1
|
Yue H, Chen G, Zhang Z, Guo Z, Zhang Z, Zhang S, Turlings TCJ, Zhou X, Peng J, Gao Y, Zhang D, Shi X, Liu Y. Single-cell transcriptome landscape elucidates the cellular and developmental responses to tomato chlorosis virus infection in tomato leaf. PLANT, CELL & ENVIRONMENT 2024; 47:2660-2674. [PMID: 38619176 DOI: 10.1111/pce.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Plant viral diseases compromise the growth and yield of the crop globally, and they tend to be more serious under extreme temperatures and drought climate changes. Currently, regulatory dynamics during plant development and in response to virus infection at the plant cell level remain largely unknown. In this study, single-cell RNA sequencing on 23 226 individual cells from healthy and tomato chlorosis virus-infected leaves was established. The specific expression and epigenetic landscape of each cell type during the viral infection stage were depicted. Notably, the mesophyll cells showed a rapid function transition in virus-infected leaves, which is consistent with the pathological changes such as thinner leaves and decreased chloroplast lamella in virus-infected samples. Interestingly, the F-box protein SKIP2 was identified to play a pivotal role in chlorophyll maintenance during virus infection in tomato plants. Knockout of the SlSKIP2 showed a greener leaf state before and after virus infection. Moreover, we further demonstrated that SlSKIP2 was located in the cytomembrane and nucleus and directly regulated by ERF4. In conclusion, with detailed insights into the plant responses to viral infections at the cellular level, our study provides a genetic framework and gene reference in plant-virus interaction and breeding in the future research.
Collapse
Affiliation(s)
- Hao Yue
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Gong Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhaojiang Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanhong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Songbai Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Jing Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Deyong Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Xiaobin Shi
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
2
|
Guo Y, Jiang Y, Wu M, Tu A, Yin J, Yang J. TaWRKY50-TaSARK7 module-mediated cysteine-rich protein phosphorylation suppresses the programmed cell death response to Chinese wheat mosaic virus infection. Virology 2024; 595:110071. [PMID: 38593594 DOI: 10.1016/j.virol.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses. However, there is currently a limited understanding of the regulation of viral infection by WRKY transcription factors in wheat (Triticum aestivum). The WRKY transcription factor TaWRKY50 in group IIb wheat exhibited a significant response to Chinese wheat mosaic virus infection. TaWRKY50 is localized in the nucleus and is an activating transcription factor. Interestingly, we found that silencing TaWRKY50 induces cell death following inoculation with CWMV. The protein kinase TaSAPK7 is specific to plants, whereas NbSRK is a closely related kinase with high homology to TaSAPK7. The transcriptional activities of both TaSAPK7 and NbSRK can be enhanced by TaWRKY50 binding to their promoters. CRP is an RNA silencing suppressor. Furthermore, TaWRKY50 may regulate CWMV infection by regulating the expression of TaSAPK7 and NbSRK to increase CRP phosphorylation and reduce the amount of programmed cell death (PCD).
Collapse
Affiliation(s)
- Yunfei Guo
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Mila Wu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Aizhu Tu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jingliang Yin
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Zhao Y, Zhu X, Shi CM, Xu G, Zuo S, Shi Y, Cao W, Kang H, Liu W, Wang R, Ning Y, Wang GL, Wang X. OsEIL2 balances rice immune responses against (hemi)biotrophic and necrotrophic pathogens via the salicylic acid and jasmonic acid synergism. THE NEW PHYTOLOGIST 2024; 243:362-380. [PMID: 38730437 DOI: 10.1111/nph.19809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.
Collapse
Affiliation(s)
- Yudan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoying Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Cheng-Min Shi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yanlong Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenlei Cao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
4
|
Chen P, Wang J, Liu Q, Liu J, Mo Q, Sun B, Mao X, Jiang L, Zhang J, Lv S, Yu H, Chen W, Liu W, Li C. Transcriptome and Metabolome Analysis of Rice Cultivar CBB23 after Inoculation by Xanthomonas oryzae pv. oryzae Strains AH28 and PXO99 A. PLANTS (BASEL, SWITZERLAND) 2024; 13:1411. [PMID: 38794481 PMCID: PMC11124827 DOI: 10.3390/plants13101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Bacterial leaf blight (BLB), among the most serious diseases in rice production, is caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23, the broadest resistance gene against BLB in rice, is widely used in rice breeding. In this study, the rice variety CBB23 carrying the Xa23 resistance gene was inoculated with AH28 and PXO99A to identify differentially expressed genes (DEGs) associated with the resistance. Transcriptome sequencing of the infected leaves showed 7997 DEGs between the two strains at different time points, most of which were up-regulated, including cloned rice anti-blight, peroxidase, pathology-related, protein kinase, glucosidase, and other coding genes, as well as genes related to lignin synthesis, salicylic acid, jasmonic acid, and secondary metabolites. Additionally, the DEGs included 40 cloned, five NBS-LRR, nine SWEET family, and seven phenylalanine aminolyase genes, and 431 transcription factors were differentially expressed, the majority of which belonged to the WRKY, NAC, AP2/ERF, bHLH, and MYB families. Metabolomics analysis showed that a large amount of alkaloid and terpenoid metabolite content decreased significantly after inoculation with AH28 compared with inoculation with PXO99A, while the content of amino acids and their derivatives significantly increased. This study is helpful in further discovering the pathogenic mechanism of AH28 and PXO99A in CBB23 rice and provides a theoretical basis for cloning and molecular mechanism research related to BLB resistance in rice.
Collapse
Affiliation(s)
- Pingli Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjie Wang
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510335, China
| | - Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjie Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiaoping Mo
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510335, China
| | - Bingrui Sun
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Liqun Jiang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shuwei Lv
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hang Yu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weixiong Chen
- Guangzhou Academy of Agricultural Sciences, Guangzhou 510335, China
| | - Wei Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chen Li
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
5
|
Zheng C, Zhou J, Yuan X, Zheng E, Liu X, Cui W, Yan C, Wu Y, Ruan W, Yi K, Chen J, Wang X. Elevating plant immunity by translational regulation of a rice WRKY transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1033-1048. [PMID: 37997501 PMCID: PMC10955491 DOI: 10.1111/pbi.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
Plants have intricate mechanisms that tailor their defence responses to pathogens. WRKY transcription factors play a pivotal role in plant immunity by regulating various defence signalling pathways. Many WRKY genes are transcriptionally activated upon pathogen attack, but how their functions are regulated after transcription remains elusive. Here, we show that OsWRKY7 functions as a crucial positive regulator of rice basal immunity against Xanthomonas oryzae pv. oryzae (Xoo). The activity of OsWRKY7 was regulated at both translational and post-translational levels. Two translational products of OsWRKY7 were generated by alternative initiation. The full-length OsWRKY7 protein is normally degraded by the ubiquitin-proteasome system but was accumulated following elicitor or pathogen treatment, whereas the alternate product initiated from the downstream in-frame start codon was stable. Both the full and alternate OsWRKY7 proteins have transcriptional activities in yeast and rice cells, and overexpression of each form enhanced resistance to Xoo infection. Furthermore, disruption of the main AUG in rice increased the endogenous translation of the alternate stabilized form of OsWRKY7 and enhanced bacterial blight resistance. This study provides insights into the coordination of alternative translation and protein stability in the regulation of plant growth and basal defence mediated by the OsWRKY7 transcription factor, and also suggests a promising strategy to breed disease-resistant rice by translation initiation control.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
- College of Plant ProtectionNorthwest A&F UniversityYanglingP.R. China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
| | - Xiaoya Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
- College of Plant ProtectionNorthwest A&F UniversityYanglingP.R. China
| | - Ersong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
- College of Plant ProtectionNorthwest A&F UniversityYanglingP.R. China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
| | - Chengqi Yan
- Institute of BiotechnologyNingbo Academy of Agricultural SciencesNingboP.R. China
| | - Yueyan Wu
- Zhejiang Wan Li UniversityNingboP.R. China
| | - Wenyuan Ruan
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Keke Yi
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
- Institute of Plant VirologyNingbo UniversityNingboP. R. China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouP. R. China
| |
Collapse
|
6
|
Yang Z, Zhu Z, Guo Y, Lan J, Zhang J, Chen S, Dou S, Yang M, Li L, Liu G. OsMKK1 is a novel element that positively regulates the Xa21-mediated resistance response to Xanthomonas oryzae pv. oryzae in rice. PLANT CELL REPORTS 2024; 43:31. [PMID: 38195905 DOI: 10.1007/s00299-023-03085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/18/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE OsMKK1, a MAPK gene, positively regulates rice Xa21-mediated resistance response and also plays roles in normal growth and development process of rice. The mitogen-activated protein kinase (MAPK) cascade was highly conserved among eukaryotes, which played crucial roles in plant responses to pathogen infection. Bacterial blight is the most devastating bacterial disease. Xa21 confers broad-spectrum resistance to Xanthomonas oryzae pv. Oryzae (Xoo). This study identified that the transcription level of OsMKK1 was up-regulated in resistant response against Xoo, thus overexpression (OsMKK1-OX) and RNA interference (OsMKK1-RNAi) transgenic rice lines under the background of Xa21 was constructed. Compared with recipient control plants 4021, the OsMKK1-OX lines significantly enhanced disease resistance to Xoo, on the contrary, the resistance of OsMKK1-RNAi lines was weakened, demonstrated that OsMKK1 played a positive role in Xa21-mediated disease resistance pathway. A number of pathogenesis-related proteins, including PR1A, PR2 and PR10A showed enhanced expression in OsMKK1-OX lines, supported that these PR genes may be regulated by OsMKK1 to participate in the defense responses. In addition, the agronomic traits of OsMKK1 transgenic plants were affected. Overall, these results revealed the role of OsMKK1 in Xa21-mediated resistance against Xoo and in the normal growth and development process in rice.
Collapse
Affiliation(s)
- ZeXi Yang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zheng Zhu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yalu Guo
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Jinping Lan
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
- Research Center for Life Sciences, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jianshuo Zhang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuo Chen
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shijuan Dou
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ming Yang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Liyun Li
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Guozhen Liu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
7
|
Saha B, Nayak J, Srivastava R, Samal S, Kumar D, Chanwala J, Dey N, Giri MK. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. PLANTA 2023; 259:7. [PMID: 38012461 DOI: 10.1007/s00425-023-04269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
MAIN CONCLUSION This review article explores the intricate role, regulation, and signaling mechanisms of WRKY TFs in response to biotic stress, particularly emphasizing their pivotal role in the trophism of plant-pathogen interactions. Transcription factors (TFs) play a vital role in governing both plant defense and development by controlling the expression of various downstream target genes. Early studies have shown the differential expression of certain WRKY transcription factors by microbial infections. Several transcriptome-wide studies later demonstrated that diverse sets of WRKYs are significantly activated in the early stages of viral, bacterial, and fungal infections. Furthermore, functional investigations indicated that overexpression or silencing of certain WRKY genes in plants can drastically alter disease symptoms as well as pathogen multiplication rates. Hence the new aspects of pathogen-triggered WRKY TFs mediated regulation of plant defense can be explored. The already recognized roles of WRKYs include transcriptional regulation of defense-related genes, modulation of hormonal signaling, and participation in signal transduction pathways. Some WRKYs have been shown to directly bind to pathogen effectors, acting as decoys or resistance proteins. Notably, the signaling molecules like salicylic acid, jasmonic acid, and ethylene which are associated with plant defense significantly increase the expression of several WRKYs. Moreover, induction of WRKY genes or heightened WRKY activities is also observed during ISR triggered by the beneficial microbes which protect the plants from subsequent pathogen infection. To understand the contribution of WRKY TFs towards disease resistance and their exact metabolic functions in infected plants, further studies are required. This review article explores the intrinsic transcriptional regulation, signaling mechanisms, and hormonal crosstalk governed by WRKY TFs in plant disease defense response, particularly emphasizing their specific role against different biotrophic, hemibiotrophic, and necrotrophic pathogen infections.
Collapse
Affiliation(s)
- Baisista Saha
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Jagatjeet Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Richa Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Swarnmala Samal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Jeky Chanwala
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Nrisingha Dey
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
8
|
Hoang TV, Vo KTX, Rahman MM, Zhong R, Lee C, Ketudat Cairns JR, Ye ZH, Jeon JS. SPOTTED-LEAF7 targets the gene encoding β-galactosidase9, which functions in rice growth and stress responses. PLANT PHYSIOLOGY 2023; 193:1109-1125. [PMID: 37341542 PMCID: PMC10517187 DOI: 10.1093/plphys/kiad359] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023]
Abstract
β-Galactosidases (Bgals) remove terminal β-D-galactosyl residues from the nonreducing ends of β-D-galactosidases and oligosaccharides. Bgals are present in bacteria, fungi, animals, and plants and have various functions. Despite the many studies on the evolution of BGALs in plants, their functions remain obscure. Here, we identified rice (Oryza sativa) β-galactosidase9 (OsBGAL9) as a direct target of the heat stress-induced transcription factor SPOTTED-LEAF7 (OsSPL7), as demonstrated by protoplast transactivation analysis and yeast 1-hybrid and electrophoretic mobility shift assays. Knockout plants for OsBGAL9 (Osbgal9) showed short stature and growth retardation. Histochemical β-glucuronidase (GUS) analysis of transgenic lines harboring an OsBGAL9pro:GUS reporter construct revealed that OsBGAL9 is mainly expressed in internodes at the mature stage. OsBGAL9 expression was barely detectable in seedlings under normal conditions but increased in response to biotic and abiotic stresses. Ectopic expression of OsBGAL9 enhanced resistance to the rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, as well as tolerance to cold and heat stress, while Osbgal9 mutant plants showed the opposite phenotypes. OsBGAL9 localized to the cell wall, suggesting that OsBGAL9 and its plant putative orthologs likely evolved functions distinct from those of its closely related animal enzymes. Enzyme activity assays and analysis of the cell wall composition of OsBGAL9 overexpression and mutant plants indicated that OsBGAL9 has activity toward galactose residues of arabinogalactan proteins (AGPs). Our study clearly demonstrates a role for a member of the BGAL family in AGP processing during plant development and stress responses.
Collapse
Affiliation(s)
- Trung Viet Hoang
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Md Mizanor Rahman
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Chanhui Lee
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
9
|
Lopes NDS, Santos AS, de Novais DPS, Pirovani CP, Micheli F. Pathogenesis-related protein 10 in resistance to biotic stress: progress in elucidating functions, regulation and modes of action. FRONTIERS IN PLANT SCIENCE 2023; 14:1193873. [PMID: 37469770 PMCID: PMC10352611 DOI: 10.3389/fpls.2023.1193873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 07/21/2023]
Abstract
Introduction The Family of pathogenesis-related proteins 10 (PR-10) is widely distributed in the plant kingdom. PR-10 are multifunctional proteins, constitutively expressed in all plant tissues, playing a role in growth and development or being induced in stress situations. Several studies have investigated the preponderant role of PR-10 in plant defense against biotic stresses; however, little is known about the mechanisms of action of these proteins. This is the first systematic review conducted to gather information on the subject and to reveal the possible mechanisms of action that PR-10 perform. Methods Therefore, three databases were used for the article search: PubMed, Web of Science, and Scopus. To avoid bias, a protocol with inclusion and exclusion criteria was prepared. In total, 216 articles related to the proposed objective of this study were selected. Results The participation of PR-10 was revealed in the plant's defense against several stressor agents such as viruses, bacteria, fungi, oomycetes, nematodes and insects, and studies involving fungi and bacteria were predominant in the selected articles. Studies with combined techniques showed a compilation of relevant information about PR-10 in biotic stress that collaborate with the understanding of the mechanisms of action of these molecules. The up-regulation of PR-10 was predominant under different conditions of biotic stress, in addition to being more expressive in resistant varieties both at the transcriptional and translational level. Discussion Biological models that have been proposed reveal an intrinsic network of molecular interactions involving the modes of action of PR-10. These include hormonal pathways, transcription factors, physical interactions with effector proteins or pattern recognition receptors and other molecules involved with the plant's defense system. Conclusion The molecular networks involving PR-10 reveal how the plant's defense response is mediated, either to trigger susceptibility or, based on data systematized in this review, more frequently, to have plant resistance to the disease.
Collapse
Affiliation(s)
- Natasha dos Santos Lopes
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Ariana Silva Santos
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Diogo Pereira Silva de Novais
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Meditérranéennes et Tropicales (UMR AGAP Institut), Montpellier, France
| |
Collapse
|
10
|
Ling J, Liu R, Hao Y, Li Y, Ping X, Yang Q, Yang Y, Lu X, Xie B, Zhao J, Mao Z. Comprehensive analysis of the WRKY gene family in Cucumis metuliferus and their expression profile in response to an early stage of root knot nematode infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1143171. [PMID: 37021316 PMCID: PMC10067755 DOI: 10.3389/fpls.2023.1143171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Root-knot nematode (RKN) is a major factor that limits the growth and productivity of important Cucumis crops, such as cucumber and melon, which lack RKN-resistance genes in their genome. Cucumis metuliferus is a wild Cucumis species that displays a high degree of RKN-resistance. WRKY transcription factors were involved in plant response to biotic stresses. However, little is known on the function of WRKY genes in response to RKN infection in Cucumis crops. In this study, Cucumis metuliferus 60 WRKY genes (CmWRKY) were identified in the C. metuliferus genome, and their conserved domains were classified into three main groups based on multiple sequence alignment and phylogenetic analysis. Synteny analysis indicated that the WRKY genes were highly conserved in Cucumis crops. Transcriptome data from of C. metuliferus roots inoculated with RKN revealed that 16 CmWRKY genes showed differential expression, of which 13 genes were upregulated and three genes were downregulated, indicating that these CmWRKY genes are important to C. metuliferus response to RKN infection. Two differentially expression CmWRKY genes (CmWRKY10 and CmWRKY28) were selected for further functional analysis. Both CmWRKY genes were localized in nucleus, indicating they may play roles in transcriptional regulation. This study provides a foundation for further research on the function of CmWRKY genes in RKN stress resistance and elucidation of the regulatory mechanism.
Collapse
Affiliation(s)
- Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yali Hao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingxing Ping
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qihong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
12
|
Ke X, Wang J, Xu X, Guo Y, Zuo Y, Yin L. Histological and molecular responses of Vigna angularis to Uromyces vignae infection. BMC PLANT BIOLOGY 2022; 22:489. [PMID: 36229784 PMCID: PMC9563176 DOI: 10.1186/s12870-022-03869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/04/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND To advance the understanding of adzuki bean (Vigna angularis) resistance to infection with the rust-causing fungus Uromyces vignae (Uv), we comprehensively analyzed histological events and the transcriptome of Uv-infected adzuki bean. RESULTS Compared with the susceptible cv. Baoqinghong (BQH), the resistant cv. QH1 showed inhibition of uredospore germination and substomatal vesicle development, intense autofluorescence of cells around the infection site, and cell wall deposit formation in response to Uv infection. In cv. QH1, gene set enrichment analysis (GSEA) showed enrichment of chitin catabolic processes and responses to biotic stimuli at 24 h post-inoculation (hpi) and cell wall modification and structural constituent of cytoskeleton at 48 hpi. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated enrichment of WRKY transcription factors (TFs), the calcium binding protein cml, and hydroquinone glucosyltransferase at both 24 and 48 hpi. In total, 1992 and 557 differentially expressed genes (DEGs) were identified at 24 and 48 hpi, respectively. Cell surface pattern-recognition receptors (PRRs), WRKY TFs, defense-associated pathogenesis-related (PR) proteins, and lignin and antimicrobial phenolic compound biosynthesis were significantly induced. Finally, we detected the chitinase (CHI) and phenylalanine ammonia-lyase (PAL) activity were higher in QH1 and increased much earlier than in BQH. CONCLUSION In cv. QH1, cell-surface PRRs rapidly recognize Uv invasion and activate the corresponding TFs to increase the transcription of defense-related genes and corresponding enzymatic activities to prevent fungal development and spread in host tissues.
Collapse
Affiliation(s)
- Xiwang Ke
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Jie Wang
- Department of Biological Center, Harbin Academy of Agricultural Sciences, 150028, Harbin, China
| | - Xiaodan Xu
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Yongxia Guo
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Yuhu Zuo
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China
| | - Lihua Yin
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, 163319, Daqing, China.
| |
Collapse
|
13
|
Zhu Z, Wang T, Lan J, Ma J, Xu H, Yang Z, Guo Y, Chen Y, Zhang J, Dou S, Yang M, Li L, Liu G. Rice MPK17 Plays a Negative Role in the Xa21-Mediated Resistance Against Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2022; 15:41. [PMID: 35920921 PMCID: PMC9349333 DOI: 10.1186/s12284-022-00590-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious diseases affecting rice production worldwide. Xa21 was the first disease resistance gene cloned in rice, which encodes a receptor kinase and confers broad resistance against Xoo stains. Dozens of components in the Xa21-mediated pathway have been identified in the past decades, however, the involvement of mitogen-activated protein kinase (MAPK) genes in the pathway has not been well described. To identify MAPK involved in Xa21-mediated resistance, the level of MAPK proteins was profiled using Western blot analysis. The abundance of OsMPK17 (MPK17) was found decreased during the rice-Xoo interaction in the background of Xa21. To investigate the function of MPK17, MPK17-RNAi and over-expression (OX) transgenic lines were generated. The RNAi lines showed an enhanced resistance, while OX lines had impaired resistance against Xoo, indicating that MPK17 plays negative role in Xa21-mediated resistance. Furthermore, the abundance of transcription factor WRKY62 and pathogenesis-related proteins PR1A were changed in the MPK17 transgenic lines when inoculated with Xoo. We also observed that the MPK17-RNAi and -OX rice plants showed altered agronomic traits, indicating that MPK17 also plays roles in the growth and development. On the basis of the current study and published results, we propose a "Xa21-MPK17-WRKY62-PR1A" signaling that functions in the Xa21-mediated disease resistance pathway. The identification of MPK17 advances our understanding of the mechanism underlying Xa21-mediated immunity, specifically in the mid- and late-stages.
Collapse
Affiliation(s)
- Zheng Zhu
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Tianxingzi Wang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Jinping Lan
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Research Center for Life Sciences, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jinjiao Ma
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Haiqing Xu
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Zexi Yang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Yalu Guo
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, Guangdong, China
| | - Yue Chen
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Jianshuo Zhang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Shijuan Dou
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Ming Yang
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China
| | - Liyun Li
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China.
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China.
| | - Guozhen Liu
- College of Life Sciences, Hebei Agricultural University, 2596 Lekai South Street, West Campus, Baoding, 071001, Hebei, China.
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding, 071001, China.
| |
Collapse
|
14
|
Sheng C, Yu D, Li X, Yu H, Zhang Y, Saqib Bilal M, Ma H, Zhang X, Baig A, Nie P, Zhao H. OsAPX1 Positively Contributes to Rice Blast Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:843271. [PMID: 35386681 PMCID: PMC8978999 DOI: 10.3389/fpls.2022.843271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Ascorbate peroxidases (APXs) maintain cellular reactive oxygen species (ROS) homeostasis through their peroxidase activity. Here, we report that OsAPX1 also promotes ROS production such that a delicate cellular ROS homeostasis is achieved temporally after Magnaporthe oryzae infection. OsAPX1 specifically induces ROS production through increasing respiratory burst oxidase homologs (OsRBOHs) expression and can be inhibited by DPI, a ROS inhibitor. The time-course experiment data show that the simultaneous induction of OsAPX1 and OsRBOHs leads to ROS accumulation at an early stage; whereas a more durable expression of OsAPX1 leads to ROS scavenging at a later stage. By the temporal switching between ROS inducer and eliminator, OsAPX1 triggers an instant ROS burst upon M. oryzae infection and then a timely elimination of ROS toxicity. We find that OsAPX1 is under the control of the miR172a-OsIDS1 regulatory module. OsAPX1 also affects salicylic acid (SA) synthesis and signaling, which contribute to blast resistance. In conclusion, we show that OsAPX1 is a key factor that connects the upstream gene silencing and transcription regulatory routes with the downstream phytohormone and redox pathway, which provides an insight into the sophisticated regulatory network of rice innate immunity.
Collapse
Affiliation(s)
- Cong Sheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Dongli Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Xuan Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Hanxi Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Yimai Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Saqib Bilal
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, China
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Pingping Nie
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Moon H, Jeong AR, Kwon OK, Park CJ. Oryza-Specific Orphan Protein Triggers Enhanced Resistance to Xanthomonas oryzae pv. oryzae in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:859375. [PMID: 35360326 PMCID: PMC8961030 DOI: 10.3389/fpls.2022.859375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
All genomes carry lineage-specific orphan genes lacking homology in their closely related species. Identification and functional study of the orphan genes is fundamentally important for understanding lineage-specific adaptations including acquirement of resistance to pathogens. However, most orphan genes are of unknown function due to the difficulties in studying them using helpful comparative genomics. Here, we present a defense-related Oryza-specific orphan gene, Xio1, specifically induced by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) in an immune receptor XA21-dependent manner. Salicylic acid (SA) and ethephon (ET) also induced its expression, but methyl jasmonic acid (MeJA) reduced its basal expression. C-terminal green fluorescent protein (GFP) tagged Xio1 (Xio1-GFP) was visualized in the nucleus and the cytosol after polyethylene glycol (PEG)-mediated transformation in rice protoplasts and Agrobacterium-mediated infiltration in tobacco leaves. Transgenic rice plants overexpressing Xio1-GFP showed significantly enhanced resistance to Xoo with reduced lesion lengths and bacterial growth, in company with constitutive expression of defense-related genes. However, all of the transgenic plants displayed severe growth retardation and premature death. Reactive oxygen species (ROS) was significantly produced in rice protoplasts constitutively expressing Xio1-GFP. Overexpression of Xio1-GFP in non-Oryza plant species, Arabidopsis thaliana, failed to induce growth retardation and enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. Our results suggest that the defense-related orphan gene Xio1 plays an important role in distinctive mechanisms evolved within the Oryza and provides a new source of Oryza-specific genes for crop-breeding programs.
Collapse
Affiliation(s)
- Hyeran Moon
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - A-Ram Jeong
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Oh-Kyu Kwon
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Chang-Jin Park
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| |
Collapse
|
16
|
Huang X, Ou S, Li Q, Luo Y, Lin H, Li J, Zhu M, Wang K. The R2R3 Transcription Factor CsMYB59 Regulates Polyphenol Oxidase Gene CsPPO1 in Tea Plants ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:739951. [PMID: 34804087 PMCID: PMC8600361 DOI: 10.3389/fpls.2021.739951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Polyphenol oxidase (PPO) plays a role in stress response, secondary metabolism, and other physiological processes during plant growth and development, and is also a critical enzyme in black tea production. However, the regulatory mechanisms of PPO genes and their activity in tea plants are still unclear. In this study, we measured PPO activity in two different tea cultivars, Taoyuandaye (TYDY) and Bixiangzao (BXZ), which are commonly used to produce black tea and green tea, respectively. The expression pattern of CsPPO1 was assessed and validated via transcriptomics and quantitative polymerase chain reaction in both tea varieties. In addition, we isolated and identified an R2R3-MYB transcription factor CsMYB59 that may regulate CsPPO1 expression. CsMYB59 was found to be a nuclear protein, and its expression in tea leaves was positively correlated with CsPPO1 expression and PPO activity. Transcriptional activity analysis showed that CsMYB59 was a transcriptional activator, and the dual-luciferase assay indicated that CsMYB59 could activate the expression of CsPPO1 in tobacco leaves. In summary, our study demonstrates that CsMYB59 represents a transcriptional activator in tea plants and may mediate the regulation of PPO activity by activating CsPPO1 expression. These findings provide novel insights into the regulatory mechanism of PPO gene in Camellia sinensis, which might help to breed tea cultivars with high PPO activity.
Collapse
Affiliation(s)
- Xiangxiang Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Shuqiong Ou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Qin Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Yong Luo
- School of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou, China
| | - Haiyan Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Juan Li
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Kunbo Wang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Co-innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
17
|
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int J Mol Sci 2021; 22:11658. [PMID: 34769087 PMCID: PMC8584176 DOI: 10.3390/ijms222111658] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Yujun Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Huanbin Shi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| |
Collapse
|
18
|
Wani SH, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. PLANT CELL REPORTS 2021; 40:1071-1085. [PMID: 33860345 DOI: 10.1007/s00299-021-02691-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/28/2021] [Indexed: 05/24/2023]
Abstract
WRKY transcription factors are among the largest families of transcriptional regulators. In this review, their pivotal role in modulating various signal transduction pathways during biotic and abiotic stresses is discussed. Transcription factors (TFs) are important constituents of plant signaling pathways that define plant responses against biotic and abiotic stimuli besides playing a role in response to internal signals which coordinate different interacting partners during developmental processes. WRKY TFs, deriving their nomenclature from their signature DNA-binding sequence, represent one of the largest families of transcriptional regulators found exclusively in plants. By modulating different signal transduction pathways, these TFs contribute to various plant processes including nutrient deprivation, embryogenesis, seed and trichome development, senescence as well as other developmental and hormone-regulated processes. A growing body of research suggests transcriptional regulation of WRKY TFs in adapting plant to a variety of stressed environments. WRKY TFs can regulate diverse biological functions from receptors for pathogen triggered immunity, modulator of chromatin for specific interaction and signal transfer through a complicated network of genes. Latest discoveries illustrate the interaction of WRKY proteins with other TFs to form an integral part of signaling webs that regulate several seemingly disparate processes and defense-related genes, thus establishing their significant contributions to plant immune response. The present review starts with a brief description on the structural characteristics of WRKY TFs followed by the sections that present recent evidence on their roles in diverse biological processes in plants. We provide a comprehensive overview on regulatory crosstalks involving WRKY TFs during multiple stress responses in plants and future prospects of WRKY TFs as promising molecular diagnostics for enhancing crop improvement.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Sher‑e‑Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192101, India
| | - Shruti Anand
- Mountain Research Centre for Field Crops, Sher‑e‑Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192101, India
| | - Balwant Singh
- National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, 208024, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
19
|
Verma KK, Song XP, Verma CL, Chen ZL, Rajput VD, Wu KC, Liao F, Chen GL, Li YR. Functional relationship between photosynthetic leaf gas exchange in response to silicon application and water stress mitigation in sugarcane. Biol Res 2021; 54:15. [PMID: 33933166 PMCID: PMC8088580 DOI: 10.1186/s40659-021-00338-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/19/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses. METHODS In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange. RESULTS In the present study we primarily revealed the consequences of low soil moisture content, which affect overall plant performance of sugarcane significantly. Silicon application reduced the adverse effects of water stress by improving the net photosynthetic assimilation rate (Anet) 1.35-18.75%, stomatal conductance to water vapour (gs) 3.26-21.57% and rate of transpiration (E) 1.16-17.83%. The mathematical models developed from the proposed hypothesis explained the functional relationships between photosynthetic responses of Si application and water stress mitigation. CONCLUSIONS Silicon application showed high ameliorative effects on photosynthetic responses of sugarcane to water stress and could be used for mitigating environmental stresses in other crops, too, in future.
Collapse
Affiliation(s)
- Krishan K Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement/ Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning,, 530007, Guangxi, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement/ Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning,, 530007, Guangxi, China
| | - Chhedi Lal Verma
- Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, 226005, India
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement/ Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning,, 530007, Guangxi, China
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Kai-Chao Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement/ Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning,, 530007, Guangxi, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement/ Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning,, 530007, Guangxi, China
| | - Gan-Lin Chen
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530 007, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement/ Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning,, 530007, Guangxi, China.
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
20
|
Liu W, Tang R, Zhang Y, Liu X, Gao Y, Dai Z, Li S, Wu B, Wang L. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). PLANTA 2021; 253:114. [PMID: 33934247 DOI: 10.1007/s00425-021-03618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/26/2021] [Indexed: 05/27/2023]
Abstract
Genome-wide identification, analysis and functional characterization of an unreported VvBBX gene showed a response to light and positive correlation with anthocyanin content, but also inhibition of light-induced anthocyanin synthesis. B-box (BBX) proteins are a class of zinc (Zn) finger transcription factors or regulators characterized by the presence of one or two BBX domains and play important roles in plant growth and development. However, the BBX genes' potential functions are insufficiently characterized in grape, a globally popular berry with high economic value. Here, 25 BBX family genes including a novel member (assigned VvBBX44) were identified genome widely in grape. The expression level of these VvBBXs were analyzed in 'Cabernet Sauvignon' (V. vinifera) stem, flower, leaf, tendril, petiole, and developing berries. The expression of VvBBX44 increased in developing 'Cabernet Sauvignon' berries. Its expression was inhibited in 'Jingxiu' and 'Muscat Hamburg' berry skin without sunlight. Furthermore, overexpression of VvBBX44 decreased the expression of LONG HYPOCOTYL 5 (VvHY5) and UDP-glucose flavonoid 3-O-glucosyltransferase (VvUFGT), and reduced the anthocyanin content in grape calli. Our results suggest that VvBBX44 may play an important role in grape berry coloring by directly repressing VvHY5 expression. This study provides new insights into the potential role of VvBBXs in berry development and light response and contributes to the understanding on the regulation mechanism of VvBBX44 in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wenwen Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Renkun Tang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yingying Gao
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Benhong Wu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| |
Collapse
|
21
|
Li Y, Liao S, Mei P, Pan Y, Zhang Y, Zheng X, Xie Y, Miao Y. OsWRKY93 Dually Functions Between Leaf Senescence and in Response to Biotic Stress in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:643011. [PMID: 33828575 PMCID: PMC8019945 DOI: 10.3389/fpls.2021.643011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 05/25/2023]
Abstract
Cross talking between natural senescence and cell death in response to pathogen attack is an interesting topic; however, its action mechanism is kept open. In this study, 33 OsWRKY genes were obtained by screening with leaf aging procedure through RNA-seq dataset, and 11 of them were confirmed a significant altered expression level in the flag leaves during aging by using the reverse transcript quantitative PCR (RT-qPCR). Among them, the OsWRKY2, OsWRKY14, OsWRKY26, OsWRKY69, and OsWRKY93 members exhibited short-term alteration in transcriptional levels in response to Magnaporthe grisea infection. The CRISPR/Cas9-edited mutants of five genes were developed and confirmed, and a significant sensitivity to M. oryzae infection was observed in CRISPR OsWRKY93-edited lines; on the other hand, a significant resistance to M. oryzae infection was shown in the enhanced expression OsWRKY93 plants compared to mock plants; however, enhanced expression of other four genes have no significant affection. Interestingly, ROS accumulation was also increased in OsWRKY93 enhanced plants after flg22 treatment, compared with the controls, suggesting that OsWRKY93 is involved in PAMP-triggered immune response in rice. It indicated that OsWRKY93 was involved in both flag leaf senescence and in response to fungi attack.
Collapse
Affiliation(s)
- Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuting Liao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengying Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yueyun Pan
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangzi Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakun Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Wang Y, Huang L, Du F, Wang J, Zhao X, Li Z, Wang W, Xu J, Fu B. Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice. Sci Rep 2021; 11:5166. [PMID: 33664392 PMCID: PMC7933422 DOI: 10.1038/s41598-021-84638-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Integration of transcriptomics and metabolomics data can provide detailed information for better understanding the molecular mechanisms underlying salt tolerance in rice. In the present study, we report a comprehensive analysis of the transcriptome and metabolome of rice overexpressing the OsDRAP1 gene, which encodes an ERF transcription factor and was previously identified to be conferring drought tolerance. Phenotypic analysis showed that OsDRAP1 overexpression (OE) improved salt tolerance by increasing the survival rate under salt stress. OsDRAP1 affected the physiological indices such as superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) to enhance redox homeostasis and membrane stability in response to salt stress. Higher basal expression of OsDRAP1 resulted in differential expression of genes that potentially function in intrinsic salt tolerance. A core set of genes with distinct functions in transcriptional regulation, organelle gene expression and ion transport were substantially up-regulated in the OE line in response to salt stress, implying their important role in OsDRAP1-mediated salt tolerance. Correspondingly, metabolome profiling detected a number of differentially metabolites in the OE line relative to the wild type under salt stress. These metabolites, including amino acids (proline, valine), organic acids (glyceric acid, phosphoenolpyruvic acid and ascorbic acid) and many secondary metabolites, accumulated to higher levels in the OE line, demonstrating their role in salt tolerance. Integration of transcriptome and metabolome analysis highlights the crucial role of amino acids and carbohydrate metabolism pathways in OsDRAP1-mediated salt tolerance.
Collapse
Affiliation(s)
- Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.,School of Agriculture, Yunnan University, Kunming, Yunnan, China.,Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, Kunming, 650091, Yunnan, China
| | - Fengping Du
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Juan Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.,School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China. .,School of Agronomy, Anhui Agricultural University, Hefei, China.
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
| |
Collapse
|
23
|
Yang J, Wang H, Zhao S, Liu X, Zhang X, Wu W, Li C. Overexpression Levels of LbDREB6 Differentially Affect Growth, Drought, and Disease Tolerance in Poplar. FRONTIERS IN PLANT SCIENCE 2020; 11:528550. [PMID: 33304356 PMCID: PMC7693672 DOI: 10.3389/fpls.2020.528550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/06/2020] [Indexed: 06/05/2023]
Abstract
The application of drought stress-regulating transcription factors (TFs) offers a credible way to improve drought tolerance in plants. However, many drought resistant TFs always showed unintended adverse effects on plant growth or other traits. Few studies have been conducted in trees to evaluate and overcome the pleiotropic effects of drought tolerance TFs. Here, we report the dose-dependent effect of the Limonium bicolor LbDREB6 gene on its overexpression in Populus ussurensis. High- and moderate-level overexpression of LbDREB6 significantly increased drought tolerance in a dose-dependent manner. However, the OE18 plants showed stunted growth under normal conditions, but they were also more sensitive to Marssonina brunnea infection than wild type (WT) and OE14 plants. While, OE14 showed normal growth, the pathogen tolerance of them was not significantly different from WT. Many stress-responsive genes were up-regulated in OE18 and OE14 compared to WT, especially for OE18 plants. Meanwhile, more pathogen tolerance related genes were down-regulated in OE18 compared to OE14 and WT plants. We achieved improved drought tolerance by adjusting the increased levels of exogenous DREB genes to avoid the occurrence of growth reduction and reduced disease tolerance.
Collapse
Affiliation(s)
- Jingli Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hanzeng Wang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Xiao Liu
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xin Zhang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Weilin Wu
- Agriculture College of Yanbian University, Yanji, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
24
|
Li MY, Jiao YT, Wang YT, Zhang N, Wang BB, Liu RQ, Yin X, Xu Y, Liu GT. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine ( Vitis vinifera L.). HORTICULTURE RESEARCH 2020; 7:149. [PMID: 32922821 PMCID: PMC7458914 DOI: 10.1038/s41438-020-00371-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 05/04/2023]
Abstract
Downy mildew of grapevine (Vitis vinifera L.), caused by the oomycete pathogen Plasmopara viticola, is one of the most serious concerns for grape production worldwide. It has been widely reported that the pathogenesis-related 4 (PR4) protein plays important roles in plant resistance to diseases. However, little is known about the role of PR4 in the defense of grapevine against P. viticola. In this study, we engineered loss-of-function mutations in the VvPR4b gene from the cultivar "Thompson Seedless" using the CRISPR/Cas9 system and evaluated the consequences for downy mildew resistance. Sequencing results showed that deletions were the main type of mutation introduced and that no off-target events occurred. Infection assays using leaf discs showed that, compared to wild-type plants, the VvPR4b knockout lines had increased susceptibility to P. viticola. This was accompanied by reduced accumulation of reactive oxygen species around stomata. Measurement of the relative genomic abundance of P. viticola in VvPR4b knockout lines also demonstrated that the mutants had increased susceptibility to the pathogen. Our results confirm that VvPR4b plays an active role in the defense of grapevine against downy mildew.
Collapse
Affiliation(s)
- Meng-Yuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yun-Tong Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yu-Ting Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Na Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Bian-Bian Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Rui-Qi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Guo-Tian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
25
|
Choi N, Im JH, Lee E, Lee J, Choi C, Park SR, Hwang DJ. WRKY10 transcriptional regulatory cascades in rice are involved in basal defense and Xa1-mediated resistance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3735-3748. [PMID: 32227093 DOI: 10.1093/jxb/eraa135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
WRKY proteins play essential roles as negative or positive regulators of pathogen defense. This study explored the roles of different OsWRKY proteins in basal defense and Xa1-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) infection in rice. Assays of disease in OsWRKY10KD and OsWRKY88KD lines following infection with an incompatible Xoo race, which induced Xa1-mediated resistance in wild-type plants, showed that OsWRKY10 and OsWRKY88 were positive regulators of Xa1-mediated resistance. OsWRKY10 also acted as a positive regulator in basal defense by directly or indirectly activating transcription of defense-related genes. OsWRKY10 activated the OsPR1a promoter by binding to specific WRKY binding sites. Two transcriptional regulatory cascades of OsWRKY10 were identified in basal defense and Xa1-mediated resistance. In the first transcriptional regulatory cascade, OsWRKY47 acted downstream of OsWRKY10 whereas OsWRKY51 acted upstream. OsWRKY10 activated OsPR1a in two distinct ways: by binding to its promoter and, at the same time, by indirect activation through OsWRKY47. In the second transcriptional regulatory cascade, OsWRKY47 acted downstream of OsWRKY10, and OsWRKY88 acted upstream. These OsWRKY10 transcriptional regulatory cascades played important roles in basal defense and Xa1-mediated resistance to enable the mounting of a rapid immune response against pathogens.
Collapse
Affiliation(s)
- Naeyeoung Choi
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Jong Hee Im
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Eunhye Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Jinjeong Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Changhyun Choi
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| |
Collapse
|
26
|
Li W, Deng Y, Ning Y, He Z, Wang GL. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:575-603. [PMID: 32197052 DOI: 10.1146/annurev-arplant-010720-022215] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant diseases reduce crop yields and threaten global food security, making the selection of disease-resistant cultivars a major goal of crop breeding. Broad-spectrum resistance (BSR) is a desirable trait because it confers resistance against more than one pathogen species or against the majority of races or strains of the same pathogen. Many BSR genes have been cloned in plants and have been found to encode pattern recognition receptors, nucleotide-binding and leucine-rich repeat receptors, and defense-signaling and pathogenesis-related proteins. In addition, the BSR genes that underlie quantitative trait loci, loss of susceptibility and nonhost resistance have been characterized. Here, we comprehensively review the advances made in the identification and characterization of BSR genes in various species and examine their application in crop breeding. We also discuss the challenges and their solutions for the use of BSR genes in the breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
27
|
Hoang TV, Vo KTX, Rahman MM, Choi SH, Jeon JS. Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110273. [PMID: 31623772 DOI: 10.1016/j.plantsci.2019.110273] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The rice spotted leaf gene, OsSPL7, induces lesion mimic (LM) spots under heat stress. Herein, we provide several lines of evidence elucidating the importance of OsSPL7 in maintaining reactive oxygen species (ROS) balance via the regulation of downstream gene expression. osspl7 knockout (spl7ko) mutants showed LM and growth retardation. Transgenic rice lines strongly overexpressing OsSPL7 (SPL7OX-S) exhibited LM accompanied by accumulated H2O2, whereas moderate expressers of OsSPL7 (SPL7OX-M) did not, and neither of them exhibited severe growth defects. Transient expression of OsSPL7-GFP in rice protoplasts indicated that OsSPL7 localizes predominantly in the nucleus. Transcriptional activity assay suggested its function as a transcriptional activator in rice. Disease evaluation showed that both SPL7OX and spl7ko enhanced resistance to Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, the causal agents of blast and blight diseases in rice, respectively. Additionally, SPL7OX enhanced tolerance to cold stress, whereas spl7ko showed a phenotype opposite to the overexpression lines. RNA sequencing analyses identified four major groups of differentially expressed genes associated with LM, pathogen resistance, LM-pathogen resistance, and potential direct targets of OsSPL7. Collectively, our results suggest that OsSPL7 plays a critical role in plant growth and balancing ROS during biotic and abiotic stress.
Collapse
Affiliation(s)
- Trung Viet Hoang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Kieu Thi Xuan Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Md Mizanor Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Seok-Hyun Choi
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
28
|
RNA-Seq revealed that infection with white tip nematodes could downregulate rice photosynthetic genes. Funct Integr Genomics 2019; 20:367-381. [DOI: 10.1007/s10142-019-00717-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/21/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
|
29
|
Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. FRONTIERS IN PLANT SCIENCE 2019; 10:1326. [PMID: 31781133 PMCID: PMC6857675 DOI: 10.3389/fpls.2019.01326] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.
Collapse
Affiliation(s)
| | | | | | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
30
|
Jiao Z, Sun J, Wang C, Dong Y, Xiao S, Gao X, Cao Q, Li L, Li W, Gao C. Genome-wide characterization, evolutionary analysis of WRKY genes in Cucurbitaceae species and assessment of its roles in resisting to powdery mildew disease. PLoS One 2018; 13:e0199851. [PMID: 30589839 PMCID: PMC6307730 DOI: 10.1371/journal.pone.0199851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/13/2018] [Indexed: 11/19/2022] Open
Abstract
The WRKY proteins constitute a large family of transcription factors that have been known to play a wide range of regulatory roles in multiple biological processes. Over the past few years, many reports have focused on analysis of evolution and biological function of WRKY genes at the whole genome level in different plant species. However, little information is known about WRKY genes in melon (Cucumis melo L.). In the present study, a total of 56 putative WRKY genes were identified in melon, which were randomly distributed on their respective chromosomes. A multiple sequence alignment and phylogenetic analysis using melon, cucumber and watermelon predicted WRKY domains indicated that melon WRKY proteins could be classified into three main groups (I-III). Our analysis indicated that no recent duplication events of WRKY genes were detected in melon, and strong purifying selection was observed among the 85 orthologous pairs of Cucurbitaceae species. Expression profiles of CmWRKY derived from RNA-seq data and quantitative RT-PCR (qRT-PCR) analyses showed distinct expression patterns in various tissues, and the expression of 16 CmWRKY were altered following powdery mildew infection in melon. Besides, we also found that a total of 24 WRKY genes were co-expressed with 11 VQ family genes in melon. Our comparative genomic analysis provides a foundation for future functional dissection and understanding the evolution of WRKY genes in cucurbitaceae species, and will promote powdery mildew resistance study in melon.
Collapse
Affiliation(s)
- Zigao Jiao
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianlei Sun
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chongqi Wang
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yumei Dong
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shouhua Xiao
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xuli Gao
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qiwei Cao
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Libin Li
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wendong Li
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Gao
- Experimental Station of Vegetable Scientific Observation in Huang-Huai Area of Ministry of Agriculture, Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
- * E-mail:
| |
Collapse
|
31
|
Moon SJ, Park HJ, Kim TH, Kang JW, Lee JY, Cho JH, Lee JH, Park DS, Byun MO, Kim BG, Shin D. OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS One 2018; 13:e0206910. [PMID: 30444888 PMCID: PMC6239283 DOI: 10.1371/journal.pone.0206910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
How plants defend themselves from microbial infection is one of the most critical issues for sustainable crop production. Some TGA transcription factors belonging to bZIP superfamily can regulate disease resistance through NPR1-mediated immunity mechanisms in Arabidopsis. Here, we examined biological roles of OsTGA2 (grouped into the same subclade as Arabidopsis TGAs) in bacterial leaf blight resistance. Transcriptional level of OsTGA2 was accumulated after treatment with salicylic acid, methyl jasmonate, and Xathomonas oryzae pv. Oryzae (Xoo), a bacterium causing serious blight of rice. OsTGA2 formed homo- and hetero-dimer with OsTGA3 and OsTGA5 and interacted with rice NPR1 homologs 1 (NH1) in rice. Results of quadruple 9-mer protein-binding microarray analysis indicated that OsTGA2 could bind to TGACGT DNA sequence. Overexpression of OsTGA2 increased resistance of rice to bacterial leaf blight, although overexpression of OsTGA3 resulted in disease symptoms similar to wild type plant upon Xoo infection. Overexpression of OsTGA2 enhanced the expression of defense related genes containing TGA binding cis-element in the promoter such as AP2/EREBP 129, ERD1, and HOP1. These results suggest that OsTGA2 can directly regulate the expression of defense related genes and increase the resistance of rice against bacterial leaf blight disease.
Collapse
Affiliation(s)
- Seok-Jun Moon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Tae-Heon Kim
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ju-Won Kang
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ji-Yoon Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jun-Hyun Cho
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Dong-Soo Park
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Myung-Ok Byun
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Beom-Gi Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Dongjin Shin
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Viana VE, Busanello C, da Maia LC, Pegoraro C, Costa de Oliveira A. Activation of rice WRKY transcription factors: an army of stress fighting soldiers? CURRENT OPINION IN PLANT BIOLOGY 2018; 45:268-275. [PMID: 30060992 DOI: 10.1016/j.pbi.2018.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 05/04/2023]
Abstract
Rice WRKYs comprise a large family of transcription factors and present remarkable structure features and a unique DNA binding site. Their importance in plants goes beyond the response to stressful stimuli, since they participate in hormonal pathways and developmental processes. Indeed, the majority of WRKYs present an independent activation since they are able to perform self-transcriptional regulation. However, some WRKY activation depends on epigenetic and transcript regulation by micro RNAs. Their protein function depends, almost always, on the posttranslational changes. Taking to account its properties of auto-activation, all these regulators process are extremely important for complete WRKY regulation. In this sense, here we provide an overview of transcriptional activation and posttranscriptional and posttranslational regulation of rice WRKY genes under stresses.
Collapse
Affiliation(s)
- Vívian Ebeling Viana
- Graduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas-RS, Brazil; Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Carlos Busanello
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Luciano Carlos da Maia
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Camila Pegoraro
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Antonio Costa de Oliveira
- Graduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas-RS, Brazil; Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil.
| |
Collapse
|