1
|
Domingo G, Marsoni M, Chiodaroli L, Fortunato S, Bracale M, De Pinto MC, Gehring C, Vannini C. Quantitative phosphoproteomics reveals novel roles of cAMP in plants. Proteomics 2023; 23:e2300165. [PMID: 37264754 DOI: 10.1002/pmic.202300165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is finally recognized as an essential signaling molecule in plants where cAMP-dependent processes include responses to hormones and environmental stimuli. To better understand the role of 3',5'-cAMP at the systems level, we have undertaken a phosphoproteomic analysis to elucidate the cAMP-dependent response of tobacco BY-2 cells. These cells overexpress a molecular "sponge" that buffers free intracellular cAMP level. The results show that, firstly, in vivo cAMP dampening profoundly affects the plant kinome and notably mitogen-activated protein kinases, receptor-like kinases, and calcium-dependent protein kinases, thereby modulating the cellular responses at the systems level. Secondly, buffering cAMP levels also affects mRNA processing through the modulation of the phosphorylation status of several RNA-binding proteins with roles in splicing, including many serine and arginine-rich proteins. Thirdly, cAMP-dependent phosphorylation targets appear to be conserved among plant species. Taken together, these findings are consistent with an ancient role of cAMP in mRNA processing and cellular programming and suggest that unperturbed cellular cAMP levels are essential for cellular homeostasis and signaling in plant cells.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Milena Marsoni
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | | | | | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | | | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| |
Collapse
|
2
|
Kurepa J, Smalle JA. Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int J Mol Sci 2022; 23:ijms23041933. [PMID: 35216049 PMCID: PMC8879491 DOI: 10.3390/ijms23041933] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
The hormones auxin and cytokinin regulate numerous aspects of plant development and often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio is essential for the survival of terrestrial plants because it allows growth adaptations to water and mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an increase in root growth leads to survival under drought stress and nutrient limiting conditions, it was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other. However, a growing body of evidence supports unidirectional regulation, with auxin emerging as the primary regulatory component. This master regulatory role of auxin may not come as a surprise when viewed from an evolutionary perspective.
Collapse
|
3
|
Vaseva II, Mishev K, Depaepe T, Vassileva V, Van Der Straeten D. The Diverse Salt-Stress Response of Arabidopsis ctr1-1 and ein2-1Ethylene Signaling Mutants Is Linked to Altered Root Auxin Homeostasis. PLANTS 2021; 10:plants10030452. [PMID: 33673672 PMCID: PMC7997360 DOI: 10.3390/plants10030452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
We explored the interplay between ethylene signals and the auxin pool in roots exposed to high salinity using Arabidopsisthaliana wild-type plants (Col-0), and the ethylene-signaling mutants ctr1-1 (constitutive) and ein2-1 (insensitive). The negative effect of salt stress was less pronounced in ctr1-1 individuals, which was concomitant with augmented auxin signaling both in the ctr1-1 controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In contrast, the ethylene-insensitive ein2-1 plants appeared depleted in active auxins. The involvement of ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for local biosynthesis (pTAR2::GUS) and polar transport (pLAX3::GUS, pAUX1::AUX1-YFP, pPIN1::PIN1-GFP, pPIN2::PIN2-GFP, pPIN3::GUS) in the mutants. The constantly operating ethylene-signaling pathway in ctr1-1 was linked to increased auxin biosynthesis. This was accompanied by a steady expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport reporters. The results imply that the ability of ctr1-1 mutant to tolerate high salinity could be related to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis and transport.
Collapse
Affiliation(s)
- Irina I. Vaseva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
- Correspondence: or
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium; (T.D.); (D.V.D.S.)
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium; (T.D.); (D.V.D.S.)
| |
Collapse
|
4
|
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. Integration of reactive oxygen species and hormone signaling during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:459-476. [PMID: 33015917 DOI: 10.1111/tpj.15010] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
5
|
Summanwar A, Basu U, Rahman H, Kav NNV. Non-coding RNAs as emerging targets for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110521. [PMID: 32563460 DOI: 10.1016/j.plantsci.2020.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Food security is affected by climate change, population growth, as well as abiotic and biotic stresses. Conventional and molecular marker assisted breeding and genetic engineering techniques have been employed extensively for improving resistance to biotic stress in crop plants. Advances in next-generation sequencing technologies have permitted the exploration and identification of parts of the genome that extend beyond the regions with protein coding potential. These non-coding regions of the genome are transcribed to generate many types of non-coding RNAs (ncRNAs). These ncRNAs are involved in the regulation of growth, development, and response to stresses at transcriptional and translational levels. ncRNAs, including long ncRNAs (lncRNAs), small RNAs and circular RNAs have been recognized as important regulators of gene expression in plants and have been suggested to play important roles in plant immunity and adaptation to abiotic and biotic stresses. In this article, we have reviewed the current state of knowledge with respect to lncRNAs and their mechanism(s) of action as well as their regulatory functions, specifically within the context of biotic stresses. Additionally, we have provided insights into how our increased knowledge about lncRNAs may be used to improve crop tolerance to these devastating biotic stresses.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
6
|
Kalve S, Sizani BL, Markakis MN, Helsmoortel C, Vandeweyer G, Laukens K, Sommen M, Naulaerts S, Vissenberg K, Prinsen E, Beemster GTS. Osmotic stress inhibits leaf growth of Arabidopsis thaliana by enhancing ARF-mediated auxin responses. THE NEW PHYTOLOGIST 2020; 226:1766-1780. [PMID: 32077108 DOI: 10.1111/nph.16490] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
We investigated the interaction between osmotic stress and auxin signaling in leaf growth regulation. Therefore, we grew Arabidopsis thaliana seedlings on agar media supplemented with mannitol to impose osmotic stress and 1-naphthaleneacetic acid (NAA), a synthetic auxin. We performed kinematic analysis and flow-cytometry to quantify the effects on cell division and expansion in the first leaf pair, determined the effects on auxin homeostasis and response (DR5::β-glucuronidase), performed a next-generation sequencing transcriptome analysis and investigated the response of auxin-related mutants. Mannitol inhibited cell division and expansion. NAA increased the effect of mannitol on cell division, but ameliorated its effect on expansion. In proliferating cells, NAA and mannitol increased free IAA concentrations at the cost of conjugated IAA and stimulated DR5 promotor activity. Transcriptome analysis shows a large overlap between NAA and osmotic stress-induced changes, including upregulation of auxin synthesis, conjugation, transport and TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN RESPONSE FACTOR (ARF) response genes, but downregulation of Aux/IAA response inhibitors. Consistently, arf7/19 double mutant lack the growth response to auxin and show a significantly reduced sensitivity to osmotic stress. Our results show that osmotic stress inhibits cell division during leaf growth of A. thaliana at least partly by inducing the auxin transcriptional response.
Collapse
Affiliation(s)
- Shweta Kalve
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Manou Sommen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Stefan Naulaerts
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Vissenberg
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
7
|
Seok HY, Nguyen LV, Nguyen DV, Lee SY, Moon YH. Investigation of a Novel Salt Stress-Responsive Pathway Mediated by Arabidopsis DEAD-Box RNA Helicase Gene AtRH17 Using RNA-Seq Analysis. Int J Mol Sci 2020; 21:ijms21051595. [PMID: 32111079 PMCID: PMC7084250 DOI: 10.3390/ijms21051595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Previously, we reported that overexpression of AtRH17, an Arabidopsis DEAD-box RNA helicase gene, confers salt stress-tolerance via a pathway other than the well-known salt stress-responsive pathways. To decipher the salt stress-responsive pathway in AtRH17-overexpressing transgenic plants (OXs), we performed RNA-Sequencing and identified 397 differentially expressed genes between wild type (WT) and AtRH17 OXs. Among them, 286 genes were upregulated and 111 genes were downregulated in AtRH17 OXs relative to WT. Gene ontology annotation enrichment and KEGG pathway analysis showed that the 397 upregulated and downregulated genes are involved in various biological functions including secretion, signaling, detoxification, metabolic pathways, catabolic pathways, and biosynthesis of secondary metabolites as well as in stress responses. Genevestigator analysis of the upregulated genes showed that nine genes, namely, LEA4-5, GSTF6, DIN2/BGLU30, TSPO, GSTF7, LEA18, HAI1, ABR, and LTI30, were upregulated in Arabidopsis under salt, osmotic, and drought stress conditions. In particular, the expression levels of LEA4-5, TSPO, and ABR were higher in AtRH17 OXs than in WT under salt stress condition. Taken together, our results suggest that a high AtRH17 expression confers salt stress-tolerance through a novel salt stress-responsive pathway involving nine genes, other than the well-known ABA-dependent and ABA-independent pathways.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea;
| | - Linh Vu Nguyen
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea (D.V.N.)
| | - Doai Van Nguyen
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea (D.V.N.)
| | - Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
| | - Yong-Hwan Moon
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea;
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea (D.V.N.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2592
| |
Collapse
|
8
|
Ghosh D, Gupta A, Mohapatra S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis 2018. [DOI: 10.1007/s13199-018-00589-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Li Z, Li Y, Zhang Y, Cheng B, Peng Y, Zhang X, Ma X, Huang L, Yan Y. Indole-3-acetic acid modulates phytohormones and polyamines metabolism associated with the tolerance to water stress in white clover. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:251-263. [PMID: 29906775 DOI: 10.1016/j.plaphy.2018.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 05/20/2023]
Abstract
Endogenous hormones and polyamines (PAs) could interact to regulate growth and tolerance to water stress in white clover. The objective of this study was to investigate whether the alteration of endogenous indole-3-acetic acid (IAA) level affected other hormones level and PAs metabolism contributing to the regulation of tolerance to water stress in white clover. Plants were pretreated with IAA or L-2-aminooxy-3-phenylpropionic acid (L-AOPP, the inhibitor of IAA biosynthesis) for 3 days and then subjected to water-sufficient condition and water stress induced by 15% polyethylene glycol 6000 for 8 days in growth chambers. Exogenous application of IAA significantly increased endogenous IAA, gibberellin (GA), abscisic acid (ABA), and polyamine (PAs) levels, but had no effect on cytokinin content under water stress. The increase in endogenous IAA level enhanced PAs anabolism via the improvement of enzyme activities and transcript level of genes including arginine decarboxylase, ornithine decarboxylase, and S-adenosylmethionine decarboxylase. Exogenous application of IAA also affected PAs catabolism, as manifested by an increase in diamine oxidase and a decrease in polyamine oxidase activities and genes expression. More importantly, the IAA deficiency in white clover decreased endogenous hormone levels (GA, ABA, and PAs) and PAs anabolism along with decline in antioxidant defense and osmotic adjustment (OA). On the contrary, exogenous IAA effectively alleviated stress-induced oxidative damage, growth inhibition, water deficit, and leaf senescence through the maintenance of higher chlorophyll content, OA, and antioxidant defense as well as lower transcript levels of senescence marker genes SAG101 and SAG102 in leaves under water stress. These results indicate that IAA-induced the crosstalk between endogenous hormones and PAs could be involved in the improvement of antioxidant defense and OA conferring tolerance to water stress in white clover.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaping Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu 610041, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanhong Yan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|