1
|
Joukhadar R, Trethowan RM, Thistlethwaite R, Hayden MJ, Stangoulis J, Cu S, Tibbits J, Daetwyler HD. Stable pleotropic loci controlling the accumulation of multiple nutritional elements in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:95. [PMID: 40205176 PMCID: PMC11982167 DOI: 10.1007/s00122-025-04877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/08/2025] [Indexed: 04/11/2025]
Abstract
Understanding the genetic basis of nutrient accumulation in wheat is crucial for improving its nutritional content and addressing global food security challenges. Here, we identified stable pleiotropic loci controlling the accumulation of 13 nutritional elements in wheat across diverse environments using a large wheat population of 1470 individuals. Our analysis revealed significant variability in SNP-based heritability values across 13 essential elements. Genetic correlations among elements uncovered complex relations, with positive correlations observed within two distinct groups, where calcium (Ca), cobalt (Co), potassium (K), and sodium (Na) formed one group, and copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), phosphorus (P), and zinc (Zn) formed the other. Negative correlations were observed among elements across both groups. Through MetaGWAS analysis, we identified stable QTL associated with individual elements and elements with high positive correlations. We identified 67 stable QTL across environments that are independent from grain yield, of which 56 were detected using the MetaGWAS analysis indicating their pleiotropic effect on multiple elements. A major QTL on chromosome 7D that can shift the phenotype up to one standard deviation compared to the mean phenotype in the population exhibited differential effects on multiple elements belonging to both groups. Our findings offer novel insights into the genetic architecture of nutrient accumulation in wheat and have practical implications for breeding programmes aimed at enhancing multiple nutrients simultaneously. By targeting stable QTL, breeders can develop wheat varieties with improved nutritional profiles, contributing to global food security and human health.
Collapse
Affiliation(s)
- Reem Joukhadar
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia.
| | - Richard M Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia.
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW, Australia.
| | - Rebecca Thistlethwaite
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia
| | - Matthew J Hayden
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Suong Cu
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Josquin Tibbits
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Aljabri M, El-Soda M. Genome-Wide Association Mapping of Macronutrient Mineral Accumulation in Wheat ( Triticum aestivum L.) Grain. PLANTS (BASEL, SWITZERLAND) 2024; 13:3472. [PMID: 39771170 PMCID: PMC11728464 DOI: 10.3390/plants13243472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
The focus on increasing wheat (Triticum aestivum L.) grain yield at the expense of grain quality and nutrient accumulation can lead to shortages in macronutrient minerals, which are dangerous for human health. This is important, especially in nations where bread wheat is used in most daily dietary regimens. One efficient way to guarantee nutritional security is through biofortification. A genome-wide association mapping approach was used to investigate the genetic basis of the differences in macronutrient mineral accumulation in wheat grains. N, P, K, Na, Ca, and Mg concentrations were measured after a panel of 200 spring wheat advanced lines from the Wheat Association Mapping Initiative were cultivated in the field. The population exhibited a wide range of natural variations in macronutrient minerals. The minerals were found to have strong positive correlations except for magnesium, which had negative correlation patterns with N, P, and K. Furthermore, there were negative correlations between N and each of Ca and Na. Remarkably, genotypes with large yields contained moderate levels of critical metals. Of the 148 significant SNPs above -log10(P) = 3, 29 had -log10(P) values greater than 4. Four, one, and nineteen significant SNPs with a -log10(P) between 4 and 5.8 were associated with N and mapped on chromosomes 1A, 1B, and 1D, respectively. Three significant SNPs on chromosome A3 were associated with K. Two significant SNPs were associated with Ca and Na and mapped on chromosomes B3 and A4, respectively. Our findings offer crucial information about the genetic underpinnings of nutritional mineral concentration augmentation, which can guide future breeding research to enhance human nutrition.
Collapse
Affiliation(s)
- Maha Aljabri
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Leonova IN, Ageeva EV, Shumny VK. Prospects for mineral biofortification of wheat: classical breeding and agronomy. Vavilovskii Zhurnal Genet Selektsii 2024; 28:523-535. [PMID: 39280848 PMCID: PMC11393657 DOI: 10.18699/vjgb-24-59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 09/18/2024] Open
Abstract
Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties.
Collapse
Affiliation(s)
- I N Leonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Ageeva
- Siberian Research Institute of Plant Production and Breeding - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk region, Russia
| | - V K Shumny
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Sigalas PP, Shewry PR, Riche A, Wingen L, Feng C, Siluveru A, Chayut N, Burridge A, Uauy C, Castle M, Parmar S, Philp C, Steele D, Orford S, Leverington-Waite M, Cheng S, Griffiths S, Hawkesford MJ. Improving wheat grain composition for human health by constructing a QTL atlas for essential minerals. Commun Biol 2024; 7:1001. [PMID: 39147896 PMCID: PMC11327371 DOI: 10.1038/s42003-024-06692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Wheat is an important source of minerals for human nutrition and increasing grain mineral content can contribute to reducing mineral deficiencies. Here, we identify QTLs for mineral micronutrients in grain of wheat by determining the contents of six minerals in a total of eleven sample sets of three biparental populations from crosses between A.E. Watkins landraces and cv. Paragon. Twenty-three of the QTLs are mapped in two or more sample sets, with LOD scores above five in at least one set with the increasing alleles for sixteen of the QTLs being present in the landraces and seven in Paragon. Of these QTLs, the number for each mineral varies between three and five and they are located on 14 of the 21 chromosomes, with clusters on chromosomes 5A (four), 6A (three), and 7A (three). The gene content within 5 megabases of DNA on either side of the marker for the QTL with the highest LOD score is determined and the gene responsible for the strongest QTL (chromosome 5A for Ca) identified as an ATPase transporter gene (TraesCS5A02G543300) using mutagenesis. The identification of these QTLs, together with associated SNP markers and candidate genes, will facilitate the improvement of grain nutritional quality.
Collapse
Affiliation(s)
| | - Peter R Shewry
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andrew Riche
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Luzie Wingen
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Cong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | | | - Noam Chayut
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Amanda Burridge
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UD, UK
| | | | - March Castle
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Saroj Parmar
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | - David Steele
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Simon Orford
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | | | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | | | | |
Collapse
|
5
|
Alomari DZ, Schierenbeck M, Alqudah AM, Alqahtani MD, Wagner S, Rolletschek H, Borisjuk L, Röder MS. Wheat Grains as a Sustainable Source of Protein for Health. Nutrients 2023; 15:4398. [PMID: 37892473 PMCID: PMC10609835 DOI: 10.3390/nu15204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Protein deficiency is recognized among the major global health issues with an underestimation of its importance. Genetic biofortification is a cost-effective and sustainable strategy to overcome global protein malnutrition. This study was designed to focus on protein-dense grains of wheat (Triticum aestivum L.) and identify the genes governing grain protein content (GPC) that improve end-use quality and in turn human health. Genome-wide association was applied using the 90k iSELECT Infinium and 35k Affymetrix arrays with GPC quantified by using a proteomic-based technique in 369 wheat genotypes over three field-year trials. The results showed significant natural variation among bread wheat genotypes that led to detecting 54 significant quantitative trait nucleotides (QTNs) surpassing the false discovery rate (FDR) threshold. These QTNs showed contrasting effects on GPC ranging from -0.50 to +0.54% that can be used for protein content improvement. Further bioinformatics analyses reported that these QTNs are genomically linked with 35 candidate genes showing high expression during grain development. The putative candidate genes have functions in the binding, remobilization, or transport of protein. For instance, the promising QTN AX-94727470 on chromosome 6B increases GPC by +0.47% and is physically located inside the gene TraesCS6B02G384500 annotated as Trehalose 6-phosphate phosphatase (T6P), which can be employed to improve grain protein quality. Our findings are valuable for the enhancement of protein content and end-use quality in one of the major daily food resources that ultimately improve human nutrition.
Collapse
Affiliation(s)
- Dalia Z. Alomari
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Matías Schierenbeck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
- CONICET CCT La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| |
Collapse
|
6
|
Ma J, Ren J, Yuan X, Yuan M, Zhang D, Li C, Zeng Q, Wu J, Han D, Jiang L. Genome-wide association study reveals the genetic variation and candidate gene for grain calcium content in bread wheat. PLANT CELL REPORTS 2023:10.1007/s00299-023-03036-3. [PMID: 37227494 DOI: 10.1007/s00299-023-03036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE This study provides important information on the genetic basis of GCaC in wheat, thus contributing to breeding efforts to improve the nutrient quality of wheat. Calcium (Ca) plays important roles in the human body. Wheat grain provides the main diet for billions of people worldwide but is low in Ca content. Here, grain Ca content (GCaC) of 471 wheat accessions was determined in four field environments. A genome-wide association study (GWAS) was performed to reveal the genetic basis of GCaC using the phenotypic data form four environments and a wheat 660 K single nucleotide polymorphism (SNP) array. Twelve quantitative trait locus (QTLs) for GCaC were identified on chromosomes 1A, 1D, 2A, 3B, 6A, 6D, 7A, and 7D, which was significant in at least two environments. Haplotype analysis revealed that the phenotypic difference between the haplotypes of TraesCS6D01G399100 was significant (P ≤ 0.05) across four environments, suggesting it as an important candidate gene for GCaC. This research enhances our understanding of the genetic architecture of GCaC for further improving the nutrient quality of wheat.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Jingjie Ren
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xuqing Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China.
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
7
|
Kartseva T, Alqudah AM, Aleksandrov V, Alomari DZ, Doneva D, Arif MAR, Börner A, Misheva S. Nutritional Genomic Approach for Improving Grain Protein Content in Wheat. Foods 2023; 12:1399. [PMID: 37048220 PMCID: PMC10093644 DOI: 10.3390/foods12071399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Grain protein content (GPC) is a key aspect of grain quality, a major determinant of the flour functional properties and grain nutritional value of bread wheat. Exploiting diverse germplasms to identify genes for improving crop performance and grain nutritional quality is needed to enhance food security. Here, we evaluated GPC in a panel of 255 Triticum aestivum L. accessions from 27 countries. GPC determined in seeds from three consecutive crop seasons varied from 8.6 to 16.4% (11.3% on average). Significant natural phenotypic variation in GPC among genotypes and seasons was detected. The population was evaluated for the presence of the trait-linked single nucleotide polymorphism (SNP) markers via a genome-wide association study (GWAS). GWAS analysis conducted with calculated best linear unbiased estimates (BLUEs) of phenotypic data and 90 K SNP array using the fixed and random model circulating probability unification (FarmCPU) model identified seven significant genomic regions harboring GPC-associated markers on chromosomes 1D, 3A, 3B, 3D, 4B and 5A, of which those on 3A and 3B shared associated SNPs with at least one crop season. The verified SNP-GPC associations provide new promising genomic signals on 3A (SNPs: Excalibur_c13709_2568 and wsnp_Ku_c7811_13387117) and 3B (SNP: BS00062734_51) underlying protein improvement in wheat. Based on the linkage disequilibrium for significant SNPs, the most relevant candidate genes within a 4 Mbp-window included genes encoding a subtilisin-like serine protease; amino acid transporters; transcription factors; proteins with post-translational regulatory functions; metabolic proteins involved in the starch, cellulose and fatty acid biosynthesis; protective and structural proteins, and proteins associated with metal ions transport or homeostasis. The availability of molecular markers within or adjacent to the sequences of the detected candidate genes might assist a breeding strategy based on functional markers to improve genetic gains for GPC and nutritional quality in wheat.
Collapse
Affiliation(s)
- Tania Kartseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (D.D.)
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Vladimir Aleksandrov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (D.D.)
| | - Dalia Z. Alomari
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (D.D.)
| | - Mian Abdur Rehman Arif
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan;
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plants Research (IPK Gatersleben), Corrensstraße 3, OT Gatersleben, 06466 Seeland, Germany;
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (D.D.)
| |
Collapse
|
8
|
Gupta OP, Singh AK, Singh A, Singh GP, Bansal KC, Datta SK. Wheat Biofortification: Utilizing Natural Genetic Diversity, Genome-Wide Association Mapping, Genomic Selection, and Genome Editing Technologies. Front Nutr 2022; 9:826131. [PMID: 35938135 PMCID: PMC9348810 DOI: 10.3389/fnut.2022.826131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/06/2022] [Indexed: 01/11/2023] Open
Abstract
Alleviating micronutrients associated problems in children below five years and women of childbearing age, remains a significant challenge, especially in resource-poor nations. One of the most important staple food crops, wheat attracts the highest global research priority for micronutrient (Fe, Zn, Se, and Ca) biofortification. Wild relatives and cultivated species of wheat possess significant natural genetic variability for these micronutrients, which has successfully been utilized for breeding micronutrient dense wheat varieties. This has enabled the release of 40 biofortified wheat cultivars for commercial cultivation in different countries, including India, Bangladesh, Pakistan, Bolivia, Mexico and Nepal. In this review, we have systematically analyzed the current understanding of availability and utilization of natural genetic variations for grain micronutrients among cultivated and wild relatives, QTLs/genes and different genomic regions regulating the accumulation of micronutrients, and the status of micronutrient biofortified wheat varieties released for commercial cultivation across the globe. In addition, we have also discussed the potential implications of emerging technologies such as genome editing to improve the micronutrient content and their bioavailability in wheat.
Collapse
Affiliation(s)
- Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | | | | | - Swapan K. Datta
- Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
9
|
Shi X, Zhou Z, Li W, Qin M, Yang P, Hou J, Huang F, Lei Z, Wu Z, Wang J. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:229. [PMID: 35508960 PMCID: PMC9066855 DOI: 10.1186/s12870-022-03602-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/15/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Hexaploid wheat (Triticum aestivum L.) is a leading cereal crop worldwide. Understanding the mechanism of calcium (Ca) accumulation in wheat is important to reduce the risk of human micronutrient deficiencies. However, the mechanisms of Ca accumulation in wheat grain are only partly understood. RESULTS Here, a genome-wide association study (GWAS) was performed to dissect the genetic basis of Ca accumulation in wheat grain using an association population consisting of 207 varieties, with phenotypic data from three locations. In total, 11 non-redundant genetic loci associated with Ca concentration were identified and they explained, on average, 9.61-26.93% of the phenotypic variation. Cultivars containing more superior alleles had increased grain Ca concentrations. Notably, four non-redundant loci were mutually verified by different statistical models in at least two environments, indicating their stability across different environments. Four putative candidate genes linked to Ca accumulation were revealed from the stable genetic loci. Among them, two genes, associated with the stable genetic loci on chromosomes 4A (AX-108912427) and 3B (AX-110922471), encode the subunits of V-type Proton ATPase (TraesCS4A02G428900 and TraesCS3B02G241000), which annotated as the typical generators of a proton gradient that might be involved in Ca homeostasis in wheat grain. CONCLUSION To identify genetic loci associated with Ca accumulation, we conducted GWAS on Ca concentrations and detected 11 genetic loci; whereas four genetic loci were stable across different environments. A genetic loci hot spot exists at the end of chromosome 4A and associated with the putative candidate gene TraesCS4A02G428900. The candidate gene TraesCS4A02G428900 encodes V-type proton ATPase subunit e and highly expressed in wheat grains, and it possibly involved in Ca accumulation. This study increases our understanding of the genetic architecture of Ca accumulation in wheat grains, which is potentially helpful for wheat Ca biofortification pyramid breeding.
Collapse
Affiliation(s)
- Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Pan Yang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Fangfang Huang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China.
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China.
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China.
| |
Collapse
|
10
|
Thabet SG, Alomari DZ, Brinch-Pedersen H, Alqudah AM. Genetic analysis toward more nutritious barley grains for a food secure world. BOTANICAL STUDIES 2022; 63:6. [PMID: 35267113 PMCID: PMC8913823 DOI: 10.1186/s40529-022-00334-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Understanding the relationships between nutrition, human health and plant food source is among the highest priorities for public health. Therefore, enhancing the minerals content such as iron (Fe), zinc (Zn) and selenium (Se) in barley (Hordeum vulgare L.) grains is an urgent need to improve the nutritive value of barley grains in overcoming malnutrition and its potential consequencing. This study aimed to expedite biofortification of barley grains by elucidating the genetic basis of Zn, Fe, and Se accumulation in the grains, which will contribute to improved barley nutritional quality. RESULTS A genome-wide association study (GWAS) was conducted to detect the genetic architecture for grain Zn, Fe, and Se accumulations in 216 spring barley accessions across two years. All the accessions were genotyped by single nucleotide polymorphisms (SNPs) molecular markers. Mineral heritability values ranging from moderate to high were revealed in both environments. Remarkably, there was a high natural phenotypic variation for all micronutrient accumulation in the used population. High-LD SNP markers (222 SNPs) were detected to be associated with all micronutrients in barley grains across the two environments plus BLUEs. Three genomic regions were detected based on LD, which were identified for the most effective markers that had associations with more than one trait. The strongest SNP-trait associations were found to be physically located within genes that may be involved in grain Zn and Fe homeostasis. Two putative candidate genes were annotated as Basic helix loop helix (BHLH) family transcription factor and Squamosa promoter binding-like protein, respectively, and have been suggested as candidates for increased grain Zn, Fe, and Se accumulation. CONCLUSIONS These findings shed a light on the genetic basis of Zn, Fe, and Se accumulation in barley grains and have the potential to assist plant breeders in selecting accessions with high micronutrient concentrations to enhance grain quality and, ultimately human health.
Collapse
Affiliation(s)
- Samar G Thabet
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| | - Dalia Z Alomari
- Department of Agroecology, Aarhus University, 4200, Flakkebjerg, Slagelse, Denmark
| | | | - Ahmad M Alqudah
- Department of Agroecology, Aarhus University, 4200, Flakkebjerg, Slagelse, Denmark.
| |
Collapse
|
11
|
Gaur A, Jindal Y, Singh V, Tiwari R, Kumar D, Kaushik D, Singh J, Narwal S, Jaiswal S, Iquebal MA, Angadi UB, Singh G, Rai A, Singh GP, Sheoran S. GWAS to Identify Novel QTNs for WSCs Accumulation in Wheat Peduncle Under Different Water Regimes. FRONTIERS IN PLANT SCIENCE 2022; 13:825687. [PMID: 35310635 PMCID: PMC8928439 DOI: 10.3389/fpls.2022.825687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 05/27/2023]
Abstract
Water-soluble carbohydrates (WSCs) play a vital role in water stress avoidance and buffering wheat grain yield. However, the genetic architecture of stem WSCs' accumulation is partially understood, and few candidate genes are known. This study utilizes the compressed mixed linear model-based genome wide association study (GWAS) and heuristic post GWAS analyses to identify causative quantitative trait nucleotides (QTNs) and candidate genes for stem WSCs' content at 15 days after anthesis under different water regimes (irrigated, rainfed, and drought). Glucose, fructose, sucrose, fructans, total non-structural carbohydrates (the sum of individual sugars), total WSCs (anthrone based) quantified in the peduncle of 301 bread wheat genotypes under multiple environments (E01-E08) pertaining different water regimes, and 14,571 SNPs from "35K Axiom Wheat Breeders" Array were used for analysis. As a result, 570 significant nucleotide trait associations were identified on all chromosomes except for 4D, of which 163 were considered stable. A total of 112 quantitative trait nucleotide regions (QNRs) were identified of which 47 were presumable novel. QNRs qWSC-3B.2 and qWSC-7A.2 were identified as the hotspots. Post GWAS integration of multiple data resources prioritized 208 putative candidate genes delimited into 64 QNRs, which can be critical in understanding the genetic architecture of stem WSCs accumulation in wheat under optimum and water-stressed environments. At least 19 stable QTNs were found associated with 24 prioritized candidate genes. Clusters of fructans metabolic genes reported in the QNRs qWSC-4A.2 and qWSC-7A.2. These genes can be utilized to bring an optimum combination of various fructans metabolic genes to improve the accumulation and remobilization of stem WSCs and water stress tolerance. These results will further strengthen wheat breeding programs targeting sustainable wheat production under limited water conditions.
Collapse
Affiliation(s)
- Arpit Gaur
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Yogesh Jindal
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| | - Vikram Singh
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Deepak Kaushik
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| | - Jogendra Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Sneh Narwal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavapp B. Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
12
|
Jin X, Zou Z, Wu Z, Liu C, Yan S, Peng Y, Lei Z, Zhou Z. Genome-Wide Association Study Reveals Genomic Regions Associated With Molybdenum Accumulation in Wheat Grains. FRONTIERS IN PLANT SCIENCE 2022; 13:854966. [PMID: 35310638 PMCID: PMC8924584 DOI: 10.3389/fpls.2022.854966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for almost all organisms. Wheat, a major staple crop worldwide, is one of the main dietary sources of Mo. However, the genetic basis for the variation of Mo content in wheat grains remains largely unknown. Here, a genome-wide association study (GWAS) was performed on the Mo concentration in the grains of 207 wheat accessions to dissect the genetic basis of Mo accumulation in wheat grains. As a result, 77 SNPs were found to be significantly associated with Mo concentration in wheat grains, among which 52 were detected in at least two sets of data and distributed on chromosome 2A, 7B, and 7D. Moreover, 48 out of the 52 common SNPs were distributed in the 726,761,412-728,132,521 bp genomic region of chromosome 2A. Three putative candidate genes, including molybdate transporter 1;2 (TraesCS2A02G496200), molybdate transporter 1;1 (TraesCS2A02G496700), and molybdopterin biosynthesis protein CNX1 (TraesCS2A02G497200), were identified in this region. These findings provide new insights into the genetic basis for Mo accumulation in wheat grains and important information for further functional characterization and breeding to improve wheat grain quality.
Collapse
Affiliation(s)
- Xiaojie Jin
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhaojun Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Songxian Yan
- Department of Resources and Environment, Moutai Institute, Renhuai, China
| | - Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
13
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
14
|
Nutritional improvement of cereal crops to combat hidden hunger during COVID-19 pandemic: Progress and prospects. ADVANCES IN FOOD SECURITY AND SUSTAINABILITY 2022. [PMCID: PMC8917837 DOI: 10.1016/bs.af2s.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
COVID-19 has posed a severe challenge on food security by limiting access to food for the marginally placed population. While access to food is a challenge, access to nutritional food is a greater challenge to the population. The present-day foods are not sufficient to meet the nutritional requirements of the human body. In a pandemic condition, providing nutritious food to the population is imperative to ensure the health and well-being of humankind. Exploiting the existing biodiversity of crop species and deploying classical and modern tools to improve the nutritional potential of these species holds the key to addressing the above challenge. Breeding has been a classical tool of crop improvement that relied predominantly on genetic diversity. Collecting and conserving diverse germplasms and characterizing their diversity using molecular markers is essential to preserve diversity and use them in genetic improvement programs. These markers are also valuable for association mapping analyses to identify the genetic determinants of traits-of-interest in crop species. Association mapping identifies the quantitative trait loci (QTL) underlying the trait-of-interest by exploring marker-trait associations, and these QTLs can further be exploited for the genetic improvement of cultivated species through genomics-assisted breeding. Conventional breeding and genomics approaches are also being applied to develop biofortified cereal crops to reduce nutritional deficiencies in consumers. In this context, chapter explains the prerequisites for association mapping, population structure, genetic diversity, different approaches of performing association mapping to dissect nutritional traits, use the information for genomics-assisted breeding for nutrient-rich cereal crops, and application of genomics strategies in crop biofortification. These approaches will ensure food and nutrition security for all amidst the current COVID-19 crisis.
Collapse
|
15
|
Francki MG, Stainer GS, Walker E, Rebetzke GJ, Stefanova KT, French RJ. Phenotypic Evaluation and Genetic Analysis of Seedling Emergence in a Global Collection of Wheat Genotypes ( Triticum aestivum L.) Under Limited Water Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:796176. [PMID: 35003185 PMCID: PMC8739788 DOI: 10.3389/fpls.2021.796176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The challenge in establishing an early-sown wheat crop in southern Australia is the need for consistently high seedling emergence when sowing deep in subsoil moisture (>10 cm) or into dry top-soil (4 cm). However, the latter is strongly reliant on a minimum soil water availability to ensure successful seedling emergence. This study aimed to: (1) evaluate 233 Australian and selected international wheat genotypes for consistently high seedling emergence under limited soil water availability when sown in 4 cm of top-soil in field and glasshouse (GH) studies; (2) ascertain genetic loci associated with phenotypic variation using a genome-wide association study (GWAS); and (3) compare across loci for traits controlling coleoptile characteristics, germination, dormancy, and pre-harvest sprouting. Despite significant (P < 0.001) environment and genotype-by-environment interactions within and between field and GH experiments, eight genotypes that included five cultivars, two landraces, and one inbred line had consistently high seedling emergence (mean value > 85%) across nine environments. Moreover, 21 environment-specific quantitative trait loci (QTL) were detected in GWAS analysis on chromosomes 1B, 1D, 2B, 3A, 3B, 4A, 4B, 5B, 5D, and 7D, indicating complex genetic inheritance controlling seedling emergence. We aligned QTL for known traits and individual genes onto the reference genome of wheat and identified 16 QTL for seedling emergence in linkage disequilibrium with coleoptile length, width, and cross-sectional area, pre-harvest sprouting and dormancy, germination, seed longevity, and anthocyanin development. Therefore, it appears that seedling emergence is controlled by multifaceted networks of interrelated genes and traits regulated by different environmental cues.
Collapse
Affiliation(s)
- Michael G. Francki
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Grantley S. Stainer
- Department of Primary Industries and Regional Development, Merredin, WA, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Gregory J. Rebetzke
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Katia T. Stefanova
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Robert J. French
- Department of Primary Industries and Regional Development, Merredin, WA, Australia
| |
Collapse
|
16
|
Alomari DZ, Alqudah AM, Pillen K, von Wirén N, Röder MS. Toward identification of a putative candidate gene for nutrient mineral accumulation in wheat grains for human nutrition purposes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6305-6318. [PMID: 34145452 PMCID: PMC8483787 DOI: 10.1093/jxb/erab297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/16/2021] [Indexed: 05/21/2023]
Abstract
A multilocus genome-wide association study of a panel of 369 diverse wheat (Triticum aestivum) genotypes was carried out in order to examine the genetic basis of variations in nutrient mineral concentrations in the grains. The panel was grown under field conditions for three consecutive years and the concentrations of Ca, K, Mg, Mn, P, and S were determined. Wide ranges of natural variation were detected among the genotypes. Strong positive correlations were found among the minerals except for K, which showed negative correlation trends with the other minerals. Genetic association analysis detected 86 significant marker-trait associations (MTAs) underlying the natural variations in mineral concentrations in grains. The major MTA was detected on the long arm of chromosome 5A and showed a pleiotropic effect on Ca, K, Mg, Mn, and S. Further significant MTAs were distributed among the whole genome except for chromosomes 3D and 6D. We identified putative candidate genes that are potentially involved in metal uptake, transport, and assimilation, including TraesCS5A02G542600 on chromosome 5A, which was annotated as a Major Facilitator Superfamily transporter and acted on all the minerals except K. TraesCS5A02G542600 was highly expressed in seed coat, and to a lesser extent in the peduncle, awns, and lemma. Our results provide important insights into the genetic basis of enhancement of nutrient mineral concentrations that can help to inform future breeding studies in order to improve human nutrition.
Collapse
Affiliation(s)
- Dalia Z Alomari
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
- Correspondence: or
| | - Ahmad M Alqudah
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
17
|
Knez M, Stangoulis JCR. Calcium Biofortification of Crops-Challenges and Projected Benefits. FRONTIERS IN PLANT SCIENCE 2021; 12:669053. [PMID: 34335646 PMCID: PMC8323714 DOI: 10.3389/fpls.2021.669053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Despite Calcium (Ca) being an essential nutrient for humans, deficiency of Ca is becoming an ensuing public health problem worldwide. Breeding staple crops with higher Ca concentrations is a sustainable long-term strategy for alleviating Ca deficiency, and particular criteria for a successful breeding initiative need to be in place. This paper discusses current challenges and projected benefits of Ca-biofortified crops. The most important features of Ca nutrition in plants are presented along with explicit recommendations for additional exploration of this important issue. In order for Ca-biofortified crops to be successfully developed, tested, and effectively implemented in most vulnerable populations, further research is required.
Collapse
Affiliation(s)
- Marija Knez
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Centre of Research Excellence in Nutrition and Metabolism, National Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
18
|
Francki MG, Walker E, McMullan CJ, Morris WG. Evaluation of Septoria Nodorum Blotch (SNB) Resistance in Glumes of Wheat ( Triticum aestivum L.) and the Genetic Relationship With Foliar Disease Response. Front Genet 2021; 12:681768. [PMID: 34267781 PMCID: PMC8276050 DOI: 10.3389/fgene.2021.681768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Septoria nodorum blotch (SNB) is a necrotrophic disease of wheat prominent in some parts of the world, including Western Australia (WA) causing significant losses in grain yield. The genetic mechanisms for resistance are complex involving multiple quantitative trait loci. In order to decipher comparable or independent regulation, this study identified the genetic control for glume compared to foliar resistance across four environments in WA against 37 different isolates. High proportion of the phenotypic variation across environments was contributed by genotype (84.0% for glume response and 82.7% for foliar response) with genotype-by-environment interactions accounting for a proportion of the variation for both glume and foliar response (14.7 and 16.2%, respectively). Despite high phenotypic correlation across environments, most of the eight and 14 QTL detected for glume and foliar resistance using genome wide association analysis (GWAS), respectively, were identified as environment-specific. QTL for glume and foliar resistance neither co-located nor were in LD in any particular environment indicating autonomous genetic mechanisms control SNB response in adult plants, regulated by independent biological mechanisms and influenced by significant genotype-by- environment interactions. Known Snn and Tsn loci and QTL were compared with 22 environment-specific QTL. None of the eight QTL for glume or the 14 for foliar response were co-located or in linkage disequilibrium with Snn and only one foliar QTL was in LD with Tsn loci on the physical map. Therefore, glume and foliar response to SNB in wheat is regulated by multiple environment-specific loci which function independently, with limited influence of known NE-Snn interactions for disease progression in Western Australian environments. Breeding for stable resistance would consequently rely on recurrent phenotypic selection to capture and retain favorable alleles for both glume and foliar resistance relevant to a particular environment.
Collapse
Affiliation(s)
- Michael G Francki
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.,State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.,State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | | | - W George Morris
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
19
|
Karaca N, Ates D, Nemli S, Ozkuru E, Yilmaz H, Yagmur B, Kartal C, Tosun M, Ozdestan O, Otles S, Kahriman A, Chang P, Tanyolac MB. Identification of SNP Markers Associated with Iron and Zinc Concentrations in Cicer Seeds. Curr Genomics 2020; 21:212-223. [PMID: 33071615 PMCID: PMC7521033 DOI: 10.2174/1389202921666200413150951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cicer reticulatum L. is the wild progenitor of chickpea Cicer arietinum L., the fourth most important pulse crop in the world. Iron (Fe) and zinc (Zn) are vital micronutrients that play crucial roles in sustaining life by acting as co-factors for various proteins. Aims and Objectives
In order to improve micronutrient-dense chickpea lines, this study aimed to investigate variability and detect DNA markers associated with Fe and Zn concentrations in the seeds of 73 cultivated (C. arietinum L.) and 107 C. reticulatum genotypes. Methods
A set of 180 accessions was genotyped using 20,868 single nucleotide polymorphism (SNP) markers obtained from genotyping by sequencing analysis. Results
The results revealed substantial variation in the seed Fe and Zn concentration of the surveyed population. Using STRUCTURE software, the population structure was divided into two groups according to the principal component analysis and neighbor-joining tree analysis. A total of 23 and 16 associated SNP markers related to Fe and Zn concentrations, respectively were identified in TASSEL software by the mixed linear model method. Significant SNP markers found in more than two environments were accepted as more reliable than those that only existed in a single environment. Conclusion
The identified markers can be used in marker-assisted selection in chickpea breeding programs for the improvement of seed Fe and Zn concentrations in the chickpea.
Collapse
Affiliation(s)
- Nur Karaca
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Duygu Ates
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Seda Nemli
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Esin Ozkuru
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Hasan Yilmaz
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Bulent Yagmur
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Canan Kartal
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Muzaffer Tosun
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Ozgul Ozdestan
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Semih Otles
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Abdullah Kahriman
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Peter Chang
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| | - Muhammed Bahattin Tanyolac
- 1Ege University, Department of Bioengineering, Bornova, Izmir35100, Turkey; 2Ege University, Faculty of Fisheries, Bornova, Izmir35100, Turkey; 3Ege University, Department of Soil Science and Plant Nutrition, Bornova, Izmir35100, Turkey; 4Ege University, Department of Food Engineering, Bornova, Izmir35100, Turkey; 5Department of Field Crops, Ege University, Bornova, Izmir35100, Turkey; 6Harran University, Department of Field Crops, 63000 Sanliurfa, Turkey; 7University of Southern California, Los Angeles, CA90007, USA
| |
Collapse
|
20
|
Erdogmus S, Ates D, Nemli S, Yagmur B, Asciogul TK, Ozkuru E, Karaca N, Yilmaz H, Esiyok D, Tanyolac MB. Genome-wide association studies of Ca and Mn in the seeds of the common bean (Phaseolus vulgaris L.). Genomics 2020; 112:4536-4546. [PMID: 32763354 DOI: 10.1016/j.ygeno.2020.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
SNP markers linked to genes controlling Ca and Mn uptake were identified in the common bean seeds using DArT-based association mapping (AM). The Ca concentration in the seeds varied between 475 and 3,100 mg kg-1 with an average of 1,280.9 mg kg-1 and the Mn concentration ranged from 4.87 to 27.54 mg kg-1 with a mean of 11.76 mg kg-1. A total of 19,204 SNP markers were distributed across 11 chromosomes that correspond to the haploid genome number of the common bean. The highest value of ΔK was determined as K = 2, and 173 common bean genotypes were split into two main subclusters as POP1 (Mesoamerican) and POP2 (Andean). The results of the UPGMA dendrogram and PCA confirmed those of STRUCTURE analysis. MLM based on the Q + K model identified a large number of markers-trait associations. Of the 19,204 SNPs, five (on Pv2, 3, 8, 10 and 11) and four (on Pv2, 3, 8 and 11) SNPs were detected to be significantly related to the Ca content of the beans grown in Bornova and Menemen, respectively in 2015. In 2016, six SNPs (on Pv1-4, 8 and 10) were identified to be significantly associated with the Ca content of the seeds obtained from Bornova and six SNPs (on Pv1-4, 8 and 10) from Menemen. Eight (on Pv3, 5 and 11) and four (on Pv2, 5 and 11) SNPs had a significant association with Mn content in Bornova in 2015 and 2016, respectively. In Menemen, eight (on Pv3, 5, 8 and 11) and 11 (on Pv1, 2, 5, 10 and 11) SNPs had a significant correlation with Mn content in 2015 and 2016, respectively.
Collapse
Affiliation(s)
- Semih Erdogmus
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Duygu Ates
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Seda Nemli
- Ege University, Faculty of Fisheries, Bornova-Izmir 35100, Turkey
| | - Bulent Yagmur
- Ege University, Department of Soil Science and Plant Nutrition, Bornova-Izmir 35100, Turkey
| | | | - Esin Ozkuru
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Nur Karaca
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Hasan Yilmaz
- Ege University, Department of Bioengineering, Bornova-Izmir 35100, Turkey
| | - Dursun Esiyok
- Ege University, Department of Horticulture, Bornova-Izmir, 35040, Turkey
| | | |
Collapse
|
21
|
Francki MG, Walker E, McMullan CJ, Morris WG. Multi-Location Evaluation of Global Wheat Lines Reveal Multiple QTL for Adult Plant Resistance to Septoria Nodorum Blotch (SNB) Detected in Specific Environments and in Response to Different Isolates. FRONTIERS IN PLANT SCIENCE 2020; 11:771. [PMID: 32655592 PMCID: PMC7325896 DOI: 10.3389/fpls.2020.00771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/15/2020] [Indexed: 05/26/2023]
Abstract
The slow rate of genetic gain for improving resistance to Septoria nodorum blotch (SNB) is due to the inherent complex interactions between host, isolates, and environments. Breeding for improved SNB resistance requires evaluation and selection of wheat genotypes consistently expressing low SNB response in different target production environments. The study focused on evaluating 232 genotypes from global origins for resistance to SNB in the flag leaf expressed in different Western Australian environments. The aim was to identify resistant donor germplasm against historical and contemporary pathogen isolates and enhance our knowledge of the genetic basis of genotype-by-environment interactions for SNB response. Australian wheat varieties, inbred lines from Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), and International Center for Agricultural Research in the Dry Areas (ICARDA), and landraces from discrete regions of the world showed low to moderate phenotypic correlation for disease response amongst genotypes when evaluated with historical and contemporary isolates at two locations across 3 years in Western Australia (WA). Significant (P < 0.001) genotype-by-environment interactions were detected regardless of same or different isolates used as an inoculum source. Joint regression analysis identified 19 genotypes that consistently expressed low disease severity under infection with different isolates in multi-locations. The CIMMYT inbred lines, 30ZJN09 and ZJN12 Qno25, were particularly pertinent as they had low SNB response and highest trait stability at two locations across 3 years. Genome wide association studies detected 20 QTL associated with SNB resistance on chromosomes 1A, 1B, 4B, 5A, 5B, 6A, 7A, 7B, and 7D. QTL on chromosomes 1B and 5B were previously reported in similar genomic regions. Multiple QTL were identified on 1B, 5B, 6A, and 5A and detected in response to SNB infection against different isolates and specific environments. Known SnTox-Snn interactions were either not evident or variable across WA environments and SNB response may involve other multiple complex biological mechanisms.
Collapse
Affiliation(s)
- Michael G. Francki
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | | | - W. George Morris
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
22
|
Fatiukha A, Klymiuk V, Peleg Z, Saranga Y, Cakmak I, Krugman T, Korol AB, Fahima T. Variation in phosphorus and sulfur content shapes the genetic architecture and phenotypic associations within the wheat grain ionome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:555-572. [PMID: 31571297 DOI: 10.1111/tpj.14554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 05/04/2023]
Abstract
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Zvi Peleg
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yehoshua Saranga
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Ismail Cakmak
- Faculty of Engineering & Natural Sciences, Sabanci University, Tuzla İstanbul, 34956, Turkey
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| |
Collapse
|
23
|
Herzig P, Backhaus A, Seiffert U, von Wirén N, Pillen K, Maurer A. Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:151-164. [PMID: 31203880 DOI: 10.1016/j.plantsci.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 05/05/2023]
Abstract
Enhancing the accumulation of essential mineral elements in cereal grains is of prime importance for combating human malnutrition. Biofortification by breeding holds great potential for improving nutrient accumulation in grains. However, conventional breeding approaches require element analysis of many grain samples, which causes high costs. Here we applied hyperspectral imaging to estimate the concentration of 15 grain elements (C, B, Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, N, Na, P, S, Zn) in high-throughput in the wild barley nested association mapping (NAM) population HEB-25, comprising 1,420 BC1S3 lines derived from crossing 25 wild barley accessions with the cultivar 'Barke'. Nutrient concentrations varied largely with a multitude of lines having higher micronutrient concentration than 'Barke'. In a genome-wide association study (GWAS), we located 75 quantitative trait locus (QTL) hotspots, whereof many could be explained by major genes such as NO APICAL MERISTEM-1 (NAM-1) and PHOTOPERIOD 1 (Ppd-H1). The GWAS approach revealed exotic alleles that were able to increase grain element concentrations. Remarkably, a QTL linked to GIBBERELLIN 20 OXIDASE 2 (HvGA20ox2) significantly increased several grain elements without yield loss. We conclude that introgressing promising exotic alleles into elite breeding material can assist in improving the nutritional value of barley grains.
Collapse
Affiliation(s)
- Paul Herzig
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
24
|
Qaseem MF, Qureshi R, Shaheen H, Shafqat N. Genome-wide association analyses for yield and yield-related traits in bread wheat (Triticum aestivum L.) under pre-anthesis combined heat and drought stress in field conditions. PLoS One 2019; 14:e0213407. [PMID: 30883588 PMCID: PMC6422278 DOI: 10.1371/journal.pone.0213407] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the genetic basis of heat and drought stress tolerance in wheat is prerequisite for wheat breeding program. In the present study, a wheat panel comprising of 192 elite bread wheat genotypes was phenotyped in eight environments for yield and related traits in field conditions. Four stress environments were created by implying four different treatments differing in sowing date and water availability, panel was evaluated for two years in field conditions. The panel was genotyped with 15K Illumina chip and 9236 polymorphic markers concentrated on B genome were employed in GWAS analysis. Consistent, fast LD decay was observed on D genome and structure analysis germplasm divided panel into three major populations. GWAS was performed using BLUEs values of combined environment data in R package GAPIT using log10(P) = 3.96 as significance threshold. The significance of association was further checked using FDR<0.05 threshold. The GWAS identified 487 loci associated with the traits and were significant at log10(p) threshold out of these 350 loci were significant at FDR threshold. For two stress indices 108 associations were significant at FDR threshold. Nine genomic regions were shared among all treatment, while multiple pleiotropic regions were present on chromosome 7D followed by unmapped chromosome. The present study validated many marker trait associations for yield and other traits, MTAs significant under combined drought and heat stress were novel. These regions are important and can be used for fine mapping and marker assisted selection to discover new genes responsible for heat and drought tolerance in wheat.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- Department of Botany, PMAS- Arid Agriculture University, Rawalpindi, Pakistan
| | - Rahmatullah Qureshi
- Department of Botany, PMAS- Arid Agriculture University, Rawalpindi, Pakistan
| | | | - Noshin Shafqat
- Department of Agriculture, Hazara University Dhodial, Mansehra, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
25
|
Whole-Genome Association Mapping and Genomic Prediction for Iron Concentration in Wheat Grains. Int J Mol Sci 2018; 20:ijms20010076. [PMID: 30585193 PMCID: PMC6337276 DOI: 10.3390/ijms20010076] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022] Open
Abstract
Malnutrition of iron (Fe) affects two billion people worldwide. Therefore, enhancing grain Fe concentration (GFeC) in wheat (Triticum aestivum L.) is an important goal for breeding. Here we study the genetic factors underlying GFeC trait by genome-wide association studies (GWAS) and the prediction abilities using genomic prediction (GP) in a panel of 369 European elite wheat varieties which was genotyped with 15,523 mapped single-nucleotide polymorphism markers (SNP) and a subpanel of 183 genotypes with 44,233 SNP markers. The resulting means of GFeC from three field experiments ranged from 24.42 to 52.42 μg·g−1 with a broad-sense heritability (H2) equaling 0.59 over the years. GWAS revealed 41 and 137 significant SNPs in the whole and subpanel, respectively, including significant marker-trait associations (MTAs) for best linear unbiased estimates (BLUEs) of GFeC on chromosomes 2A, 3B and 5A. Putative candidate genes such as NAC transcription factors and transmembrane proteins were present on chromosome 2A (763,689,738–765,710,113 bp). The GP for a GFeC trait ranged from low to moderate values. The current study reported GWAS of GFeC for the first time in hexaploid wheat varieties. These findings confirm the utility of GWAS and GP to explore the genetic architecture of GFeC for breeding programs aiming at the improvement of wheat grain quality.
Collapse
|
26
|
Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat. Int J Mol Sci 2018; 19:ijms19103237. [PMID: 30347689 PMCID: PMC6214031 DOI: 10.3390/ijms19103237] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 11/25/2022] Open
Abstract
Synthetic hexaploid wheat (SHW; Triticum durum L. × Aegilopstauschii Coss.) is a means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a potential genetic resource for improving grain mineral concentrations. We quantified 10 grain minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using an inductively coupled mass spectrometer in 123 SHWs for a genome-wide association study (GWAS). A GWAS with 35,648 single nucleotide polymorphism (SNP) markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) identified on the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to be used in the A and B genome along with the D-genome. Regression analysis identified a positive correlation between a cumulative number of favorable alleles at MTA loci in a genotype and grain mineral concentration. Additionally, we identified multi-traits and stable MTAs and recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, Fe, Mg, Mn, Ni, and Zn), a large number of favorable alleles compared to low ranking genotypes and checks that could be utilized in the breeding program for the genetic biofortification. This study will further enhance our understanding of the genetic architecture of grain minerals in wheat and related cereals.
Collapse
|
27
|
Descalsota GIL, Swamy BPM, Zaw H, Inabangan-Asilo MA, Amparado A, Mauleon R, Chadha-Mohanty P, Arocena EC, Raghavan C, Leung H, Hernandez JE, Lalusin AB, Mendioro MS, Diaz MGQ, Reinke R. Genome-Wide Association Mapping in a Rice MAGIC Plus Population Detects QTLs and Genes Useful for Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:1347. [PMID: 30294335 PMCID: PMC6158342 DOI: 10.3389/fpls.2018.01347] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 08/27/2018] [Indexed: 05/19/2023]
Abstract
The development of rice genotypes with micronutrient-dense grains and disease resistance is one of the major priorities in rice improvement programs. We conducted Genome-wide association studies (GWAS) using a Multi-parent Advanced Generation Inter-Cross (MAGIC) Plus population to identify QTLs and SNP markers that could potentially be integrated in biofortification and disease resistance breeding. We evaluated 144 MAGIC Plus lines for agronomic and biofortification traits over two locations for two seasons, while disease resistance was screened for one season in the screen house. X-ray fluorescence technology was used to measure grain Fe and Zn concentrations. Genotyping was carried out by genotype by sequencing and a total of 14,242 SNP markers were used in the association analysis. We used Mixed linear model (MLM) with kinship and detected 57 significant genomic regions with a -log10 (P-value) ≥ 3.0. The PH 1.1 and Zn 7.1 were consistently identified in all the four environments, ten QTLs qDF 3.1, qDF 6.2 qDF 9.1 qPH 5.1 qGL 3.1, qGW 3.1, qGW 11.1, and qZn 6.2 were detected in two environments, while two major loci qBLB 11.1 and qBLB 5.1 were identified for Bacterial Leaf Blight (BLB) resistance. The associated SNP markers were found to co-locate with known major genes and QTLs such as OsMADS50 for days to flowering, osGA20ox2 for plant height, and GS3 for grain length. Similarly, Xa4 and xa5 genes were identified for BLB resistance and Pi5(t), Pi28(t), and Pi30(t) genes were identified for Blast resistance. A number of metal homeostasis genes OsMTP6, OsNAS3, OsMT2D, OsVIT1, and OsNRAMP7 were co-located with QTLs for Fe and Zn. The marker-trait relationships from Bayesian network analysis showed consistency with the results of GWAS. A number of promising candidate genes reported in our study can be further validated. We identified several QTLs/genes pyramided lines with high grain Zn and acceptable yield potential, which are a good resource for further evaluation to release as varieties as well as for use in breeding programs.
Collapse
Affiliation(s)
- Gwen Iris L. Descalsota
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
- University of Southern Mindanao, Kabacan, Philippines
| | | | - Hein Zaw
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | | | - Amery Amparado
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | - Ramil Mauleon
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | | | - Emily C. Arocena
- Philippine Rice Research Institute, Science City of Muñoz, Philippines
| | - Chitra Raghavan
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | - Hei Leung
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| | | | | | | | | | - Russell Reinke
- Strategic Innovation Platform, International Rice Research Institute, Manila, Philippines
| |
Collapse
|
28
|
Alomari DZ, Eggert K, von Wirén N, Alqudah AM, Polley A, Plieske J, Ganal MW, Pillen K, Röder MS. Identifying Candidate Genes for Enhancing Grain Zn Concentration in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1313. [PMID: 30271416 PMCID: PMC6143079 DOI: 10.3389/fpls.2018.01313] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 05/18/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the major staple food crops worldwide. Despite efforts in improving wheat quality, micronutrient levels are still below the optimal range for human nutrition. In particular, zinc (Zn) deficiency is a widespread problem in human nutrition in countries relying mainly on a cereal diet; hence improving Zn accumulation in grains is an imperative need. This study was designed to understand the genetic architecture of Zn grain concentrations in wheat grains. We performed a genome-wide association study (GWAS) for grain Zn concentrations in 369 European wheat genotypes, using field data from 3 years. The complete wheat panel was genotyped by high-density arrays of single nucleotide polymorphic (SNP) markers (90k iSELECT Infinium and 35k Affymetrix arrays) resulting in 15,523 polymorphic markers. Additionally, a subpanel of 183 genotypes was analyzed with a novel 135k Affymetrix marker array resulting in 28,710 polymorphic SNPs for high-resolution mapping of the potential genomic regions. The mean grain Zn concentration of the genotypes ranged from 25.05-52.67 μg g-1 dry weight across years with a moderate heritability value. Notably, 40 marker-trait associations (MTAs) were detected in the complete panel of varieties on chromosomes 2A, 3A, 3B, 4A, 4D, 5A, 5B, 5D, 6D, 7A, 7B, and 7D. The number of MTAs in the subpanel was increased to 161 MTAs whereas the most significant and consistent associations were located on chromosomes 3B (723,504,241-723,611,488 bp) and 5A (462,763,758-466,582,184 bp) having major effects. These genomic regions include newly identified putative candidate genes, which are related to Zn uptake and transport or represent bZIP and mitogen-activated protein kinase genes. These findings provide the basis for understanding the genetic background of Zn concentration in wheat grains that in turn may help breeders to select high Zn-containing genotypes to improve human health and grain quality.
Collapse
Affiliation(s)
- Dalia Z. Alomari
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- *Correspondence: Dalia Z. Alomari, ;
| | - Kai Eggert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ahmad M. Alqudah
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
29
|
Alomari DZ, Eggert K, von Wirén N, Alqudah AM, Polley A, Plieske J, Ganal MW, Pillen K, Röder MS. Identifying Candidate Genes for Enhancing Grain Zn Concentration in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1313. [PMID: 30271416 DOI: 10.3389/fpls.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 05/18/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the major staple food crops worldwide. Despite efforts in improving wheat quality, micronutrient levels are still below the optimal range for human nutrition. In particular, zinc (Zn) deficiency is a widespread problem in human nutrition in countries relying mainly on a cereal diet; hence improving Zn accumulation in grains is an imperative need. This study was designed to understand the genetic architecture of Zn grain concentrations in wheat grains. We performed a genome-wide association study (GWAS) for grain Zn concentrations in 369 European wheat genotypes, using field data from 3 years. The complete wheat panel was genotyped by high-density arrays of single nucleotide polymorphic (SNP) markers (90k iSELECT Infinium and 35k Affymetrix arrays) resulting in 15,523 polymorphic markers. Additionally, a subpanel of 183 genotypes was analyzed with a novel 135k Affymetrix marker array resulting in 28,710 polymorphic SNPs for high-resolution mapping of the potential genomic regions. The mean grain Zn concentration of the genotypes ranged from 25.05-52.67 μg g-1 dry weight across years with a moderate heritability value. Notably, 40 marker-trait associations (MTAs) were detected in the complete panel of varieties on chromosomes 2A, 3A, 3B, 4A, 4D, 5A, 5B, 5D, 6D, 7A, 7B, and 7D. The number of MTAs in the subpanel was increased to 161 MTAs whereas the most significant and consistent associations were located on chromosomes 3B (723,504,241-723,611,488 bp) and 5A (462,763,758-466,582,184 bp) having major effects. These genomic regions include newly identified putative candidate genes, which are related to Zn uptake and transport or represent bZIP and mitogen-activated protein kinase genes. These findings provide the basis for understanding the genetic background of Zn concentration in wheat grains that in turn may help breeders to select high Zn-containing genotypes to improve human health and grain quality.
Collapse
Affiliation(s)
- Dalia Z Alomari
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kai Eggert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ahmad M Alqudah
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|