1
|
Martínez-Esteso MJ, Morante-Carriel J, Samper-Herrero A, Martínez-Márquez A, Sellés-Marchart S, Nájera H, Bru-Martínez R. Proteomics: An Essential Tool to Study Plant-Specialized Metabolism. Biomolecules 2024; 14:1539. [PMID: 39766246 PMCID: PMC11674799 DOI: 10.3390/biom14121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Plants are a valuable source of specialized metabolites that provide a plethora of therapeutic applications. They are natural defenses that plants use to adapt and respond to their changing environment. Decoding their biosynthetic pathways and understanding how specialized plant metabolites (SPMs) respond to biotic or abiotic stress will provide vital knowledge for plant biology research and its application for the future sustainable production of many SPMs of interest. Here, we focus on the proteomic approaches and strategies that help with the study of plant-specialized metabolism, including the: (i) discovery of key enzymes and the clarification of their biosynthetic pathways; (ii) study of the interconnection of both primary (providers of carbon and energy for SPM production) and specialized (secondary) metabolism; (iii) study of plant responses to biotic and abiotic stress; (iv) study of the regulatory mechanisms that direct their biosynthetic pathways. Proteomics, as exemplified in this review by the many studies performed to date, is a powerful tool that forms part of omics-driven research. The proteomes analysis provides an additional unique level of information, which is absent from any other omics studies. Thus, an integrative analysis, considered versus a single omics analysis, moves us more closely toward a closer interpretation of real cellular processes. Finally, this work highlights advanced proteomic technologies with immediate applications in the field.
Collapse
Affiliation(s)
- María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Hugo Nájera
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico;
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (J.M.-C.); (A.S.-H.); (A.M.-M.); (S.S.-M.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
2
|
Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, Vainio S, Wingsle G, Boerjan W, Vanholme R, Kärkönen A. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. PLANT PHYSIOLOGY 2024; 196:788-809. [PMID: 38771246 PMCID: PMC11444294 DOI: 10.1093/plphys/kiae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di-, and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, β-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes, such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and radical coupling of monolignols can occur in these vesicles.
Collapse
Affiliation(s)
- Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Enni Väisänen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Developmental Biology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ruben Vanholme
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Production Systems, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Martínez-Márquez A, Selles-Marchart S, Nájera H, Morante-Carriel J, Martínez-Esteso MJ, Bru-Martínez R. Biosynthesis of Piceatannol from Resveratrol in Grapevine Can Be Mediated by Cresolase-Dependent Ortho-Hydroxylation Activity of Polyphenol Oxidase. PLANTS (BASEL, SWITZERLAND) 2024; 13:2602. [PMID: 39339576 PMCID: PMC11434850 DOI: 10.3390/plants13182602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Piceatannol is a naturally occurring hydroxylated analogue of the stilbene phytoalexin resveratrol that can be found in grape fruit and derived products. Piceatannol has aroused great interest as it has been shown to surpass some human health-beneficial properties of resveratrol including antioxidant activity, several pharmacological activities and also bioavailability. The plant biosynthetic pathway of piceatannol is still poorly understood, which is a bottleneck for the development of both plant defence and bioproduction strategies. Cell cultures of Vitis vinifera cv. Gamay, when elicited with dimethyl-β-cyclodextrin (MBCD) and methyl jasmonate (MeJA), lead to large increases in the accumulation of resveratrol, and after 120 h of elicitation, piceatannol is also detected due to the regiospecific hydroxylation of resveratrol. Therefore, an ortho-hydroxylase must participate in the biosynthesis of piceatannol. Herein, three possible types of resveratrol hydroxylation enzymatic reactions have been tested, specifically, a reaction catalyzed by an NADPH-dependent cytochrome, P450 hydroxylase, a 2-oxoglutarate-dependent dioxygenase and ortho-hydroxylation, similar to polyphenol oxidase (PPO) cresolase activity. Compared with P450 hydoxylase and the dioxygenase activities, PPO displayed the highest specific activity detected either in the crude extract, the particulate or the soluble fraction obtained from cell cultures elicited with MBCD and MeJA for 120 h. The overall yield of PPO activity present in the crude extract (107.42 EU) was distributed mostly in the soluble fraction (66.15 EU) rather than in the particulate fraction (3.71 EU). Thus, partial purification of the soluble fraction by precipitation with ammonium sulphate, dialysis and ion exchange chromatography was carried out. The soluble fraction precipitated with 80% ammonium sulphate and the chromatographic fractions also showed high levels of PPO activity, and the presence of the PPO protein was confirmed by Western blot and LC-MS/MS. In addition, a kinetic characterization of the cresolase activity of partially purified PPO was carried out for the resveratrol substrate, including Vmax and Km parameters. The Km value was 118.35 ± 49.84 µM, and the Vmax value was 2.18 ± 0.46 µmol min-1 mg-1.
Collapse
Affiliation(s)
- Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Susana Selles-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain
| | - Hugo Nájera
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico
| | - Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Maria J. Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (S.S.-M.); (H.N.); (J.M.-C.); (M.J.M.-E.); (R.B.-M.)
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
4
|
Wang X, Dong J, Hu Y, Huang Q, Lu X, Huang Y, Sheng M, Cao L, Xu B, Li Y, Zong Y, Guo W. Identification and Characterization of the Glutathione S-Transferase Gene Family in Blueberry ( Vaccinium corymbosum) and Their Potential Roles in Anthocyanin Intracellular Transportation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1316. [PMID: 38794388 PMCID: PMC11125127 DOI: 10.3390/plants13101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The glutathione S-transferases (GSTs, EC 2.5.1.18) constitute a versatile enzyme family with pivotal roles in plant stress responses and detoxification processes. Recent discoveries attributed the additional function of facilitating anthocyanin intracellular transportation in plants to GSTs. Our study identified 178 VcGST genes from 12 distinct subfamilies in the blueberry genome. An uneven distribution was observed among these genes across blueberry's chromosomes. Members within the same subfamily displayed homogeneity in gene structure and conserved protein motifs, whereas marked divergence was noted among subfamilies. Functional annotations revealed that VcGSTs were significantly enriched in several gene ontology and KEGG pathway categories. Promoter regions of VcGST genes predominantly contain light-responsive, MYB-binding, and stress-responsive elements. The majority of VcGST genes are subject to purifying selection, with whole-genome duplication or segmental duplication serving as key processes that drive the expansion of the VcGST gene family. Notably, during the ripening of the blueberry fruit, 100 VcGST genes were highly expressed, and the expression patterns of 24 of these genes demonstrated a strong correlation with the dynamic content of fruit anthocyanins. Further analysis identified VcGSTF8, VcGSTF20, and VcGSTF22 as prime candidates of VcGST genes involved in the anthocyanin intracellular transport. This study provides a reference for the exploration of anthocyanin intracellular transport mechanisms and paves the way for investigating the spectrum of GST functions in blueberries.
Collapse
Affiliation(s)
- Xuxiang Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Jiajia Dong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Yiting Hu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Qiaoyu Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Xiaoying Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Yilin Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Mingyang Sheng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Lijun Cao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Buhuai Xu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
| | - Yongqiang Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Zong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (X.W.); (J.D.); (Y.H.); (Q.H.); (X.L.); (Y.H.); (M.S.); (L.C.); (B.X.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Maia M, Aziz A, Jeandet P, Carré V. Profiling and Localization of Stilbene Phytoalexins Revealed by MALDI-MSI during the Grapevine- Botrytis cinerea Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15569-15581. [PMID: 37831964 DOI: 10.1021/acs.jafc.3c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stilbene phytoalexins are among the most accumulated compounds during grapevine-pathogen interactions. However, their steady-state accumulation level and spatial distribution within the tissues to counteract Botrytis cinerea infection remain to be explored. In this work, matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was used to determine the spatial distribution of different phytoalexins in grapevine leaves upon infection with B. cinerea. Ultraperformance liquid chromatography-fluorescence (UPLC-FL) was also employed to monitor the accumulation pattern of these phytoalexins. This study showed that stilbene compounds accumulate in areas close to the pathogen infection sites. It was also revealed that the accumulation patterns of the stilbene phytoalexins can vary from one time point postinfection to another with specific accumulation patterns within each time point. To the best of our knowledge, this is the first time that the separate localization of grapevine stilbene phytoalexins has been revealed following B. cinerea infection.
Collapse
Affiliation(s)
- Marisa Maia
- LCP-A2MC, Université de Lorraine, F-57000 Metz, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection (RIBP), University of Reims Champagne-Ardenne, USC INRAE 1488, Reims 51100, France
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection (RIBP), University of Reims Champagne-Ardenne, USC INRAE 1488, Reims 51100, France
| | - Vincent Carré
- LCP-A2MC, Université de Lorraine, F-57000 Metz, France
| |
Collapse
|
6
|
Vera-Urbina JC, Sellés-Marchart S, Martínez-Márquez A, Martínez-Esteso MJ, Pedreño MA, Morante-Carriel J, Bru-Martínez R. Factors Affecting the Bioproduction of Resveratrol by Grapevine Cell Cultures under Elicitation. Biomolecules 2023; 13:1529. [PMID: 37892211 PMCID: PMC10605596 DOI: 10.3390/biom13101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Here we present a study of the characterization and optimization of the production of trans-Resveratrol (t-R) in grape (Vitis vinifera cv. Gamay) cell cultures elicited with methyl jasmonate (MeJA) and dimethyl-β-cyclodextrin (DIMEB). The aim of this study was to determine the influence of a number of factors of the grapevine cell culture on t-R production level in 250 mL shaken flasks that would enable the better control of this bioproduction system when it is upscaled to a 2 L stirred bioreactor. The factors included the optimal growth phase for elicitation, the concentration of elicitors and of biomass, the order of addition of elicitors, and the illumination regime and ageing of cells. We found out that the optimal biomass density for the production of t-R was 19% (w/v) with an optimal ratio of 0.5 g DIMEB/g biomass. The most productive concentrations of the elicitors tested were 50 mM DIMEB and 100 µM MeJA, reaching maximum values of 4.18 mg·mL-1 and 16.3 mg·g biomass-1 of t-R concentration and specific production, respectively. We found that the order of elicitor addition matters since, as compared with the simultaneous addition of both elicitors, the addition of MeJA 48 h before DIMEB results in ca. 40% less t-R production, whilst there is no significant difference when MeJA is added 48 h after DIMEB. Upon upscaling, the better conditions tested for t-R production were aeration at 1.7 vol/vol/min without agitation, 24 °C, and 30 g·L-1 sucrose, achieving production rates similar to those obtained in shaken flasks.
Collapse
Affiliation(s)
- Juan Carlos Vera-Urbina
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - Susana Sellés-Marchart
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - Ascensión Martínez-Márquez
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - María José Martínez-Esteso
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - María Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Jaime Morante-Carriel
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
- Department of Plant Biotechnology, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Quevedo 120503, Ecuador
| | - Roque Bru-Martínez
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante ISABIAL-Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO, 03010 Alicante, Spain
| |
Collapse
|
7
|
Ali O, Ramsubhag A, Jayaraman J. Transcriptome-wide modulation by Sargassum vulgare and Acanthophora spicifera extracts results in a prime-triggered plant signalling cascade in tomato and sweet pepper. AOB PLANTS 2022; 14:plac046. [PMID: 36483312 PMCID: PMC9724562 DOI: 10.1093/aobpla/plac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Seaweed extracts (SWEs) are becoming integrated into crop production systems due to their multiple beneficial effects including growth promotion and induction of defence mechanisms. However, the comprehensive molecular mechanisms of these effects are yet to be elucidated. The current study investigated the transcriptomic changes induced by SWEs derived from Sargassum vulgare and Acanthophora spicifera on tomato and sweet pepper plants. Tomato and sweet pepper plants were subjected to foliar treatment with alkaline extracts prepared from the above seaweeds. Transcriptome changes in the plants were assessed 72 h after treatments using RNA sequencing. The treated plants were also analysed for defence enzyme activities, nutrient composition and phytohormonal profiles. The results showed the significant enrichment of genes associated with several growth and defence processes including photosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, plant-pathogen interaction, secondary metabolite metabolism, MAPK signalling and amino acid biosynthesis. Activities of defence enzymes were also significantly increased in SWE-treated plants. Plant nutrient profiling showed significant increases in calcium, potassium, nitrogen, sulphur, boron, copper, iron, manganese, zinc and phosphorous levels in SWE-treated plants. Furthermore, the levels of auxins, cytokinins and gibberellins were also significantly increased in the treated plants. The severity of bacterial leaf spot and early blight incidence in plants treated with SWE was significantly reduced, in addition to other effects like an increase in chlorophyll content, plant growth, and fruit yield. The results demonstrated the complex effect of S. vulgare and A. spicifera extracts on the plants' transcriptome and provided evidence of a strong role of these extracts in increasing plant growth responses while priming the plants against pathogenic attack simultaneously. The current study contributes to the understanding of the molecular mechanisms of SWEs in plants and helps their usage as a viable organic input for sustainable crop production.
Collapse
Affiliation(s)
- Omar Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | | |
Collapse
|
8
|
Pogány M, Dankó T, Hegyi-Kaló J, Kámán-Tóth E, Szám DR, Hamow KÁ, Kalapos B, Kiss L, Fodor J, Gullner G, Váczy KZ, Barna B. Redox and Hormonal Changes in the Transcriptome of Grape (Vitis vinifera) Berries during Natural Noble Rot Development. PLANTS 2022; 11:plants11070864. [PMID: 35406844 PMCID: PMC9003472 DOI: 10.3390/plants11070864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/18/2023]
Abstract
Noble rot is a favorable form of the interaction between grape (Vitis spp.) berries and the phytopathogenic fungus Botrytis cinerea. The transcriptome pattern of grapevine cells subject to natural noble rot development in the historic Hungarian Tokaj wine region has not been previously published. Furmint, a traditional white Tokaj variety suited to develop great quality noble rot was used in the experiments. Exploring a subset of the Furmint transcriptome redox and hormonal changes distinguishing between noble rot and bunch rot was revealed. Noble rot is defined by an early spike in abscisic acid (ABA) accumulation and a pronounced remodeling of ABA-related gene expression. Transcription of glutathione S-transferase isoforms is uniquely upregulated, whereas gene expression of some sectors of the antioxidative apparatus (e.g., catalases, carotenoid biosynthesis) is downregulated. These mRNA responses are lacking in berries exposed to bunch rot. Our results help to explain molecular details behind the fine and dynamic balance between noble rot and bunch rot development.
Collapse
Affiliation(s)
- Miklós Pogány
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
- Correspondence:
| | - Tamás Dankó
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; (J.H.-K.); (K.Z.V.)
| | - Evelin Kámán-Tóth
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Dorottya Réka Szám
- Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Kamirán Áron Hamow
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Balázs Kalapos
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Levente Kiss
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - József Fodor
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Gábor Gullner
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, 3300 Eger, Hungary; (J.H.-K.); (K.Z.V.)
| | - Balázs Barna
- Centre for Agricultural Research, 2462 Martonvásár, Hungary; (T.D.); (E.K.-T.); (K.Á.H.); (B.K.); or (L.K.); (J.F.); (G.G.); (B.B.)
| |
Collapse
|
9
|
Almagro L, Calderón AA, Pedreño MA, Ferrer MA. Differential Response of Phenol Metabolism Associated with Antioxidative Network in Elicited Grapevine Suspension Cultured Cells under Saline Conditions. Antioxidants (Basel) 2022; 11:antiox11020388. [PMID: 35204270 PMCID: PMC8869233 DOI: 10.3390/antiox11020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022] Open
Abstract
Highly productive trans-resveratrol (t-R) grapevine suspension cultured cells (SCC) and two effective elicitors, methyl jasmonate (MJ) and randomly methylated β-cyclodextrins (CDs), were used to analyze the extent to which salt treatments alter the production of bioactive phenolic compounds. The expression/activity profile of the enzymes involved in phenol metabolism and antioxidant networks were also studied. A marked extracellular accumulation of phenolic compounds, especially t-R, was found in SCC elicited with CDs and/or MJ under saline conditions. However, the treatments with MJ alone and all those combined with salt favored the intracellular accumulation of catechin and ferulic acid. The salt-induced accumulation of phenolics was correlated with the higher total antioxidant capacity values found in cells, suggesting that cellular redox homeostasis under saline conditions was largely maintained by increasing phenolic compound production. These higher levels of phenolics found in elicited cells under saline conditions fit well with the highest activity of phenylalanine ammonia-lyase. Moreover, antioxidant enzyme activities were boosted in treatments with MJ and/or in those combined with salt and decreased in those treated with CDs. These results suggest a differential response of the antioxidative network to the presence of elicitors under saline conditions.
Collapse
Affiliation(s)
- Lorena Almagro
- Departamento de Biología Vegetal, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain; (L.A.); (M.A.P.)
| | - Antonio A. Calderón
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain;
| | - María A. Pedreño
- Departamento de Biología Vegetal, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain; (L.A.); (M.A.P.)
| | - María A. Ferrer
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain;
- Correspondence: ; Tel.: +34-968-325-535
| |
Collapse
|
10
|
Hurtado-Gaitán E, Sellés-Marchart S, Hartwell J, Martínez-Esteso MJ, Bru-Martínez R. Down-Regulation of Phosphoenolpyruvate Carboxylase Kinase in Grapevine Cell Cultures and Leaves Is Linked to Enhanced Resveratrol Biosynthesis. Biomolecules 2021; 11:1641. [PMID: 34827639 PMCID: PMC8615455 DOI: 10.3390/biom11111641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
In grapevine, trans-Resveratrol (tR) is produced as a defence mechanism against stress or infection. tR is also considered to be important for human health, which increases its interest to the scientific community. Transcriptomic analysis in grapevine cell cultures treated with the defence response elicitor methyl-β-cyclodextrin (CD) revealed that both copies of PHOSPHOENOLPYRUVATE CARBOXYLASE KINASE (PPCK) were down-regulated significantly. A role for PPCK in the defence response pathway has not been proposed previously. We therefore analysed the control of PPCK transcript levels in grapevine cell cultures and leaves elicited with CD. Moreover, phosphoenolpyruvate carboxylase (PPC), stilbene synthase (STS), and the transcription factors MYB14 and WRKY24, which are involved in the activation of STS transcription, were also analysed by RT-qPCR. The results revealed that under CD elicitation conditions PPCK down-regulation, increased stilbene production and loss of PPC activity occurs in both tissues. Moreover, STS transcripts were co-induced with MYB14 and WRKY24 in cell cultures and leaves. These genes have not previously been reported to respond to CD in grape leaves. Our findings thus support the hypothesis that PPCK is involved in diverting metabolism towards stilbene biosynthesis, both for in vitro cell culture and whole leaves. We thus provide new evidence for PEP being redirected between primary and secondary metabolism to support tR production and the stress response.
Collapse
Affiliation(s)
- Elías Hurtado-Gaitán
- Plant Proteomics and Functional Genomics Group, Agrochemistry and Biochemistry Department, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (E.H.-G.); (S.S.-M.); (M.J.M.-E.)
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Agrochemistry and Biochemistry Department, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (E.H.-G.); (S.S.-M.); (M.J.M.-E.)
| | - James Hartwell
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Maria José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Agrochemistry and Biochemistry Department, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (E.H.-G.); (S.S.-M.); (M.J.M.-E.)
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Agrochemistry and Biochemistry Department, Faculty of Science, University of Alicante, 03690 Alicante, Spain; (E.H.-G.); (S.S.-M.); (M.J.M.-E.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante ISABIAL-Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO, 03010 Alicante, Spain
| |
Collapse
|
11
|
Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnol Adv 2021; 53:107844. [PMID: 34626788 DOI: 10.1016/j.biotechadv.2021.107844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022]
Abstract
Most drugs or the natural substances reputed to display some biological activity are hydrophobic molecules that demonstrate low bioavailability regardless of their mode of absorption. Resveratrol and its derivatives belong to the chemical group of stilbenes; while stilbenes are known to possess very interesting properties, these are limited by their poor aqueous solubility as well as low bioavailability in animals and humans. Among the substances capable of forming nanomolecular inclusion complexes which can be used for drug delivery, cyclodextrins show spectacular physicochemical and biomedical implications in stilbene chemistry for their possible application in nanomedicine. By virtue of their properties, cyclodextrins have also demonstrated their possible use in green chemistry for the synthesis of stilbene glucosylated derivatives with potential applications in dermatology and cosmetics. Compared to chemical synthesis and genetically modified microorganisms, plant cell or tissue systems provide excellent models for obtaining stilbenes in few g/L quantities, making feasible the production of these compounds at a large scale. However, the biosynthesis of stilbenes is only possible in the presence of the so-called elicitor compounds, the most commonly used of which are cyclodextrins. We also report here on the induction of resveratrol production by cyclodextrins or combinatory elicitation with methyljasmonate in plant cell systems as well as the mechanisms by which they are able to trigger a stilbene response. The present article therefore discusses the role of cyclodextrins in stilbene chemistry both at the physico-chemical level as well as the biomedical and biotechnological levels, emphasizing the notion of "easy alliance" between these compounds and stilbenes.
Collapse
|
12
|
Burdziej A, Bellée A, Bodin E, Valls Fonayet J, Magnin N, Szakiel A, Richard T, Cluzet S, Corio-Costet MF. Three Types of Elicitors Induce Grapevine Resistance against Downy Mildew via Common and Specific Immune Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1781-1795. [PMID: 33529021 DOI: 10.1021/acs.jafc.0c06103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Three recognized plant defense stimulators (PDS), methyl jasmonate (MeJA), benzothiadiazole (BTH) and phosphonates (PHOS), were sprayed on grapevine Vitis vinifera cuttings and conferred resistance to the biotrophic pathogen Plasmopara viticola. The effects on molecular defense-related genes and polyphenol content (stilbenes and flavanols) were revealed at 6 and 8 days post-elicitation. The transcript accumulation was consistent with the signaling pathway specific to the elicitor, salicylic acid for BTH, and jasmonic acid for MeJA, with some cross-talks. PHOS tended to modulate the defense responses like BTH. Moreover, in response to a downy mildew inoculation, the leaves pre-treated with PHOS and BTH overproduced pterostilbene, and after MeJA treatment, piceids and ε-viniferin, compared to uninoculated elicitor-treated leaves. These results provide evidence of the different modes of action of PDS and their role in sustainable viticulture.
Collapse
Affiliation(s)
- Aleksandra Burdziej
- University of Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, Equipe Molécules d'Intérêt Biologique (GESVAB), ISVV, 33882 Villenave d'Ornon cedex, France
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Anthony Bellée
- INRAE, UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, CS 20032, 33882 Villenave d'Ornon, France
| | - Enora Bodin
- INRAE, UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, CS 20032, 33882 Villenave d'Ornon, France
| | - Josep Valls Fonayet
- University of Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, Equipe Molécules d'Intérêt Biologique (GESVAB), ISVV, 33882 Villenave d'Ornon cedex, France
| | - Noël Magnin
- INRAE, UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, CS 20032, 33882 Villenave d'Ornon, France
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Tristan Richard
- University of Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, Equipe Molécules d'Intérêt Biologique (GESVAB), ISVV, 33882 Villenave d'Ornon cedex, France
| | - Stéphanie Cluzet
- University of Bordeaux, Faculté des Sciences Pharmaceutiques, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, Equipe Molécules d'Intérêt Biologique (GESVAB), ISVV, 33882 Villenave d'Ornon cedex, France
| | - Marie-France Corio-Costet
- INRAE, UMR Santé et Agroécologie du Vignoble (1065), ISVV, Labex Cote, CS 20032, 33882 Villenave d'Ornon, France
| |
Collapse
|
13
|
Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, El-Saber Batiha G, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 2021; 38:1282-1329. [PMID: 33351014 DOI: 10.1039/d0np00030b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1976 to 2020. Although constituting a limited chemical family, phytostilbenes represent an emblematic group of molecules among natural compounds. Ever since their discovery as antifungal compounds in plants and their ascribed role in human health and disease, phytostilbenes have never ceased to arouse interest for researchers, leading to a huge development of the literature in this field. Owing to this, the number of references to this class of compounds has reached the tens of thousands. The objective of this article is thus to offer an overview of the different aspects of these compounds through a large bibliography analysis of more than 500 articles. All the aspects regarding phytostilbenes will be covered including their chemistry and biochemistry, regulation of their biosynthesis, biological activities in plants, molecular engineering of stilbene pathways in plants and microbes as well as their biotechnological production by plant cell systems.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain and Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh and Neuroscience Research Network, Dhaka, Bangladesh
| | - Roque Bru
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Ascension Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Christophe Clément
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Sylvain Cordelier
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, The People's Republic of China
| | - Jingjie Jiang
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Mattheos Koffas
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
14
|
Sylvestre-Gonon E, Schwartz M, Girardet JM, Hecker A, Rouhier N. Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190404. [PMID: 32362257 DOI: 10.1098/rstb.2019.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
| | | | | | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, 54000 Nancy, France
| | | |
Collapse
|
15
|
Pietrowska-Borek M, Wojdyła-Mamoń A, Dobrogojski J, Młynarska-Cieślak A, Baranowski MR, Dąbrowski JM, Kowalska J, Jemielity J, Borek S, Pedreño MA, Guranowski A. Purine and pyrimidine dinucleoside polyphosphates differentially affect the phenylpropanoid pathway in Vitis vinifera L. cv. Monastrell suspension cultured cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:125-132. [PMID: 31855818 DOI: 10.1016/j.plaphy.2019.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
It is known that the concentration of dinucleoside polyphosphates (NpnN's) in cells increases under stress and that adverse environmental factors induce biosynthesis of phenylpropanoids, which protect the plant against stress. Previously, we showed that purine NpnN's such as Ap3A and Ap4A induce both the activity of enzymes of the phenylpropanoid pathway and the expression of relevant genes in Arabidopsis seedlings. Moreover, we showed that Ap3A induced stilbene biosynthesis in Vitis vinifera cv. Monastrell suspension cultured cells. Data presented in this paper show that pyrimidine-containing NpnN's also modify the biosynthesis of stilbenes, affecting the transcript level of genes encoding key enzymes of the phenylpropanoid pathway and of these, Up4U caused the most effective accumulation of trans-resveratrol in the culture media. Similar effect was caused by Ap3A and Gp3G. Other pyrimidine NpnN's, such as Cp3C, Cp4C, and Ap4C, strongly inhibited the biosynthesis of stilbenes, but markedly (6- to 8-fold) induced the expression of the cinnamoyl-CoA reductase gene that controls lignin biosynthesis. Purine counterparts also clearly induced biosynthesis of trans-resveratrol and trans-piceid, but only slightly induced the expression of genes involved in lignin biosynthesis. In cells, Up3U caused a greater accumulation of trans-resveratrol and trans-piceid than did Up4U. Each of the NpnN's studied induced expression of the gene encoding the resveratrol transporter VvABCG44, which operates within the Vitis vinifera cell membrane. AMP, GMP, UMP, and CMP, potential products of NpnN degradation, did not affect the accumulation of stilbenes. The results obtained strongly support that NpnN's play a role as signaling molecules in plants.
Collapse
Affiliation(s)
- Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland.
| | - Anna Wojdyła-Mamoń
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| | - Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| | - Agnieszka Młynarska-Cieślak
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Jakub M Dąbrowski
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics Institute of Experimental Physics, Faculty of Physics University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Maria Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Andrzej Guranowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| |
Collapse
|
16
|
De Bona GS, Adrian M, Negrel J, Chiltz A, Klinguer A, Poinssot B, Héloir MC, Angelini E, Vincenzi S, Bertazzon N. Dual Mode of Action of Grape Cane Extracts against Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5512-5520. [PMID: 31008600 DOI: 10.1021/acs.jafc.8b07098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crude extracts of Vitis vinifera canes represent a natural source of stilbene compounds with well characterized antifungals properties. In our trials, exogenous application of a stilbene extract (SE) obtained from grape canes on grapevine leaves reduces the necrotic lesions caused by Botrytis cinerea. The SE showed to possess a direct antifungal activity by inhibiting the mycelium growth. The activation of some grapevine defense mechanism was also investigated. H2O2 production and activation of mitogen-activated protein kinase (MAPK) phosphorylation cascades as well as accumulation of stilbenoid phytoalexins were explored on grapevine cell suspension. Moreover, the transcription of genes encoding for proteins affecting defense responses was analyzed on grapevine plants. The SE induced some grapevine defense mechanisms including MAPK activation, and the expression of pathogenesis-related (PR) genes and of a gene encoding the glutathione-S-transferase 1 ( GST1) . By contrast, treatment of grapevine leaves with SE negatively regulates de novo stilbene production.
Collapse
Affiliation(s)
| | - Marielle Adrian
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Jonathan Negrel
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Annick Chiltz
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Benoît Poinssot
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Marie-Claire Héloir
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Elisa Angelini
- CREA Research Centre for Viticulture and Enology, Via XXVIII Aprile 26 , Conegliano , Treviso 31015 , Italy
| | | | - Nadia Bertazzon
- CREA Research Centre for Viticulture and Enology, Via XXVIII Aprile 26 , Conegliano , Treviso 31015 , Italy
| |
Collapse
|
17
|
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. FRONTIERS IN PLANT SCIENCE 2019; 10:608. [PMID: 31191562 PMCID: PMC6540824 DOI: 10.3389/fpls.2019.00608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.
Collapse
Affiliation(s)
- Elodie Sylvestre-Gonon
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Mathieu Schwartz
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Kevin Robe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Claude Didierjean
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| |
Collapse
|
18
|
Gullner G, Komives T, Király L, Schröder P. Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1836. [PMID: 30622544 PMCID: PMC6308375 DOI: 10.3389/fpls.2018.01836] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
Plant glutathione S-transferases (GSTs) are ubiquitous and multifunctional enzymes encoded by large gene families. A characteristic feature of GST genes is their high inducibility by a wide range of stress conditions including biotic stress. Early studies on the role of GSTs in plant biotic stress showed that certain GST genes are specifically up-regulated by microbial infections. Later numerous transcriptome-wide investigations proved that distinct groups of GSTs are markedly induced in the early phase of bacterial, fungal and viral infections. Proteomic investigations also confirmed the accumulation of multiple GST proteins in infected plants. Furthermore, functional studies revealed that overexpression or silencing of specific GSTs can markedly modify disease symptoms and also pathogen multiplication rates. However, very limited information is available about the exact metabolic functions of disease-induced GST isoenzymes and about their endogenous substrates. The already recognized roles of GSTs are the detoxification of toxic substances by their conjugation with glutathione, the attenuation of oxidative stress and the participation in hormone transport. Some GSTs display glutathione peroxidase activity and these GSTs can detoxify toxic lipid hydroperoxides that accumulate during infections. GSTs can also possess ligandin functions and participate in the intracellular transport of auxins. Notably, the expression of multiple GSTs is massively activated by salicylic acid and some GST enzymes were demonstrated to be receptor proteins of salicylic acid. Furthermore, induction of GST genes or elevated GST activities have often been observed in plants treated with beneficial microbes (bacteria and fungi) that induce a systemic resistance response (ISR) to subsequent pathogen infections. Further research is needed to reveal the exact metabolic functions of GST isoenzymes in infected plants and to understand their contribution to disease resistance.
Collapse
Affiliation(s)
- Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamas Komives
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Schröder
- Research Unit for Comparative Microbiome Analyses, Department of Environmental Sciences, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
19
|
Physiological Roles of Plant Methionine Sulfoxide Reductases in Redox Homeostasis and Signaling. Antioxidants (Basel) 2018; 7:antiox7090114. [PMID: 30158486 PMCID: PMC6162775 DOI: 10.3390/antiox7090114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/09/2023] Open
Abstract
Oxidation of methionine (Met) leads to the formation of two S- and R-diastereoisomers of Met sulfoxide (MetO) that are reduced back to Met by methionine sulfoxide reductases (MSRs), A and B, respectively. Here, we review the current knowledge about the physiological functions of plant MSRs in relation with subcellular and tissue distribution, expression patterns, mutant phenotypes, and possible targets. The data gained from modified lines of plant models and crop species indicate that MSRs play protective roles upon abiotic and biotic environmental constraints. They also participate in the control of the ageing process, as shown in seeds subjected to adverse conditions. Significant advances were achieved towards understanding how MSRs could fulfil these functions via the identification of partners among Met-rich or MetO-containing proteins, notably by using redox proteomic approaches. In addition to a global protective role against oxidative damage in proteins, plant MSRs could specifically preserve the activity of stress responsive effectors such as glutathione-S-transferases and chaperones. Moreover, several lines of evidence indicate that MSRs fulfil key signaling roles via interplays with Ca2+- and phosphorylation-dependent cascades, thus transmitting ROS-related information in transduction pathways.
Collapse
|
20
|
Martínez-Márquez A, Morante-Carriel JA, Palazon J, Bru-Martínez R. Rosa hybrida orcinol O-methyl transferase-mediated production of pterostilbene in metabolically engineered grapevine cell cultures. N Biotechnol 2018; 42:62-70. [PMID: 29477599 DOI: 10.1016/j.nbt.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/11/2023]
Abstract
Stilbenes are naturally scarce high-added-value plant compounds with chemopreventive, pharmacological and cosmetic properties. Bioproduction strategies include engineering the metabolisms of bacterial, fungal and plant cell systems. Strikingly, one of the most effective strategies consists in the elicitation of wild grapevine cell cultures, which leads to vast stilbene resveratrol accumulation in the extracellular medium. The combination of both cell culture elicitation and metabolic engineering strategies to produce resveratrol analogs proved more efficient for the hydroxylated derivative piceatannol than for the dimethylated derivative pterostilbene, for which human hydroxylase HsCYP1B1- and grapevine O-methyltransferase VvROMT-transformed cell cultures were respectively used. Rose orcinol O-methyltransferase (OOMT) displays enzymatic properties, which makes it an appealing candidate to substitute VvROMT in the combined strategy to enhance the pterostilbene production level by engineered grapevine cells upon elicitation. Here we cloned a Rosa hybrida OOMT gene, and created a genetic construction suitable for Agrobacterium-mediated plant transformation. OOMT's ability to catalyze the conversion of resveratrol into pterostilbene was first assessed in vitro using protein extracts of agroinfiltrated N. benthamiana leaves and transformed grapevine callus. The grapevine cell cultures transformed with RhOOMT produced about 16 mg/L culture of pterostilbene and reached an extracellular distribution of up to 34% of total production at the best, which is by far the highest production reported to date in a plant system. A bonus large resveratrol production of ca. 1500-3000 mg/L was simultaneously obtained. Our results demonstrate a viable successful metabolic engineering strategy to produce pterostilbene, a resveratrol analog with enhanced pharmacological properties.
Collapse
Affiliation(s)
- Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science and Multidisciplinary Institut for Environment Studies "Ramon Margalef", University of Alicante, Alicante, Spain
| | - Jaime A Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science and Multidisciplinary Institut for Environment Studies "Ramon Margalef", University of Alicante, Alicante, Spain; Biotechnology and Molecular Biology Group, Quevedo State Technical University, Quevedo, Ecuador
| | - Javier Palazon
- Laboratory of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Av.Joan XXIII sn, E-08028 Barcelona, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science and Multidisciplinary Institut for Environment Studies "Ramon Margalef", University of Alicante, Alicante, Spain; Institute for Healthcare and Biomedical Research of Alicante ISABIAL-FISABIO, E-03010 Alicante, Spain.
| |
Collapse
|
21
|
Krzyzaniak Y, Negrel J, Lemaitre-Guillier C, Clément G, Mouille G, Klinguer A, Trouvelot S, Héloir MC, Adrian M. Combined enzymatic and metabolic analysis of grapevine cell responses to elicitors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:141-148. [PMID: 29241147 DOI: 10.1016/j.plaphy.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 05/23/2023]
Abstract
Elicitors trigger plant defense responses, including phytoalexin production and cell-wall reinforcement. Primary metabolism plays an important role in these responses as it fuels the associated energetic costs and provides precursors for the synthesis of the numerous secondary metabolites involved in defenses against pathogens. In this context, we aimed to determine whether oligosaccharidic elicitors differing in their capacity to activate defense-associated secondary metabolism in grapevine would differently impact primary metabolism. To answer this question, cell suspensions were treated with two elicitors: an oligogalacturonide, and the β-glucan laminarin. Enzymatic activity assays together with targeted (HPLC) and global (GC-MS) analyses of metabolites were next performed to compare their impact on plant primary or secondary metabolism. The results showed that the oligogalacturonide, which induced the highest level of the phytoalexin resveratrol and the highest activity of stilbene synthase, also induced the highest activity of shikimate hydroxycinnamoyltransferase, a key enzyme involved in the synthesis of lignin. The oligogalacturonide-induced defenses had a significant impact on primary metabolism 24 h following elicitor treatment, with a reduced abundance of pyruvate and 2-oxoglutarate, together with an increase of a set of metabolites including carbohydrates and amino acids. Interestingly, an accumulation of galacturonate and gentiobiose was observed in the oligogalacturonide- and laminarin-treated cells, respectively, suggesting that both elicitors are rapidly hydrolyzed in grapevine cell suspension cultures.
Collapse
Affiliation(s)
- Yuko Krzyzaniak
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | - Jonathan Negrel
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | | | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| | - Agnès Klinguer
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | - Sophie Trouvelot
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | - Marie-Claire Héloir
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| | - Marielle Adrian
- UMR Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comte, F-21000, Dijon, France.
| |
Collapse
|