening of red pitaya (Hylocereus polyrhizus). FEBS Open Bio 2021; 11:3142-3152. [PMID: 33269508 PMCID: PMC8564333 DOI: 10.1002/2211-5463.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
Red pitaya (Hylocereus polyrhizus) is widely cultivated in southern and southwestern China. To provide a basis for studying the molecular mechanisms of the ripening of this fruit, we carried out RNA sequencing (RNA-seq) analysis to identify differentially and stably expressed unigenes. The latter may serve as a resource of potential reference genes for normalization of target gene expression determined using quantitative real-time PCR (qRT-PCR). We selected 11 candidate reference genes from our RNA-seq analysis of red pitaya fruit ripening (ACT7, EF-1α, IF-4α, PTBP, PP2A, EF2, Hsp70, GAPDH, DNAJ, TUB and CYP), as well as β-ACT, which has been used as a reference gene for pitayas in previous studies. We then comprehensively evaluated their expression stability during fruit ripening using four statistical methods (GeNorm, NormFinder, BestKeeper and DeltaCt) and merged the four outputs using the online tool RefFinder for the final ranking. We report that PTBP and DNAJ showed the most stable expression patterns, whereas CYP and ACT7 showed the least stable expression patterns. The relative gene expression of red pitaya sucrose synthase and 4, 5-dihydroxyphenylalanine-extradiol-dioxygenase as determined by quantitative real-time PCR and normalized to PTBP and DNAJ was consistent with the RNA-seq results, suggesting that PTBP and DNAJ are suitable reference genes for studies of red pitaya fruit ripening.
Collapse
Affiliation(s)
- Qianming Zheng
- Institute of Pomology ScienceGuizhou Provincial Academy of Agricultural SciencesGuiyangChina
| | - Xiaoke Wang
- Institute of Pomology ScienceGuizhou Provincial Academy of Agricultural SciencesGuiyangChina
| | - Yong Qi
- Institute of Pomology ScienceGuizhou Provincial Academy of Agricultural SciencesGuiyangChina
| | - Yuhua Ma
- Institute of Pomology ScienceGuizhou Provincial Academy of Agricultural SciencesGuiyangChina
| |
Collapse
|
9
|
Bisht A, Bhalla S, Kumar A, Kaur J, Garg N. Gene expression analysis for selection and validation of suitable housekeeping gene(s) in cadmium exposed pigeonpea plants inoculated with arbuscular mycorrhizae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:592-602. [PMID: 33773234 DOI: 10.1016/j.plaphy.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The expression stability of six commonly used housekeeping genes (18S rRNA-18S ribosomal RNA, EF1α-elongation factor 1α, ACT1-Actin 1, GAPDH-Glyceraldehyde-3-phosphate dehydrogenase, TUB6-Tubulin/FtsZ family and UBC-Ubiquitin-conjugating enzyme) were scrutinized in leaves and roots of Cd stressed pigeonpea plants inoculated with arbuscular mycorrhizal (AM) species- Rhizoglomus intraradices (Ri), Funneliformis mosseae (Fm), Claroideoglomus etunicatum (Ce), C. claroideum (Cc). The stability profile of each gene was assessed using ΔCt, BestKeeper, NormFinder, RefFinder and geNorm algorithmic programs, which ranked different genes as most and least stable according to the tissues analysed. All the statistical algorithms ranked TUB6 as most stable and EF1α least stable housekeeping (HK) genes in both the plant tissues. The selected HK genes were verified using metallothionein (CcMT1) i.e. a stress responsive gene, whose expression altered under conditions of metal stress and AM inoculation. The expression pattern of CcMT1 varied highly when least stable reference gene was used for normalization as compared to most stable gene, under different treatments. Thus, there is a need of selecting suitable reference gene to achieve reliable results in gene expression studies using quantitative real time PCR (qRT-PCR). The study conducted will help future gene expression analysis in pigeonpea under specific stress.
Collapse
Affiliation(s)
- Aditi Bisht
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Shyna Bhalla
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Arbind Kumar
- Department of Biotechnology, Panjab University, Chandigarh-160025, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh-160025, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
10
|
Mayorga-Gómez A, Nambeesan SU. Temporal expression patterns of fruit-specific α- EXPANSINS during cell expansion in bell pepper (Capsicum annuum L.). BMC PLANT BIOLOGY 2020; 20:241. [PMID: 32466743 PMCID: PMC7254744 DOI: 10.1186/s12870-020-02452-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Expansins (EXPs) facilitate non-enzymatic cell wall loosening during several phases of plant growth and development including fruit growth, internode expansion, pollen tube growth, leaf and root development, and during abiotic stress responses. In this study, the spatial and temporal expression patterns of C. annuum α- EXPANSIN (CaEXPA) genes were characterized. Additionally, fruit-specific CaEXPA expression was correlated with the rate of cell expansion during bell pepper fruit development. RESULTS Spatial expression patterns revealed that CaEXPA13 was up-regulated in vegetative tissues and flowers, with the most abundant expression in mature leaves. Expression of CaEXPA4 was associated with stems and roots. CaEXPA3 was expressed abundantly in flower at anthesis suggesting a role for CaEXPA3 in flower development. Temporal expression analysis revealed that 9 out of the 21 genes were highly expressed during fruit development. Of these, expression of six genes, CaEXPA5, CaEXPA7, CaEXPA12, CaEXPA14 CaEXPA17 and CaEXPA19 were abundant 7 to 21 days after anthesis (DAA), whereas CaEXPA6 was strongly expressed between 14 and 28 DAA. Further, this study revealed that fruit growth and cell expansion occur throughout bell pepper development until ripening, with highest rates of fruit growth and cell expansion occurring between 7 and 14 DAA. The expression of CaEXPA14 and CaEXPA19 positively correlated with the rate of cell expansion, suggesting their role in post-mitotic cell expansion-mediated growth of the bell pepper fruit. In this study, a ripening specific EXP transcript, CaEXPA9 was identified, suggesting its role in cell wall disassembly during ripening. CONCLUSIONS This is the first genome-wide study of CaEXPA expression during fruit growth and development. Identification of fruit-specific EXPAs suggest their importance in facilitating cell expansion during growth and cell wall loosening during ripening in bell pepper. These EXPA genes could be important targets for future manipulation of fruit size and ripening characteristics.
Collapse
Affiliation(s)
- Andrés Mayorga-Gómez
- Department of Horticulture, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA
| | - Savithri U Nambeesan
- Department of Horticulture, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA.
| |
Collapse
|
11
|
Long X, Lu J, Kav NNV, Qin Y, Fang Y. Identification and evaluation of suitable reference genes for gene expression analysis in rubber tree leaf. Mol Biol Rep 2020; 47:1921-1933. [PMID: 32020426 DOI: 10.1007/s11033-020-05288-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
Gene expression profiles are increasingly applied to investigate molecular mechanism for which, normalization with suitable reference genes is critical. Previously we have reported several suitable reference genes for laticifer samples from rubber tree, however, little is known in leaf. The main objective of this current study was to identify some stable expression reference genes at various developmental stages of leaf, as well as during abiotic (high and low temperature extremes) and biotic stresses (pathogen stress). Gene expression profilings identified the ubiquitin-proteasome system as excellent potential as reference genes for rubber tree leaf. Among a total of 30 tested genes investigated, 24 new candidate (including 11 genes involved in the ubiquitin-proteasome system), 4 previously identified and 2 specific genes, were further evaluated using quantitative real-time PCR. Our results indicated that the new candidate genes had better expression stability comparing with others. For instance, an ubiquitin conjugating enzyme (RG0099) and three ubiquitin-protein ligases (RG0928, RG2190 and RG0118) expressed stably in all samples, and were confirmed to be suitable reference genes for rubber tree leaf under four different conditions. Finally, we suggest that using more than one reference gene may be appropriate in gene expression studies when employing different software to normalize gene expression data. Our findings have significant implications for the reliability of data obtained from genomics studies in rubber tree and perhaps in other species.
Collapse
Affiliation(s)
- Xiangyu Long
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Jilai Lu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.,College of Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Yunxia Qin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Yongjun Fang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| |
Collapse
|
12
|
Genome-Wide Identification and Characterization of the Mitochondrial Transcription Termination Factors (mTERFs) in Capsicum annuum L. Int J Mol Sci 2019; 21:ijms21010269. [PMID: 31906076 PMCID: PMC6982079 DOI: 10.3390/ijms21010269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial transcription termination factors (mTERFs) regulate the expression of mitochondrial genes and are closely related to the function of the mitochondrion and chloroplast. In this study, the mTERF gene family in capsicum (Capsicum annuum L.) was identified and characterized through genomic and bioinformatic analyses. Capsicum was found to possess at least 35 mTERF genes (CamTERFs), which were divided into eight major groups following phylogenetic analysis. Analysis of CamTERF promoters revealed the presence of many cis-elements related to the regulation of cellular respiration and photosynthesis. In addition, CamTERF promoters contained cis-elements related to phytohormone regulation and stress responses. Differentially expressed genes in different tissues and developmental phases were identified using RNA-seq data, which revealed that CamTERFs exhibit various expression and co-expression patterns. Gene ontology (GO) annotations associated CamTERFs primarily with mitochondrion and chloroplast function and composition. These results contribute towards understanding the role of mTERFs in capsicum growth, development, and stress responses. Moreover, our data assist in the identification of CamTERFs with important functions, which opens avenues for future studies.
Collapse
|
13
|
Identification and evaluation of reference genes for reliable normalization of real-time quantitative PCR data in acerola fruit, leaf, and flower. Mol Biol Rep 2019; 47:953-965. [DOI: 10.1007/s11033-019-05187-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/07/2019] [Indexed: 01/13/2023]
|
14
|
Wang G, Tian C, Wang Y, Wan F, Hu L, Xiong A, Tian J. Selection of reliable reference genes for quantitative RT-PCR in garlic under salt stress. PeerJ 2019; 7:e7319. [PMID: 31341748 PMCID: PMC6640627 DOI: 10.7717/peerj.7319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Quantitative real-time reverse-transcriptase PCR (qRT-PCR) has been frequently used for detecting gene expression. To obtain reliable results, selection of suitable reference genes is a fundamental and necessary step. Garlic (Allium sativum), a member from Alliaceae family, has been used both as a food flavoring and as a traditional medicine. In the present study, garlic plants were exposed to salt stress (200 mM NaCl) for 0, 1, 4 and 12 h, and garlic roots, bulbs, and leaves were harvested for subsequent analysis. The expression stability of eight candidate reference genes, eukaryotic translation initiation factor 4α (eIF-4α), actin (ACTIN), tubulin β-7 (TUB7), TAP42-interacting protein of 41 kDa (TIP41), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), SAND family protein (SAND), elongation factor 1 alpha (EF-1α), and protein phosphatase 2A (PP2A) were evaluated by geNorm, NormFinder, and BestKeeper. All genes tested displayed variable expression profiles under salt stress. In the leaf and root group, ACTIN was the best reference gene for normalizing gene expression. In garlic clove, ACTIN and SAND were the least variable, and were suitable for gene expression studies under salt stress; these two genes also performed well in all samples tested. Based on our results, we recommend that it is essential to use specific reference genes in different situations to obtain accurate results. Using a combination of multiple stable reference genes, such as ACTIN and SAND, to normalize gene expression is encouraged. The results from the study will be beneficial for accurate determination of gene expression in garlic and other plants.
Collapse
Affiliation(s)
- Guanglong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Chang Tian
- Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunpeng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Faxiang Wan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Laibao Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Tian
- Academy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences), Qinghai Key Laboratory of Vegetable Genetics and Physiology, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai, China
| |
Collapse
|
15
|
Su W, Yuan Y, Zhang L, Jiang Y, Gan X, Bai Y, Peng J, Wu J, Liu Y, Lin S. Selection of the optimal reference genes for expression analyses in different materials of Eriobotrya japonica. PLANT METHODS 2019; 15:7. [PMID: 30705689 PMCID: PMC6348664 DOI: 10.1186/s13007-019-0391-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/19/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Loquat (Eriobotrya japonica) is a subtropical tree bearing fruit that ripens during late spring and early summer, which is the off-season for fruit production. The specific flowering habit of loquat, which starts in fall and ends in winter, has attracted an increasing number of researchers who believe that it may represent an ideal model for studying flowering shift adaptations to climate change in Rosaceae. These studies require an understanding of gene expression patterns within the fruit and other tissues of this plant. Although ACTINs (ACTs) have previously been used as reference genes (RGs) for gene expression studies in loquats, a comprehensive analysis of whether these RGs are optimal for normalizing RT-qPCR data has not been performed. RESULTS In this study, 11 candidate RGs (RIBOSOMAL-LIKE PROTEIN4 (RPL4), RIBOSOMAL-LIKE PROTEIN18 (RPL18), Histone H3.3 (HIS3), Alpha-tubulin-3 (TUA3), S-Adenosyl Methionine Decarboxylase (SAMDC), TIP41-like Family Protein (TIP41), (UDP)-glucose Pyrophosphorylase (UGPase), 18S ribosomal RNA (18S), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), Plasma Intrinsic Protein 2 (PIP2) and ACTIN(ACT)) were assessed to determine their expression stability in 23 samples from different tissues or organs of loquat. Integrated expression stability evaluations using five computational statistical methods (GeNorm, NormFinder, ΔCt, BestKeeper, and RefFinder) suggested that a RG set, including RPL4, RPL18, HIS3 and TUA3, was the most stable one across all of the tested loquat samples. The expression pattern of EjCDKB1;2 in the tested loquat tissues normalized to the selected RG set demonstrated its reliability. CONCLUSIONS This study reveals the reliable RGs for accurate normalization of gene expression in loquat. In addition, our findings demonstrate an efficient system for identifying the most effective RGs for different organs, which may be applied to related rosaceous crops.
Collapse
Affiliation(s)
- Wenbing Su
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Loquat Germplasm Innovation and Utilization, Putian University, Putian, 351100 China
| | - Yuan Yuan
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
- Guangzhou Institute of Agricultural Sciences, Guangzhou, 510308 China
| | - Ling Zhang
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Yuanyuan Jiang
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaoqing Gan
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Yunlu Bai
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Jiangrong Peng
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Jincheng Wu
- Key Laboratory of Loquat Germplasm Innovation and Utilization, Putian University, Putian, 351100 China
| | - Yuexue Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 China
- Key Laboratory of Loquat Germplasm Innovation and Utilization, Putian University, Putian, 351100 China
| | - Shunquan Lin
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
16
|
Zhou B, Chen P, Khan A, Zhao Y, Chen L, Liu D, Liao X, Kong X, Zhou R. Candidate Reference Genes Selection and Application for RT-qPCR Analysis in Kenaf with Cytoplasmic Male Sterility Background. FRONTIERS IN PLANT SCIENCE 2017; 8:1520. [PMID: 28919905 PMCID: PMC5585197 DOI: 10.3389/fpls.2017.01520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/18/2017] [Indexed: 05/19/2023]
Abstract
Cytoplasmic male sterility (CMS) is a maternally inherited trait that results in the production of dysfunctional pollen. Based on reliable reference gene-normalized real-time quantitative PCR (RT-qPCR) data, examining gene expression profile can provide valuable information on the molecular mechanism of kenaf CMS. However, studies have not been conducted regarding selection of reference genes for normalizing RT-qPCR data in the CMS and maintainer lines of kenaf crop. Therefore, we studied 10 candidate reference genes (ACT3, ELF1A, G6PD, PEPKR1, TUB, TUA, CYP, GAPDH, H3, and 18S) to assess their expression stability at three stages of pollen development in CMS line 722A and maintainer line 722B of kenaf. Five computational statistical approaches (GeNorm, NormFinder, ΔCt, BestKeeper, and RefFinder) were used to evaluate the expression stability levels of these genes. According to RefFinder and GeNorm, the combination of TUB, CYP, and PEPKR1 was identified as an internal control for the accurate normalization across all sample set, which was further confirmed by validating the expression of HcPDIL5-2a. Furthermore, the combination of TUB, CYP, and PEPKR1 was used to differentiate the expression pattern of five mitochondria F1F0-ATPase subunit genes (atp1, atp4, atp6, atp8, and atp9) by RT-qPCR during pollen development in CMS line 722A and maintainer line 722B. We found that atp1, atp6, and atp9 exhibited significantly different expression patterns during pollen development in line 722A compared with line 722B. This is the first systematic study of reference genes selection for CMS and will provide useful information for future research on the gene expressions and molecular mechanisms underlying CMS in kenaf.
Collapse
Affiliation(s)
- Bujin Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi UniversityNanning, China
| | - Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi UniversityNanning, China
| | - Aziz Khan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi UniversityNanning, China
| | - Yanhong Zhao
- Cash Crop Institute of Guangxi Academy of Agricultural SciencesNanning, China
| | - Lihong Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi UniversityNanning, China
| | - Dongmei Liu
- College of Biological and Food Science, Shangqiu Normal UniversityShangqiu, China
| | - Xiaofang Liao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi UniversityNanning, China
| | - Xiangjun Kong
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi UniversityNanning, China
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi UniversityNanning, China
- *Correspondence: Ruiyang Zhou
| |
Collapse
|