1
|
Hou Z, Huang H, Wang Y, Chen L, Yue L, Liu B, Kong F, Yang H. Molecular Regulation of Shoot Architecture in Soybean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39254042 DOI: 10.1111/pce.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Soybean (Glycine max [L.] Merr.) serves as a major source of protein and oil for humans and animals. Shoot architecture, the spatial arrangement of a plant's above-ground organs, strongly affects crop yield and is therefore a critical agronomic trait. Unlike wheat and rice crops that have greatly benefitted from the Green Revolution, soybean yield has not changed significantly in the past six decades owing to its unique shoot architecture. Soybean is a pod-bearing crop with pods adhered to the nodes, and variation in shoot architecture traits, such as plant height, node number, branch number and number of seeds per pod, directly affects the number of pods and seeds per plant, thereby determining yield. In this review, we summarize the relationship between soybean yield and these major components of shoot architecture. We also describe the latest advances in identifying the genes and molecular mechanisms underlying soybean shoot architecture and discuss possible directions and approaches for breeding new soybean varieties with ideal shoot architecture and improved yield.
Collapse
Affiliation(s)
- Zhihong Hou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Huan Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanan Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Yue
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
2
|
Hamisu A, Koul B, Arukha AP, Al Nadhari S, Rabbee MF. Evaluation of the Impact of Chemical Mutagens on the Phenological and Biochemical Characteristics of Two Varieties of Soybean ( Glycine max L.). Life (Basel) 2024; 14:909. [PMID: 39063662 PMCID: PMC11277911 DOI: 10.3390/life14070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Mutagenic effectiveness and efficiency are the most important factors determining the success of mutation breeding, a coherent tool for quickly enhancing diversity in crops. This study was carried out at Lovely Professional University's agricultural research farm in Punjab, India, during the year 2023. The experimental design followed a randomized complete block design (RCBD) with three replications. The experiment aimed to assess the effect of three chemical mutagens, sodium azide (SA), ethyl methyl sulphonates (EMSs), and methyl methane sulfonate (MMS), at three different concentrations (0.2%, 0.4%, and 0.6%), in SL958 and SL744 soybean varieties to select the mutant exhibiting the highest yield. The data were collected and analysed using a two-way ANOVA test through SPSS software (version 22), and the means were separated using Duncan's multiple range test (DMRT) at the 5% level of significance. Between the two varieties, the highest seed germination percentage (76.0% seedlings/plot) was recorded in SL958 (0.4% SA), while the lowest (30.33% seedlings/plot) was observed in 0.6% MMS as compared to the control (53% and 76% in SL744 and SL958 at 10 days after sowing, respectively). Several weeks after sowing, the average plant height was observed to be higher (37.84 ± 1.32 cm) in SL958 (0.4% SA) and lower (20.58 ± 0.30 cm) in SL744 (0.6% SA), as compared to the controls (SL958: 26.09 ± 0.62 cm and SL744: 27.48 ± 0.74 cm). The average leaf count was the highest (234.33 ± 3.09 tetrafoliate leaves/plant) in SL958 (0.4% SA) while it was the lowest (87 leaves/plant) in 0.6% MMS as compared to the control (SL744 180.00 ± 1.63 and SL958 160.73 ± 1.05). The highest total leaf areas recorded in the SL958 and SL744 M1plants were 3625.8 ± 1.43 cm2 and 2311.03 ± 3.65 cm2, respectively. Seeds of the SL958 variety treated with 0.4% SA resulted in the development of tetrafoliate leaves with a broad leaf base and the maximum yield (277.55 ± 1.37 pods/plant) compared to the narrow pentafoliate leaves obtained through the treatment with EMS. Meanwhile, in the SL744 variety, the same treatment led to tetrafoliate leaves with a comparatively lower yield of 206.54 ± 23.47 pods/plant as compared to the control (SL744 164.33 ± 8.58 and SL958 229.86 ± 0.96). The highest protein content (47.04 ± 0.87% TSP) was recorded in the SL958 (0.4% SA) M2 seeds followed by a content of 46.14 ± 0.64% TSP in the SL744 (0.4% SA) M2 seeds, whereas the lowest content (38.13 ± 0.81% TSP) was found in SL958 (0.6% MMS). Similar observations were recorded for the lipid and fibre content. The 0.4% SA treatment in SL958 proved to be efficient in generating the highest leaf area (tetrafoliate leaves) and a reasonable yield of M1 (the first generation after mutation) plants.
Collapse
Affiliation(s)
- Anas Hamisu
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Bhupendra Koul
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Ananta Prasad Arukha
- Department of Nephrology and Hypertension, Mayo Medical Sciences, Rochester, MN 55902, USA;
| | - Saleh Al Nadhari
- Deanship of Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Liu Y, Li Y, Wang A, Xu Z, Li C, Wang Z, Guo B, Chen Y, Tang F, Li J. Enhancing cold resistance in Banana (Musa spp.) through EMS-induced mutagenesis, L-Hyp pressure selection: phenotypic alterations, biomass composition, and transcriptomic insights. BMC PLANT BIOLOGY 2024; 24:101. [PMID: 38331759 PMCID: PMC10854111 DOI: 10.1186/s12870-024-04775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The cultivation of bananas encounters substantial obstacles, particularly due to the detrimental effects of cold stress on their growth and productivity. A potential remedy that has gained attention is the utilization of ethyl mesylate (EMS)-induced mutagenesis technology, which enables the creation of a genetically varied group of banana mutants. This complex procedure entails subjecting the mutants to further stress screening utilizing L-Hyp in order to identify those exhibiting improved resistance to cold. This study conducted a comprehensive optimization of the screening conditions for EMS mutagenesis and L-Hyp, resulting in the identification of the mutant cm784, which exhibited remarkable cold resistance. Subsequent investigations further elucidated the physiological and transcriptomic responses of cm784 to low-temperature stress. RESULTS EMS mutagenesis had a substantial effect on banana seedlings, resulting in modifications in shoot and root traits, wherein a majority of seedlings exhibited delayed differentiation and limited elongation. Notably, mutant leaves displayed altered biomass composition, with starch content exhibiting the most pronounced variation. The application of L-Hyp pressure selection aided in the identification of cold-resistant mutants among seedling-lethal phenotypes. The mutant cm784 demonstrated enhanced cold resistance, as evidenced by improved survival rates and reduced symptoms of chilling injury. Physiological analyses demonstrated heightened activities of antioxidant enzymes and increased proline production in cm784 when subjected to cold stress. Transcriptome analysis unveiled 946 genes that were differentially expressed in cm784, with a notable enrichment in categories related to 'Carbohydrate transport and metabolism' and 'Secondary metabolites biosynthesis, transport, and catabolism'. CONCLUSION The present findings provide insights into the molecular mechanisms that contribute to the heightened cold resistance observed in banana mutants. These mechanisms encompass enhanced carbohydrate metabolism and secondary metabolite biosynthesis, thereby emphasizing the adaptive strategies employed to mitigate the detrimental effects induced by cold stress.
Collapse
Affiliation(s)
- Yumeng Liu
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujia Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Anbang Wang
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Zhuye Xu
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Horticulture, Hainan University, Haikou, 571101, Hainan, China
| | - Chunfang Li
- Collage of Tropical Crop, Yunnan Agricultural University, Puer, 611101, Yunnan, China
| | - Zuo Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Borui Guo
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Chen
- Collage of Tropical Crop, Yunnan Agricultural University, Puer, 611101, Yunnan, China
| | - Fenling Tang
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Jingyang Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China.
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| |
Collapse
|
4
|
Hancock CN, Germany T, Redd P, Timmons J, Lipford J, Burns S, Cervantes-Perez SA, Libault M, Shen W, An YQC, Kanizay L, Yerka M, Parrott WA. Identification and characterization of a temperature sensitive chlorotic soybean mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578604. [PMID: 38352530 PMCID: PMC10862810 DOI: 10.1101/2024.02.02.578604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "vir1" phenotype results in smaller stature, weaker stems, and a smaller root system with smaller nodules. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells and RNA sequencing data indicates it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice homolog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean vir1 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild type Glyma.07G102300 in the knockout mutant of the Arabidopsis homolog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the vir1 phenotype.
Collapse
Affiliation(s)
- C. Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Priscilla Redd
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Jack Timmons
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Jeffery Lipford
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Samantha Burns
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Marc Libault
- Plant Science and Technology, University of Missouri, Columbia, MO
| | - Wenhao Shen
- Donald Danforth Plant Science Center, St. Louis, MO
| | - Yong-qiang Charles An
- USDA-ARS Plant Genetics Research Unit, Danforth Plant Science Center, Saint Louis, MO
| | - Lisa Kanizay
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
| | - Melinda Yerka
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV
| | - Wayne A. Parrott
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
| |
Collapse
|
5
|
Shamshad A, Rashid M, Jankuloski L, Ashraf K, Sultan K, Alamri S, Siddiqui MH, Munir T, Zaman QU. Effect of ethyl methanesulfonate mediated mutation for enhancing morpho-physio-biochemical and yield contributing traits of fragrant rice. PeerJ 2023; 11:e15821. [PMID: 37780391 PMCID: PMC10540773 DOI: 10.7717/peerj.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/10/2023] [Indexed: 10/03/2023] Open
Abstract
Background Chemical mutagenesis has been successfully used for increasing genetic diversity in crop plants. More than 800 novel mutant types of rice (Oryza sativa L.) have been developed through the successful application of numerous mutagenic agents. Among a wide variety of chemical mutagens, ethyl-methane-sulfonate (EMS) is the alkylating agent that is most commonly employed in crop plants because it frequently induces nucleotide substitutions as detected in numerous genomes. Methods In this study, seeds of the widely consumed Basmati rice variety (Super Basmati, Oryza sativa L.) were treated with EMS at concentrations of 0.25%, 0.50%, 0.75%, 1.0%, and 1.25% to broaden its narrow genetic base. Results Sensitivity to a chemical mutagen such as ethyl methanesulfonate (EMS) was determined in the M1 generation. Results in M1 generation revealed that as the levels of applied EMS increased, there was a significant reduction in the germination percent, root length, shoot length, plant height, productive tillers, panicle length, sterile spikelet, total spikelet, and fertility percent as compared to the control under field conditions. All the aforementioned parameters decreased but there was an increase in EMS mutagens in an approximately linear fashion. Furthermore, there was no germination at 1.25% of EMS treatment for seed germination. A 50% germination was recorded between 0.50% and 0.75% EMS treatments. After germination, the subsequent parameters, viz. root length and shoot length had LD50 between 05.0% and 0.75% EMS dose levels. Significant variation was noticed in the photosynthetic and water related attributes of fragrant rice. The linear increase in the enzymatic attributes was noticed by the EMS mediated treatments. After the establishment of the plants in the M1 generation in the field, it was observed that LD50 for fertility percentage was at EMS 1.0% level, for the rice variety. Conclusion Hence, it is concluded that for creating genetic variability in the rice variety (Super Basmati), EMS doses from 0.5% to 0.75% are the most efficient, and effective.
Collapse
Affiliation(s)
- Areeqa Shamshad
- Nuclear Institute for Agriculture and Biology College (NIAB-C), PIEAS, Islamabad, Pakistan
| | - Muhammad Rashid
- Nuclear Institute for Agriculture and Biology College (NIAB-C), PIEAS, Islamabad, Pakistan
| | - Ljupcho Jankuloski
- International Atomic Energy Agency, Joint FAO/IAEA Centre, Plant Breeding and Genetics Section, Vienna, Austria
| | - Kamran Ashraf
- Department of Bioengineering and Biotechnology, School of Biotechnology, Kunming University of Science and Technology, Shanghai, China
- Department of Food Sciences, Government College University Faisalabad, Sahiwal Campus, Faisalabad, Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tehzeem Munir
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Qamar uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
6
|
Khan A, Khan NA, Bean SR, Chen J, Xin Z, Jiao Y. Variations in Total Protein and Amino Acids in the Sequenced Sorghum Mutant Library. PLANTS (BASEL, SWITZERLAND) 2023; 12:1662. [PMID: 37111885 PMCID: PMC10142022 DOI: 10.3390/plants12081662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Sorghum (Sorghum bicolor) is the fifth most important cereal crop worldwide; however, its utilization in food products can be limited due to reduced nutritional quality related to amino acid composition and protein digestibility in cooked products. Low essential amino acid levels and digestibility are influenced by the composition of the sorghum seed storage proteins, kafirins. In this study, we report a core collection of 206 sorghum mutant lines with altered seed storage proteins. Wet lab chemistry analysis was conducted to evaluate the total protein content and 23 amino acids, including 19 protein-bound and 4 non-protein amino acids. We identified mutant lines with diverse compositions of essential and non-essential amino acids. The highest total protein content in these lines was almost double that of the wild-type (BTx623). The mutants identified in this study can be used as a genetic resource to improve the sorghum grain quality and determine the molecular mechanisms underlying the biosynthesis of storage protein and starch in sorghum seeds.
Collapse
Affiliation(s)
- Adil Khan
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Nasir Ali Khan
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Scott R. Bean
- Grain Quality and Structure Research Unit, Center for Grain and Animal Health Research, USDA-ARS, 1515 College Ave., Manhattan, KS 66502, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX 79424, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX 79424, USA
| | - Yinping Jiao
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
7
|
Shamimuzzaman M, Ma G, Underwood W, Qi L. Mutation and sequencing-based cloning and functional studies of a rust resistance gene in sunflower (Helianthus annuus). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37029526 DOI: 10.1111/tpj.16238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Rust, caused by the fungus Puccinia helianthi Schwein., is one of the most devastating diseases of sunflower (Helianthus annuus L.), affecting global production. The rust R gene R11 in sunflower line HA-R9 shows broad-spectrum resistance to P. helianthi virulent races and was previously mapped to an interval on sunflower chromosome 13 encompassing three candidate genes annotated in the XRQr1.0 reference genome assembly. In the current study, we combined ethyl methane sulfonate (EMS) mutagenesis with targeted region capture and PacBio long-read sequencing to clone the R11 gene. Sequencing of a 60-kb region spanning the R11 locus from the R11 -HA-R9 rust-resistant line and three EMS-induced susceptible mutants facilitated the identification of R11 and definition of induced mutations. The R11 gene is predicted to have a single 3996-bp open reading frame and encodes a protein of 1331 amino acids with CC-NBS-LRR domains typical of genes conferring plant resistance to biotrophic pathogens. Point mutations identified in the R11 rust-susceptible mutants resulted in premature stop codons, consistent with loss of function leading to rust susceptibility. Additional functional studies using comparative RNA sequencing of the resistant line R11 -HA-R9 and R11 -susceptible mutants revealed substantial differences in gene expression patterns associated with R11 -mediated resistance at 7 days post-inoculation with rust, and uncovered the potential roles of terpenoid biosynthesis and metabolism in sunflower rust resistance.
Collapse
Affiliation(s)
- Md Shamimuzzaman
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, North Dakota, 58102-2765, USA
| | - Guojia Ma
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58108, USA
| | - William Underwood
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, North Dakota, 58102-2765, USA
| | - Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, North Dakota, 58102-2765, USA
| |
Collapse
|
8
|
Mangena P. Impact of Polyploidy Induction for Salinity Stress Mitigation in Soybean ( Glycine max L. Merrill). PLANTS (BASEL, SWITZERLAND) 2023; 12:1356. [PMID: 36987050 PMCID: PMC10051967 DOI: 10.3390/plants12061356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Polyploidy induction is recognized as one of the major evolutionary processes leading to remarkable morphological, physiological, and genetic variations in plants. Soybean (Glycine max L.), also known as soja bean or soya bean, is an annual leguminous crop of the pea family (Fabaceae) that shares a paleopolypoidy history, dating back to approximately 56.5 million years ago with other leguminous crops such as cowpea and other Glycine specific polyploids. This crop has been documented as one of the polyploid complex species among legumes whose gene evolution and resultant adaptive growth characteristics following induced polyploidization has not been fully explored. Furthermore, no successfully established in vivo or in vitro based polyploidy induction protocols have been reported to date, particularly, with the intention to develop mutant plants showing strong resistance to abiotic salinity stress. This review, therefore, describes the role of synthetic polyploid plant production in soybean for the mitigation of high soil salt stress levels and how this evolving approach could be used to further enhance the nutritional, pharmaceutical and economic industrial value of soybeans. This review also addresses the challenges involved during the polyploidization process.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, Sovenga, Private Bag X1106, Polokwane 0727, South Africa
| |
Collapse
|
9
|
Reyero-Saavedra R, Fuentes SI, Leija A, Jiménez-Nopala G, Peláez P, Ramírez M, Girard L, Porch TG, Hernández G. Identification and Characterization of Common Bean ( Phaseolus vulgaris) Non-Nodulating Mutants Altered in Rhizobial Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:1310. [PMID: 36986997 PMCID: PMC10059843 DOI: 10.3390/plants12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
The symbiotic N2-fixation process in the legume-rhizobia interaction is relevant for sustainable agriculture. The characterization of symbiotic mutants, mainly in model legumes, has been instrumental for the discovery of symbiotic genes, but similar studies in crop legumes are scant. To isolate and characterize common bean (Phaseolus vulgaris) symbiotic mutants, an ethyl methanesulphonate-induced mutant population from the BAT 93 genotype was analyzed. Our initial screening of Rhizobium etli CE3-inoculated mutant plants revealed different alterations in nodulation. We proceeded with the characterization of three non-nodulating (nnod), apparently monogenic/recessive mutants: nnod(1895), nnod(2353) and nnod(2114). Their reduced growth in a symbiotic condition was restored when the nitrate was added. A similar nnod phenotype was observed upon inoculation with other efficient rhizobia species. A microscopic analysis revealed a different impairment for each mutant in an early symbiotic step. nnod(1895) formed decreased root hair curling but had increased non-effective root hair deformation and no rhizobia infection. nnod(2353) produced normal root hair curling and rhizobia entrapment to form infection chambers, but the development of the latter was blocked. nnod(2114) formed infection threads that did not elongate and thus did not reach the root cortex level; it occasionally formed non-infected pseudo-nodules. The current research is aimed at mapping the responsible mutated gene for a better understanding of SNF in this critical food crop.
Collapse
Affiliation(s)
- Rocío Reyero-Saavedra
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Sara Isabel Fuentes
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Alfonso Leija
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Gladys Jiménez-Nopala
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Pablo Peláez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Lourdes Girard
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| | - Timothy G. Porch
- USDA-ARS, Tropical Agriculture Research Station, 2200 P.A. Campos Avenue, Suite 201, Mayaguez 00680, Puerto Rico;
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (R.R.-S.); (S.I.F.); (A.L.); (G.J.-N.); (P.P.); (M.R.); (L.G.)
| |
Collapse
|
10
|
Gritsenko D, Daurova A, Pozharskiy A, Nizamdinova G, Khusnitdinova M, Sapakhova Z, Daurov D, Zhapar K, Shamekova M, Kalendar R, Zhambakin K. Investigation of mutation load and rate in androgenic mutant lines of rapeseed in early generations evaluated by high-density SNP genotyping. Heliyon 2023; 9:e14065. [PMID: 36923873 PMCID: PMC10008989 DOI: 10.1016/j.heliyon.2023.e14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Oilseed rape (Brassica napus) is an important oil crop distributed worldwide with a broad adaptation to different climate zones. The cultivation of rapeseed is one of the most commercially viable areas in crop production. Altogether 269,093 ha of rapeseed are cultivated in Kazakhstan. However, all rapeseed cultivars and lines cultivated in Kazakhstan on an industrial scale predominantly belong to the foreign breeding system. Therefore, the formation of a diverse genetic pool for breeding new, highly productive cultivars adopted to the environmental conditions of Kazakhstan is the most important goal in country selection programs. In this work, we have developed ethyl methanesulfonate (EMS) doubled haploid mutant lines from plant material of cultivars 'Galant' and 'Kris' to broad diversity of rapeseed in Kazakhstan. The development of mutant lines was performed via embryo callusogenesis or embryo secondary callusogenesis. Mutants were investigated by Brassica90k SNP array, and we were able to locate 24,657 SNPs from 26,256 SNPs filtered by quality control on the genome assembly (Bra_napus_v2.0). Only 18,831 SNPs were assigned to the available annotated genomic features. The most frequent combination of mutations according to reference controls was adenine with guanine (70%), followed by adenine with cytosine (28.8%), and only minor fractions were cytosine with guanine (0.54%) and adenine with thymine (0.59%). We revealed 5606.27 markers for 'Kris' and 4893.01 markers for 'Galant' by mutation occurrence. Most mutation occurrences were occupied by double mutations where progenitors and offspring were homozygous by different alleles, enabling the selection of appropriate genotypes in a short period of time. Regarding the biological impact of mutations, 861 variants were reported as having a low predicted impact, with 1042 as moderate and 121 as high; all others were reported as belonging to non-coding sequences, intergenic regions, and other features with the effect of modifiers. Protein encoding genes, such as wall-associated receptor kinase-like protein 5, TAO1-like disease resistance protein, receptor-like protein 12, and At5g42460-like F-box protein, contained more than two variable positions, with an impact on their biological activities. Nevertheless, the obtained mutant lines were able to survive and reproduce. Mutant lines, which include moderate and high impact mutations in encoding genes, are a perfect pool not only for MAS but also for the investigation of the fundamental basis of protein functions. For the first time, a collection of mutant lines was developed in our country to improve the selection of local rapeseed cultivars.
Collapse
Affiliation(s)
- Dilyara Gritsenko
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Ainash Daurova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Alexandr Pozharskiy
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Gulnaz Nizamdinova
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Marina Khusnitdinova
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Zagipa Sapakhova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Dias Daurov
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Kuanysh Zhapar
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Malika Shamekova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Ruslan Kalendar
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Kabyl Zhambakin
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| |
Collapse
|
11
|
Liu J, Zhao G, Geng J, Geng Z, Dou H, Liu X, An Z, Zhang H, Wang Y. Genome-wide analysis of mutations induced by carbon ion beam irradiation in cotton. FRONTIERS IN PLANT SCIENCE 2023; 14:1056662. [PMID: 36875607 PMCID: PMC9978701 DOI: 10.3389/fpls.2023.1056662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Carbon ion beam (CIB) irradiation is a powerful way to create mutations in animals, plants, and microbes. Research on the mutagenic effects and molecular mechanisms of radiation is an important and multidisciplinary issue. However, the effect of carbon ion radiation on cotton is uncertain. In this study, five different upland cotton varieties and five CIB doses were used to identify the suitable irradiation dose for cotton. Three mutagenized progeny cotton lines from the wild-type Ji172 were re-sequenced. The effect of half-lethal dose on mutation induction indicated that 200 Gy with LETmax of 226.9 KeV/μm was the most effective heavy-ion dose for upland cotton and a total of 2,959-4,049 single-base substitutions (SBSs) and 610-947 insertion-deletion polymorphisms (InDels) were identified among the three mutants by resequencing. The ratio of transition to transversion in the three mutants ranged from 2.16 to 2.24. Among transversion events, G:C>C:G was significantly less common than three other types of mutations (A:T>C:G, A:T>T:A, and G:C>T:A). The proportions of six types of mutations were very similar in each mutant. The distributions of identified SBSs and InDels were similar with unevenly distributed across the genome and chromosomes. Some chromosomes had significantly more SBSs than others, and there were "hotspot" mutation regions at the ends of chromosomes. Overall, our study revealed a profile of cotton mutations caused by CIB irradiation, and these data could provide valuable information for cotton mutation breeding.
Collapse
Affiliation(s)
- Jianguang Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Shijiazhuang, China
| | - Guiyuan Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Shijiazhuang, China
| | - Jinpeng Geng
- School of Science, Hebei University of Technology, Tianjin, China
| | - Zhao Geng
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Shijiazhuang, China
| | - Haikuan Dou
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Shijiazhuang, China
| | - Xu Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Shijiazhuang, China
| | - Zetong An
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Shijiazhuang, China
| | - Hanshuang Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Shijiazhuang, China
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Shijiazhuang, China
| |
Collapse
|
12
|
Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants. Int J Mol Sci 2023; 24:ijms24032404. [PMID: 36768727 PMCID: PMC9916837 DOI: 10.3390/ijms24032404] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA damage is induced by many factors, some of which naturally occur in the environment. Because of their sessile nature, plants are especially exposed to unfavorable conditions causing DNA damage. In response to this damage, the DDR (DNA damage response) pathway is activated. This pathway is highly conserved between eukaryotes; however, there are some plant-specific DDR elements, such as SOG1-a transcription factor that is a central DDR regulator in plants. In general, DDR signaling activates transcriptional and epigenetic regulators that orchestrate the cell cycle arrest and DNA repair mechanisms upon DNA damage. The cell cycle halts to give the cell time to repair damaged DNA before replication. If the repair is successful, the cell cycle is reactivated. However, if the DNA repair mechanisms fail and DNA lesions accumulate, the cell enters the apoptotic pathway. Thereby the proper maintenance of DDR is crucial for plants to survive. It is particularly important for agronomically important species because exposure to environmental stresses causing DNA damage leads to growth inhibition and yield reduction. Thereby, gaining knowledge regarding the DDR pathway in crops may have a huge agronomic impact-it may be useful in breeding new cultivars more tolerant to such stresses. In this review, we characterize different genotoxic agents and their mode of action, describe DDR activation and signaling and summarize DNA repair mechanisms in plants.
Collapse
|
13
|
Chen L, Duan L, Sun M, Yang Z, Li H, Hu K, Yang H, Liu L. Current trends and insights on EMS mutagenesis application to studies on plant abiotic stress tolerance and development. FRONTIERS IN PLANT SCIENCE 2023; 13:1052569. [PMID: 36684716 PMCID: PMC9846265 DOI: 10.3389/fpls.2022.1052569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Ethyl methanesulfonate (EMS)-induced mutagenesis is a powerful tool to generate genetic resource for identifying untapped genes and characterizing the function of genes to understand the molecular basis of important agronomic traits. This review focuses on application of contemporary EMS mutagenesis in the field of plant development and abiotic stress tolerance research, with particular focuses on reviewing the mutation types, mutagenesis site, mutagen concentration, mutagenesis duration, the identification and characterization of mutations responsible for altered stress tolerance responses. The application of EMS mutation breeding combined with genetic engineering in the future plant breeding and fundamental research was also discussed. The collective information in this review will provide good insight on how EMS mutagenesis is efficiently applied to improve abiotic stress tolerance of crops with the utilization of Next-generation sequencing (NGS) for mutation identification.
Collapse
Affiliation(s)
- Liuzhu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Liu Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Minghui Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhuo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Hongyu Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Keming Hu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
14
|
Zhang M, Gao H, Chen S, Wang X, Mo W, Yang X, Wang X, Wang Z, Wang R. Linkages between stomatal density and minor leaf vein density across different altitudes and growth forms. FRONTIERS IN PLANT SCIENCE 2022; 13:1064344. [PMID: 36561450 PMCID: PMC9765094 DOI: 10.3389/fpls.2022.1064344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Water supply and demand in leaves are primarily determined by stomatal density (SD, water demand) and minor leaf vein density (VLA, water supply). Thus, covariation between them is essential for maintaining water balance. However, there is debate over whether these two traits vary in a coordinated way. Here, we gathered SD and VLA data from 194 species over four altitudinal gradients, and investigated their relationships across all species, growth forms, and different altitudes. Our findings demonstrated that SD and VLA were positively associated across all species, independent on plant phylogeny. Moreover, the reliability of this SD-VLA relationship increased with altitudes. Although the stomatal number per minor vein length (SV) remained stable across different altitudes and growth forms, the positive SD-VLA relationship was found only in shrubs and herbs, but not in trees. Differently, a strong coordination between total stomatal number and total leaf vein length was observed across all species, trees, shrubs and herbs. These findings suggested that coordinating stomatal number and minor vein length within one leaf, rather than stomatal and vein density, may be a common choice of plants in the fluctuating environment. Therefore, to explore the relationship between total number of stomata and total length of leaf veins seems to better reflect the linkage between stomata and leaf veins, especially when covering different growth forms.
Collapse
Affiliation(s)
- Ming Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Huirong Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuang Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaochun Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiyi Mo
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhibo Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Ruili Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Qinling National Forest Ecosystem Research Station, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Pisias MT, Bakala HS, McAlvay AC, Mabry ME, Birchler JA, Yang B, Pires JC. Prospects of Feral Crop De Novo Redomestication. PLANT & CELL PHYSIOLOGY 2022; 63:1641-1653. [PMID: 35639623 DOI: 10.1093/pcp/pcac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Modern agriculture depends on a narrow variety of crop species, leaving global food and nutritional security highly vulnerable to the adverse effects of climate change and population expansion. Crop improvement using conventional and molecular breeding approaches leveraging plant genetic diversity using crop wild relatives (CWRs) has been one approach to address these issues. However, the rapid pace of the global change requires additional innovative solutions to adapt agriculture to meet global needs. Neodomestication-the rapid and targeted introduction of domestication traits using introgression or genome editing of CWRs-is being explored as a supplementary approach. These methods show promise; however, they have so far been limited in efficiency and applicability. We propose expanding the scope of neodomestication beyond truly wild CWRs to include feral crops as a source of genetic diversity for novel crop development, in this case 'redomestication'. Feral crops are plants that have escaped cultivation and evolved independently, typically adapting to their local environments. Thus, feral crops potentially contain valuable adaptive features while retaining some domestication traits. Due to their genetic proximity to crop species, feral crops may be easier targets for de novo domestication (i.e. neodomestication via genome editing techniques). In this review, we explore the potential of de novo redomestication as an application for novel crop development by genome editing of feral crops. This approach to efficiently exploit plant genetic diversity would access an underutilized reservoir of genetic diversity that could prove important in support of global food insecurity in the face of the climate change.
Collapse
Affiliation(s)
- Michael T Pisias
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Harmeet Singh Bakala
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
- Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, MO 63132, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
16
|
Hudson K. Soybean Protein and Oil Variants Identified through a Forward Genetic Screen for Seed Composition. PLANTS (BASEL, SWITZERLAND) 2022; 11:2966. [PMID: 36365419 PMCID: PMC9656176 DOI: 10.3390/plants11212966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Mutagenesis remains an important tool in soybean biology. In classical plant mutation breeding, mutagenesis has been a trusted approach for decades, creating stable non-transgenic variation, and many mutations have been incorporated into germplasm for several crops, especially to introduce favorable seed composition traits. We performed a genetic screen for aberrant oil or protein composition of soybean seeds, and as a result isolated over 100 mutant lines for seed composition phenotypes, with particular interest in high protein or high oil phenotypes. These lines were followed for multiple seasons and generations to select the most stable traits for further characterization. Through backcrossing and outcrossing experiments, we determined that a subset of the lines showed recessive inheritance, while others showed a dominant inheritance pattern that suggests the involvement of multiple loci and genetic mechanisms. These lines can be used as a resource for future studies of the genetic control of seed protein and oil content in soybean.
Collapse
Affiliation(s)
- Karen Hudson
- USDA-ARS Crop Production and Pest Control Research Unit, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Liu C, Wang X, Li Y, Chen H, Zhang Q, Liu X. Irradiation with carbon ion beams affects soybean nutritional quality in early generations. PeerJ 2022; 10:e14080. [PMID: 36199285 PMCID: PMC9528902 DOI: 10.7717/peerj.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/29/2022] [Indexed: 01/20/2023] Open
Abstract
As people's demand for healthy diet increases, improving soybean seed nutritional quality is becoming as important as yield. Carbon ion beam radiation (CIBR) is an effective method to create soybean mutants, and thus breeding cultivars with better seed nutritional quality. In this study, the high-yield soybean line 'Dongsheng 28' was used, and three CIBR doses (100, 120, and 140 Gy) were used to explore the characteristics of quality separation and variation in the offspring of early mutant populations. Eleven quality traits, including protein, oil, sucrose, soluble sugar, iron (Fe), manganese (Mn), zinc (Zn), cupper (Cu), daidzin, glycitin, and genistin concentrations were analyzed in the M2 and M3 generations. The results revealed that the range of protein and oil concentration of all three CIBR doses changed by 38.5-42.9% and 18.8-23.8% in the M2 and M3 generations, respectively, while soluble sugar and sucrose concentrations changed by 48.1-123.4 and 22.7-74.7 mg/g, with significant effects by 140 Gy across the two generations. Therefore, around the optimum range, a higher CIBR dose is better for high protein, oil, and sugar varieties selection. In general, irradiation raised isoflavone concentrations, but 140 Gy had an inhibitory effect on isoflavone concentrations in the M3 generation. Although a variety could not be released in the M2 or M3 generation, the results of this study have important guiding significance for the targeted cultivation of specific nutritional quality materials. For instance, a lower irradiation dose is preferable when breeding targets are higher isoflavones and Mn concentrations. It is essential to increase the irradiation dose if the breeding targets contain high levels of protein, oil, sucrose, soluble sugars, Fe, Zn, and Cu.
Collapse
Affiliation(s)
- Changkai Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, CAS, Harbin, China
| | - Xue Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, CAS, Harbin, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, CAS, Harbin, China
| | - Heng Chen
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, CAS, Harbin, China,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuying Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, CAS, Harbin, China,Innovation Academy for Seed Design, CAS, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, CAS, Harbin, China
| |
Collapse
|
18
|
Development of Ethyl Methanesulfonate Mutant Edamame Soybean (Glycine max (L.) Merr.) Populations and Forward and Reverse Genetic Screening for Early-Flowering Mutants. PLANTS 2022; 11:plants11141839. [PMID: 35890474 PMCID: PMC9315854 DOI: 10.3390/plants11141839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Induced mutation is a viable breeding strategy that is widely utilized in the development of elite plant varieties. We aimed to improve a variety of edamame by constructing novel mutant populations using the ethyl methanesulfonate in soybeans (Glycine max (L.) Merr.). In the M2 population, the flowering stage showed a considerable standard deviation compared to the wild type, confirming that the mutant populations had the expected DNA mutations. To identify the DNA mutations in the mutant populations, we used the targeting induced local lesions in genomes (TILLING) method, which is a reverse genetic method, to search for soybean flowering-related gene mutants. A total of 30 mutants from E1, E3, E4, and PhyA1 genes, which are known to be highly effective genes, or their homologous gene for flowering and maturation found in soybean quantitative trait locus analyses were isolated from our TILLING screening. Among these mutants, there were eleven nonsynonymous substitution mutants, one nonsense mutant, and two single nucleotide deletion mutants that could be expected to reduce or eliminate gene function. The e1, e3, and e4 mutants obtained in this study flowered considerably earlier than the wild type. In particular, the e1 mutant with a nonsynonymous substitution flowered approximately 1 month after sowing regardless of the sowing date, and its harvest date was approximately 1 month earlier than that of the wild type. Mutations identified using the TILLING method could not only be used as gel-based DNA markers with the same manipulation method, but the mutations could also be detected as DNA markers by the high-resolution melting method. These results indicate that mutations achieved without chromosome modification by crossbreeding are effective for early and practical improvement of superior varieties and that efficient selection of mutants by reverse genetics is an effective method for the identification of genetic modifications. The edamame mutant populations developed in this study are believed to possess various useful alleles which may be applicable in the search for mutations that lead to improved edamame yield and eating quality beyond the flowering stage.
Collapse
|
19
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
20
|
Wu Y, Shi H, Yu H, Ma Y, Hu H, Han Z, Zhang Y, Zhen Z, Yi L, Hou J. Combined GWAS and Transcriptome Analyses Provide New Insights Into the Response Mechanisms of Sunflower Against Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:847435. [PMID: 35592557 PMCID: PMC9111542 DOI: 10.3389/fpls.2022.847435] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/31/2022] [Indexed: 05/25/2023]
Abstract
Sunflower is one of the most important oil crops in the world, and drought stress can severely limit its production and quality. To understand the underlying mechanism of drought tolerance, and identify candidate genes for drought tolerance breeding, we conducted a combined genome-wide association studies (GWAS) and RNA-seq analysis. A total of 226 sunflower inbred lines were collected from different regions of China and other countries. Eight phenotypic traits were evaluated under control and drought stress conditions. Genotyping was performed using a Specific-Locus Amplified Fragment Sequencing (SLAF-seq) approach. A total of 934.08 M paired-end reads were generated, with an average Q30 of 91.97%. Based on the 243,291 polymorphic SLAF tags, a total of 94,162 high-quality SNPs were identified. Subsequent analysis of linkage disequilibrium (LD) and population structure in the 226 accessions was carried out based on the 94,162 high-quality SNPs. The average LD decay across the genome was 20 kb. Admixture analysis indicated that the entire population most likely originated from 11 ancestors. GWAS was performed using three methods (MLM, FarmCPU, and BLINK) simultaneously. A total of 80 SNPs showed significant associations with the 8 traits (p < 1.062 × 10-6). Next, a total of 118 candidate genes were found. To obtain more reliable candidate genes, RNA-seq analysis was subsequently performed. An inbred line with the highest drought tolerance was selected according to phenotypic traits. RNA was extracted from leaves at 0, 7, and 14 days of drought treatment. A total of 18,922 differentially expressed genes were obtained. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed up-regulated genes were mainly enriched in the branched-chain amino acid catabolic process, while the down-regulated genes were mainly enriched in the photosynthesis-related process. Six DEGs were randomly selected from all DEGs for validation; these genes showed similar patterns in RNA-seq and RT-qPCR analysis, with a correlation coefficient of 0.8167. Through the integration of the genome-wide association study and the RNA-sequencing, 14 candidate genes were identified. Four of them (LOC110885273, LOC110872899, LOC110891369, LOC110920644) were abscisic acid related protein kinases and transcription factors. These genes may play an important role in sunflower drought response and will be used for further study. Our findings provide new insights into the response mechanisms of sunflowers against drought stress and contribute to further genetic breeding.
Collapse
Affiliation(s)
- Yang Wu
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Huimin Shi
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Haifeng Yu
- Institute of Crop Breeding and Cultivation, Inner Mongolia Academy of Agricultural and Husbandry Sciences, Hohhot, China
| | - Yu Ma
- Institute of Crop Breeding and Cultivation, Inner Mongolia Academy of Agricultural and Husbandry Sciences, Hohhot, China
| | - Haibo Hu
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhigang Han
- Institute of Crop Breeding and Cultivation, Inner Mongolia Academy of Agricultural and Husbandry Sciences, Hohhot, China
| | - Yonghu Zhang
- Institute of Crop Breeding and Cultivation, Inner Mongolia Academy of Agricultural and Husbandry Sciences, Hohhot, China
| | - Zilong Zhen
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Liuxi Yi
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianhua Hou
- College of Agricultural, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
21
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
22
|
Khoei MA, Karimi M, Karamian R, Amini S, Soorni A. Identification of the Complex Interplay Between Nematode-Related lncRNAs and Their Target Genes in Glycine max L. FRONTIERS IN PLANT SCIENCE 2021; 12:779597. [PMID: 34956274 PMCID: PMC8705754 DOI: 10.3389/fpls.2021.779597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
Soybean (Glycine max) is a major plant protein source and oilseed crop. However, plant-parasitic nematodes (PPNs) affect its annual yield. In the current study, in order to better understand the regulation of defense mechanism against PPNs in soybean, we investigated the role of long non-coding RNAs (lncRNAs) in response to two nematode species, Heterodera glycines (SCN: soybean cyst nematode) and Rotylenchulus reniformis (reniform). To this end, two publicly available RNA-seq data sets (SCN data set and RAD: reniform-associated data set) were employed to discover the lncRNAome profile of soybean under SCN and reniform infection, respectively. Upon identification of unannotated transcripts in these data sets, a seven-step pipeline was utilized to sieve these transcripts, which ended up in 384 and 283 potential lncRNAs in SCN data set and RAD, respectively. These transcripts were then used to predict cis and trans nematode-related targets in soybean genome. Computational prediction of target genes function, some of which were also among differentially expressed genes, revealed the involvement of putative nematode-responsive genes as well as enrichment of multiple stress responses in both data sets. Finally, 15 and six lncRNAs were proposed to be involved in microRNA-mediated regulation of gene expression in soybean in response to SNC and reniform infection, respectively. Collectively, this study provides a novel insight into the signaling and regulatory network of soybean-pathogen interactions and opens a new window for further research.
Collapse
Affiliation(s)
| | | | - Roya Karamian
- Department of Biology, Faculty of Sciences, Bu-Ali Sina University, Hamedan, Iran
| | | | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
23
|
Brown AV, Conners SI, Huang W, Wilkey AP, Grant D, Weeks NT, Cannon SB, Graham MA, Nelson RT. A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 2021; 49:D1496-D1501. [PMID: 33264401 PMCID: PMC7778910 DOI: 10.1093/nar/gkaa1107] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/18/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023] Open
Abstract
SoyBase, a USDA genetic and genomics database, holds professionally curated soybean genetic and genomic data, which is integrated and made accessible to researchers and breeders. The site holds several reference genome assemblies, as well as genetic maps, thousands of mapped traits, expression and epigenetic data, pedigree information, and extensive variant and genotyping data sets. SoyBase displays include genetic, genomic, and epigenetic maps of the soybean genome. Gene expression data is presented in the genome viewer as heat maps and pictorial and tabular displays in gene report pages. Millions of sequence variants have been added, representing variations across various collections of cultivars. This variant data is explorable using new interactive tools to visualize the distribution of those variants across the genome, between selected accessions. SoyBase holds several reference-quality soybean genome assemblies, accessible via various query tools and browsers, including a new visualization system for exploring the soybean pan-genome. SoyBase also serves as a nexus of announcements pertinent to the greater soybean research community. The database also includes a soybean-specific anatomic and biochemical trait ontology. The database can be accessed at https://soybase.org.
Collapse
Affiliation(s)
- Anne V Brown
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Shawn I Conners
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Wei Huang
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Andrew P Wilkey
- ORISE Fellow USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - David Grant
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Nathan T Weeks
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Steven B Cannon
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Michelle A Graham
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Rex T Nelson
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| |
Collapse
|
24
|
Tang S, Liu DX, Lu S, Yu L, Li Y, Lin S, Li L, Du Z, Liu X, Li X, Ma W, Yang QY, Guo L. Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1410-1422. [PMID: 33048384 DOI: 10.1111/tpj.15003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Brassica napus is an important oilseed crop in the world, and the mechanism of seed oil biosynthesis in B. napus remains unclear. In order to study the mechanism of oil biosynthesis and generate germplasms for breeding, an ethyl methanesulfonate (EMS) mutant population with ~100 000 M2 lines was generated using Zhongshuang 11 as the parent line. The EMS-induced genome-wide mutations in M2-M4 plants were assessed. The average number of mutations including single nucleotide polymorphisms and insertion/deletion in M2-M4 was 21 177, 28 675 and 17 915, respectively. The effects of the mutations on gene function were predicted in M2-M4 mutants, respectively. We screened the seeds from 98 113 M2 lines, and 9415 seed oil content and fatty acid mutants were identified. We further confirmed 686 mutants with altered seed oil content and fatty acid in advanced generation (M4 seeds). Five representative M4 mutants with increased oleic acid were re-sequenced, and the potential causal variations in FAD2 and ROD1 genes were identified. This study generated and screened a large scale of B. napus EMS mutant population, and the identified mutants could provide useful genetic resources for the study of oil biosynthesis and genetic improvement of seed oil content and fatty acid composition of B. napus in the future.
Collapse
Affiliation(s)
- Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong-Xu Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengli Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuolin Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
25
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
26
|
Optimizing bacteriophage engineering through an accelerated evolution platform. Sci Rep 2020; 10:13981. [PMID: 32814789 PMCID: PMC7438504 DOI: 10.1038/s41598-020-70841-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of antibiotic resistance has raised serious concerns within scientific and medical communities, and has underlined the importance of developing new antimicrobial agents to combat such infections. Bacteriophages, naturally occurring bacterial viruses, have long been characterized as promising antibiotic alternatives. Although bacteriophages hold great promise as medical tools, clinical applications have been limited by certain characteristics of phage biology, with structural fragility under the high temperatures and acidic environments of therapeutic applications significantly limiting therapeutic effectiveness. This study presents and evaluates the efficacy of a new accelerated evolution platform, chemically accelerated viral evolution (CAVE), which provides an effective and robust method for the rapid enhancement of desired bacteriophage characteristics. Here, our initial use of this methodology demonstrates its ability to confer significant improvements in phage thermal stability. Analysis of the mutation patterns that arise through CAVE iterations elucidates the manner in which specific genetic modifications bring forth desired changes in functionality, thereby providing a roadmap for bacteriophage engineering.
Collapse
|
27
|
Liu S, Zhang M, Feng F, Tian Z. Toward a "Green Revolution" for Soybean. MOLECULAR PLANT 2020; 13:688-697. [PMID: 32171732 DOI: 10.1016/j.molp.2020.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 03/06/2020] [Indexed: 05/25/2023]
Abstract
Soybean (Glycine max), as an economically important food and oilseedcrop, is a major source of plant proteins and oils. Although considerable progress has been made in increasing the yields of rice, wheat, and maize through the "Green Revolution", little improvements have been made for soybean. With the increasing demand of soybean production and the rapid development of crop breeding technologies, time has come for this important crop to undergo a Green Revolution. Here, we briefly summarize the history of crop breeding and Green Revolution in other crops. We then discuss the possible directions and potential approaches toward achieving a Green Revolution for soybean. We provide our views and perspectives on how to breed new soybean varieties with improved yield.
Collapse
Affiliation(s)
- Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Feng
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Development and Characterization of an Ethyl Methane Sulfonate (EMS) Induced Mutant Population in Capsicum annuum L. PLANTS 2020; 9:plants9030396. [PMID: 32210121 PMCID: PMC7154856 DOI: 10.3390/plants9030396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/29/2022]
Abstract
Plant breeding explores genetic diversity in useful traits to develop new, high-yielding, and improved cultivars. Ethyl methane sulfonate (EMS) is a chemical widely used to induce mutations at loci that regulate economically essential traits. Additionally, it can knock out genes, facilitating efforts to elucidate gene functions through the analysis of mutant phenotypes. Here, we developed a mutant population using the small and pungent ornamental Capsicum annuum pepper “Micro-Pep”. This accession is particularly suitable for mutation studies and molecular research due to its compact growth habit and small size. We treated 9500 seeds with 1.3% EMS and harvested 3996 M2 lines. We then selected 1300 (32.5%) independent M2 families and evaluated their phenotypes over four years. The mutants displayed phenotypic variations in plant growth, habit, leaf color and shape, and flower and fruit morphology. An experiment to optimize Targeting Induced Local Lesions IN Genomes (TILLING) in pepper detected nine EMS-induced mutations in the eIF4E gene. The M2 families developed here exhibited broad phenotypic variation and should be valuable genetic resources for functional gene analysis in pepper molecular breeding programs using reverse genetics tools, including TILLING.
Collapse
|
29
|
Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, Liu B, Sun J, Yang M, Yang L, Wang D, Song S, Guan Y. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:721-731. [PMID: 31452351 PMCID: PMC7004907 DOI: 10.1111/pbi.13239] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/17/2019] [Accepted: 08/15/2019] [Indexed: 05/08/2023]
Abstract
The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome. CRISPR-Cas9 can generate multiplex mutants in crops with complex genomes. Nevertheless, the transformation efficiency of soya bean remains low and, hence, remains the major obstacle in the application of CRISPR-Cas9 as a mutant screening tool. Here, we report a pooled CRISPR-Cas9 platform to generate soya bean multiplex mutagenesis populations. We optimized the key steps in the screening protocol, including vector construction, sgRNA assessment, pooled transformation, sgRNA identification and gene editing verification. We constructed 70 CRISPR-Cas9 vectors to target 102 candidate genes and their paralogs which were subjected to pooled transformation in 16 batches. A population consisting of 407 T0 lines was obtained containing all sgRNAs at an average mutagenesis frequency of 59.2%, including 35.6% lines carrying multiplex mutations. The mutation frequency in the T1 progeny could be increased further despite obtaining a transgenic chimera. In this population, we characterized gmric1/gmric2 double mutants with increased nodule numbers and gmrdn1-1/1-2/1-3 triple mutant lines with decreased nodulation. Our study provides an advanced strategy for the generation of a targeted multiplex mutant population to overcome the gene redundancy problem in soya bean as well as in other major crops.
Collapse
Affiliation(s)
- Mengyan Bai
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Juehui Yuan
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Huaqin Kuang
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pingping Gong
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Suning Li
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhihui Zhang
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Bo Liu
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiafeng Sun
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Maoxiang Yang
- College of Resources and EnvironmentFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lan Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi ProvinceCollege of Life ScienceNanchang UniversityJiangxiChina
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi ProvinceCollege of Life ScienceNanchang UniversityJiangxiChina
| | - Shikui Song
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuefeng Guan
- FAFU‐UCR Joint Center for Horticultural Biology and MetabolomicsHaixia Institute of Science and TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
30
|
Roy S, Liu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, Frugoli J, Dickstein R, Udvardi MK. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. THE PLANT CELL 2020; 32:15-41. [PMID: 31649123 PMCID: PMC6961631 DOI: 10.1105/tpc.19.00279] [Citation(s) in RCA: 346] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 05/13/2023]
Abstract
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.
Collapse
Affiliation(s)
- Sonali Roy
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Wei Liu
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Ashley Crook
- College of Science, Clemson University, Clemson, South Carolina 29634
| | | | | | - Julia Frugoli
- College of Science, Clemson University, Clemson, South Carolina 29634
| | - Rebecca Dickstein
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton Texas 76203
| | | |
Collapse
|
31
|
Zhou Z, Lakhssassi N, Cullen MA, El Baz A, Vuong TD, Nguyen HT, Meksem K. Assessment of Phenotypic Variations and Correlation among Seed Composition Traits in Mutagenized Soybean Populations. Genes (Basel) 2019; 10:E975. [PMID: 31783508 PMCID: PMC6947669 DOI: 10.3390/genes10120975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/31/2023] Open
Abstract
Soybean [Glycine max (L.) Merr.] seed is a valuable source of protein and oil worldwide. Traditionally, the natural variations were heavily used in conventional soybean breeding programs to select desired traits. However, traditional plant breeding is encumbered with low frequencies of spontaneous mutations. In mutation breeding, genetic variations from induced mutations provide abundant sources of alterations in important soybean traits; this facilitated the development of soybean germplasm with modified seed composition traits to meet the different needs of end users. In this study, a total of 2366 'Forrest'-derived M2 families were developed for both forward and reverse genetic studies. A subset of 881 M3 families was forward genetically screened to measure the contents of protein, oil, carbohydrates, and fatty acids. A total of 14 mutants were identified to have stable seed composition phenotypes observed in both M3 and M4 generations. Correlation analyses have been conducted among ten seed composition traits and compared to a collection of 103 soybean germplasms. Mainly, ethyl methanesulfonate (EMS) mutagenesis had a strong impact on the seed-composition correlation that was observed among the 103 soybean germplasms, which offers multiple benefits for the soybean farmers and industry to breed for desired multiple seed phenotypes.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Mallory A. Cullen
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Abdelhalim El Baz
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| | - Tri D. Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (T.D.V.); (H.T.N.)
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA; (T.D.V.); (H.T.N.)
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (Z.Z.); (N.L.); (M.A.C.); (A.E.B.)
| |
Collapse
|
32
|
Liu S, Ge F, Huang W, Lightfoot DA, Peng D. Effective identification of soybean candidate genes involved in resistance to soybean cyst nematode via direct whole genome re-sequencing of two segregating mutants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2677-2687. [PMID: 31250041 DOI: 10.1007/s00122-019-03381-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Three soybean candidate genes involved in resistance to soybean cyst nematode race 4 were identified via direct whole genome re-sequencing of two segregating mutants. The genes conferring resistance to soybean cyst nematode (SCN) race 4 (Hg type 1.2.3.5.7) in soybean (Glycine max L. Merr.) remains unknown. Next generation sequencing-based methods identify a wide range of targets, it is difficult to identify genes underlying traits. Use of the MutMap and QTL-seq methods to identify trait candidate genes needs backcrossing and is very time-consuming. Here we report a simple method to effectively identify candidate genes involved in resistance to SCN race 4. Two ethane methylsulfonate mutagenized mutants of soybean 'PI 437654', whose SCN race 4-infection phenotype altered, were selected. Six relevant whole genomes were re-sequenced, and then calling of genomic variants (SNPs and InDels) was conducted and compared to 'Williams 82'. The comparison eliminated many genomic variants from the mutant lines that overlapped two non-phenotypic but mutant progeny plants, wild-type PI 437654 and 'Zhonghuang 13'. Finally, only 27 mutations were found among 10 genes. Of these 10 genes, 3 genes, Glyma.09g054000, Glyma.16g065700 and Glyma.18g192200 were overlapped between two phenotypic mutant progeny plants. Therefore, the three genes may be the candidate genes involved in resistance of PI 437654 to soybean cyst nematode race 4. This method simplifies the effective identification of candidate genes.
Collapse
Affiliation(s)
- Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Fengyong Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - David A Lightfoot
- College of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
33
|
Nagatoshi Y, Fujita Y. Accelerating Soybean Breeding in a CO2-Supplemented Growth Chamber. PLANT & CELL PHYSIOLOGY 2019; 60:77-84. [PMID: 30219921 PMCID: PMC6343635 DOI: 10.1093/pcp/pcy189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/07/2018] [Indexed: 05/13/2023]
Abstract
Soybean (Glycine max) is the most important dicot crop worldwide, and is increasingly used as a model legume due to the wide availability of genomic soybean resources; however, the slow generation times of soybean plants are currently a major hindrance to research. Here, we demonstrate a method for accelerating soybean breeding in compact growth chambers, which greatly shortens the generation time of the plants and accelerates breeding and research projects. Our breeding method utilizes commonly used fluorescent lamps (220 µmol m-2 s-1 at the canopy level), a 14 h light (30°C)/10 h dark (25°C) cycle and carbon dioxide (CO2) supplementation at >400 p.p.m. Using this approach, the generation time of the best-characterized elite Japanese soybean cultivar, Enrei, was shortened from 102-132 d reported in the field to just 70 d, thereby allowing up to 5 generations per year instead of the 1-2 generations currently possible in the field and/or greenhouse. The method also facilitates the highly efficient and controlled crossing of soybean plants. Our method uses CO2 supplementation to promote the growth and yield of plants, appropriate light and temperature conditions to reduce the days to flowering, and the reaping and sowing of immature seeds to shorten the reproductive period greatly. Thus, the appropriate parameters enable acceleration of soybean breeding in the compact growth chambers commonly used for laboratory research. The parameters used in our method could therefore be optimized for other species, cultivars, accessions and experimental designs to facilitate rapid breeding in a wide range of crops.
Collapse
Affiliation(s)
- Yukari Nagatoshi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Yasunari Fujita
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|