1
|
Li L, Liu Y, Jia Y, Yuan Z. Investigation into the mechanisms of photosynthetic regulation and adaptation under salt stress in lavender. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109376. [PMID: 39693951 DOI: 10.1016/j.plaphy.2024.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Salinity stress is a major threat to agricultural productivity and sustainability, often causing irreversible damage to photosynthesis. Lavender, a valuable aromatic plant, experiences growth impacts under salt stress. However, the regulatory mechanisms of photosynthesis related to its adaptation to salt stress remain unclear. In this study, lavender was exposed to 0, 100, 200, and 300 mM NaCl for 28 days. It was observed that lavender effectively maintained chlorophyll stability when salt concentrations were below 200 mM and stress duration was under 21 days. The most effective model for lavender under salt stress was identified as a right-angled hyperbolic modified model. Under moderate salt stress (100 mM, 200 mM), genes such as LaPSB28, LaPSBS, and LaPSBR contributed to PSII core stability, enhanced photosynthetic pigment levels, and sustained high electron transfer rates to improve salt-tolerance. Additionally, LaLHCB4-1 and LaPSAK-1 regulated stomatal size, thereby facilitating gas exchange and supporting the photosynthetic process. Conversely, under high salt stress (300 mM), LaPSBW-1, -2, and LaPSAB were found to reduce photosynthetic pigment levels and inhibit photosynthetic activity. However, genes such as LaCHLG-2, LaGLG-3, LaBAM1-1 and -3, and LaCHLP-3 aided in starch synthesis by increasing pigment content, thus promoting energy balance and enhancing salt tolerance. This regulation involved photosynthesis-antenna proteins and pathways related to starch, sucrose, and chlorophyll metabolism. These findings may support the cultivation of salt-tolerant lavender varieties and maximize saline soil usage.
Collapse
Affiliation(s)
- Ling Li
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Yinan Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Yujing Jia
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Zening Yuan
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China; Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China.
| |
Collapse
|
2
|
Hassanpouraghdam MB, Mehrabani LV, Khoshmaram L, Rasouli F. Amelioration of the growth and physiological responses of Capsicum annum L. via quantum dot-graphene oxide, cerium oxide, and titanium oxide nanoparticles foliar application under salinity stress. Sci Rep 2025; 15:467. [PMID: 39747426 PMCID: PMC11696048 DOI: 10.1038/s41598-024-84706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants. This experiment was conducted to study the effects of NaCl salinity stress (0, 100, and 200 mM), and foliar application of quantum dot-graphene oxide, nano-TiO2, and CeO2 (zero and 2 g/l) on the growth and physiological responses of Capsicum annum L. The results revealed that the interaction effects of treatments significantly affected plant and fruit fresh weight, chlorophyll a, total soluble solids, phenolics, malondialdehyde, H2O2, and proline content. Moreover, catalase activity and sodium, and phosphorus content were responded to the treatments. The highest fresh weight of plants and fruits, fruit diameter, and chlorophyll a content were recorded under no-salinity × quantum dot-graphene oxide foliar use. The highest data for total phenolics content was recorded at NaCl100 mM × quantum dot-graphene oxide. In contrast, the maximum flavonoids content belonged to NaCl100 mM × quantum dot-graphene oxide and NaCl100 mM × TiO2. The experimental treatments independently affected the number of fruits, chlorophyll b, carotenoids, and vitamin C content, as well as K/Na ratio. The foliar treatment of quantum dot-graphene oxide nanoparticles improved the carotenoids and vitamin C content, stem diameter, and fruit number. The overall results disclosed that, when plants were exposed to high salinity levels; the foliar treatments were unable to effectively mitigate the negative impacts of salt stress on the plant, except for certain traits such as total phenolics, flavonoids, and TSS levels. However, under the low and mild salinity depression, the foliar treatments were enough capable to overcome the salinity defects.
Collapse
Affiliation(s)
| | - Lamia Vojodi Mehrabani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, 53751-71379, Iran
| | - Leila Khoshmaram
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, 53751-71379, Iran
| | - Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, 55181-83111, Iran
| |
Collapse
|
3
|
El-Mahrouk ESM, Atef EAM, Gabr MK, Aly MA, Mohamed AE, Eisa EA, Gururani MA. Response of Salvia officinalis to zinc and silicon nanoparticles and pollen extract as alternates to traditional fertilizers. FRONTIERS IN PLANT SCIENCE 2024; 15:1469691. [PMID: 39640988 PMCID: PMC11619789 DOI: 10.3389/fpls.2024.1469691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Salvia officinalis is used in a variety of medicinal and aromatic products. The effects of various treatments on sage (Salvia officinalis) plants were investigated in an open-field experiment conducted between 2021 and 2022. During the experiment, ZnO nanoparticles (NPs) were used at concentrations of 1.0 and 1.5 g/L, SiO2 NPs were used at concentrations of 0.1 and 0.2 g/L, and date palm pollen extracts (DPE) were used at concentrations of 15 and 25 g/L, in combination with NPK fertilizers at 75%, 50%, and 25%, respectively, with a control group of 100% NPK fertilizer. A treatment consisting of 75% NPK, 15 g/L DPE, 1.0 g/L ZnO NPs, and 0.1 g/L SiO2 NPs significantly improved vegetative traits and essential oil yield. Compared to the control in the growing seasons of 2021 and 2022, this treatment resulted in increases in plant height, chlorophyll index, fresh and dry weights, and essential oil yield (EOY) per plant of 23.40% and 28.30%, 27.56% and 26.54%, 42.17% and 42.95%, 64.10% and 62.79%, and 93.38% and 91.08%, respectively. Combinations of 25% NPK + 25 g/L DPE + 1.5 g/L ZnO nanoparticles + 0.2 g/L SiO2 NPs and 75% NPK + 0.1 g/L SiO2 NPs produced the highest essential oil percentage (EO%). During the experimental seasons, these treatments increased EO% by 15.45% and 26.25%. In total, 58 substances were identified across the different treatments in the essential oil composition analysis. There were 11 compounds in the 25% NPK, 25 g/L DPE, 1.5 g/L ZnO NPs, and 0.2 g/L SiO2 NPs treatments, and 32 in the 50% NPK, 25 g/L DPE, and 0.2 g/L SiO2 NPs treatments. Oxygenated hydrocarbons, sesquiterpenes, and monoterpenes varied by application. Thujone, camphor, manool, and ledol were the major constituents of the EO. Leaf chemical composition, antioxidant activity, and total phenolic compounds were significantly influenced by the treatments. In combination with DPE, ZnO and SiO2 NPs reduced the need for higher amounts of mineral NPK fertilizers. These agents can therefore be useful for advancing sustainable agricultural practices in novel and advantageous ways.
Collapse
Affiliation(s)
| | - Ekramy Abdel-Moatamed Atef
- Plant Production Department (Horticulture - Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed Kadry Gabr
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mahmoud Ahmed Aly
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Abdallah E. Mohamed
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Eman Abdelhakim Eisa
- Department of Floriculture and Dendrology, Hungarian University of Agriculture and Life Science (MATE), Budapest, Hungary
- Botanical Gardens Research Department, Horticulture Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Mayank Anand Gururani
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Mansinhos I, Gonçalves S, Romano A. How climate change-related abiotic factors affect the production of industrial valuable compounds in Lamiaceae plant species: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1370810. [PMID: 39049861 PMCID: PMC11266143 DOI: 10.3389/fpls.2024.1370810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
The interest in medicinal and aromatic plants (MAPs) has increased significantly in recent years, driven by the growing demand for natural products. MAPs are a valuable source of secondary metabolites, which renders them useful to a number of industries, including cosmetics, pharmaceuticals, and food. The Lamiaceae family includes economically important MAPs that produce valuable secondary metabolites such as essential oils (EOs) and phenolic compounds (PCs). The quantity and quality of these secondary metabolites are affected by abiotic stress factors. In a climate change scenario, the Lamiaceae is one of the most affected families, especially due to its wide distribution in the Mediterranean region. In the present study, the most common climate-related environmental stress factors, namely, drought, salinity, temperature, light, and heavy metals, were reviewed and discussed in order to assess their impact on the chemical profiles of EOs and PCs, as well as on the biological properties (antioxidant, antibacterial, antimelanogenic, pest-repellent, and UV-protective) of Lamiaceae species. It can be posited that these stresses typically act as a catalyst for the secondary metabolism of these plants, resulting in increased production of EO compounds (e.g., 1,8-cineole, linalool, camphor, borneol, and limonene) and PCs (e.g., rosmarinic, caffeic, and salvianolic acids) and subsequent enhancement of their biological activities. In view of the industrial applications of these bioactive compounds, it is of interest to explore the changes in secondary metabolism induced by environmental factors as it is possible to increase the accumulation of valuable secondary metabolites.
Collapse
Affiliation(s)
| | - Sandra Gonçalves
- Mediterranean Institute for Agriculture, Environment and Development (MED) and CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Anabela Romano
- Mediterranean Institute for Agriculture, Environment and Development (MED) and CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
5
|
Liao Z, Liu L, Rennenberg H, Du B. Water deprivation modifies the metabolic profile of lavender (Lavandula angustifolia Mill.) leaves. PHYSIOLOGIA PLANTARUM 2024; 176:e14365. [PMID: 38802725 DOI: 10.1111/ppl.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Lavender plantation is globally expanded due to the increasing demand of its essential oil and its popularity as an ornamental species. However, lavender plantations, and consequently essential oil industries, are threatened by more frequent and severe drought episodes in a globally changing climate. Still little is known about the changes in the general metabolome, which provides the precursors of essential oil production, by extended drought events. Prolonged drought fundamentally results in yield losses and changing essential oil composition. In the present study, the general metabolome of a main cultivated lavender species (Lavandula angustifolia Mill.) in response to water deprivation (WD) and re-watering was analyzed to identify the metabolomics responses. We found prolonged WD resulted in significant accumulations of glucose, 1,6-anhydro-β-D-glucose, sucrose, melezitose and raffinose, but declines of allulose, β-D-allose, altrose, fructose and D-cellobiose accompanied by decreased organic acids abundances. Amino acids and aromatic compounds of p-coumaric acid, hydrocaffeic acid and caffeic acid significantly accumulated at prolonged WD, whereas aromatics of cis-ferulic acid, taxifolin and two fatty acids (i.e., palmitic acid and stearic acid) significantly decreased. Prolonged WD also resulted in decreased abundances of polyols, particularly myo-inositol, galactinol and arabitol. The altered metabolite profiles by prolonged WD were mostly not recovered after re-watering, except for branched-chain amino acids, proline, serine and threonine. Our study illustrates the complex changes of leaf primary and secondary metabolic processes of L. angustifolia by drought events and highlights the potential impact of these precursors of essential oil production on the lavender industry.
Collapse
Affiliation(s)
- Zhengqiao Liao
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
- Ecological Security and Protection Key laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Lei Liu
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
- Ecological Security and Protection Key laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Gyanagoudar HS, Hatiya ST, Guhey A, Dharmappa PM, Seetharamaiah SK. A comprehensive approach for evaluating salinity stress tolerance in brinjal (Solanum melongena L.) germplasm using membership function value. PHYSIOLOGIA PLANTARUM 2024; 176:e14239. [PMID: 38439514 DOI: 10.1111/ppl.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Salinity is a major stress factor affecting plant growth and development, which limits the productivity of vegetable crops. Brinjal (Solanum melongena L.), an important vegetable cultivated across the globe is susceptible to salinity stress. In the present study, the salinity tolerance response of 110 brinjal germplasm lines was evaluated at the germination stage using the membership function value (MFV). The MFV is a comprehensive index that integrates salt-tolerance indices of germination parameters. The brinjal germplasms were classified into highly salt-tolerant (>0.79), salt-tolerant (0.79-0.65), moderately salt-tolerant (0.64-0.21), salt-sensitive (0.20-0.07), and highly salt-sensitive (<0.07) based on their mean MFV. Among all the traits examined, germination percentage (0.874) and vigour index-I (0.808) were the most reliable traits for assessing salinity tolerance, showing a higher correlation with mean MFV. Furthermore, a comprehensive mathematical model was developed for evaluating the salt-tolerance of the brinjal germplasm. We validated our model by evaluating the brinjal germplasm at the seedling stage through a hydroponic experiment, and a strong positive correlation was observed between growth parameters at the germination and seedling stages. Salt-tolerant genotypes showed higher chlorophyll content, photosynthetic performance and biomass accumulation with lower canopy temperature (1.57°C) under salinity compared to susceptible genotypes (2.62°C). These findings provide valuable insights into the salinity tolerance of the brinjal germplasm, and identified potential candidates to elucidate the molecular mechanisms and develop salinity-tolerant cultivars. To our knowledge, this is the first report using a mathematical model based on MFV to evaluate the salt-tolerance of any vegetable crop.
Collapse
Affiliation(s)
- Harsha Shekarappa Gyanagoudar
- Division of Basic Sciences, Indian Institute of Horticultural Research, Bengaluru, India
- Department of plant Physiology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Singh Tejavathu Hatiya
- Division of Vegetable Crops, Indian Institute of Horticultural Research, Bengaluru, India
| | - Arti Guhey
- Department of plant Physiology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | | | | |
Collapse
|
7
|
Korkmaz E, Çiçek N. Investigation of The Alleviating Effect of Liquid Seaweed Fertilizer on Lavandula officinalis under Salt Stress. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:187. [PMID: 38253777 DOI: 10.1007/s10661-024-12377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Sustainable practices in plant production involve various environmental methods that improve the urban ecosystem by preserving both natural resources and biological diversity. Organic material application against salt stress is one of the most important sustainable practices. The purpose of this study was to explore how various traits of Lavandula officinalis under salt stress were affected by seaweed liquid. To this end, the experiment was performed as a completely randomized experimental design with two factors including four replications under greenhouse conditions. In the experiments, salt concentrations were prepared as control (distilled water), 40 mM and 80 mM NaCl, and seaweed liquid levels were applied as control (0%) - 0.5%-1%-2% and 4%. L. officinalis was considerably negatively affected by salt stress in terms of its quality, growth, photosynthetic and biochemical traits. According to the results of this empirical research, seaweed liquid application was the alleviating factor in negative effects in all traits resulting from the increase in NaCl concentrations. Seaweed liquid also revealed the highest values of all traits in the absence of salt stress. Photosynthetic and biochemical traits without proline, Relative water content, and chlorophyll a/b declined more than other quality and growth traits with a rise in salt content from 0 to 40 mM. Further research will be needed to test the beneficial effects of seaweed liquid on traits of L. officinalis seedlings in outdoor landscaping that includes salty spaces.
Collapse
Affiliation(s)
- Elif Korkmaz
- Graduate School of Natural and Applied Sciences, Cankiri Karatekin University, Cankiri, Turkey
| | - Nuray Çiçek
- Faculty of Forestry, Department of Landscape Architecture, Cankiri Karatekin University, Cankiri, Turkey.
| |
Collapse
|
8
|
El-Mahrouk ESM, Atef EAM, Gabr MK, Aly MA, Głowacka A, Ahmed MAA. Application of ZnO NPs, SiO 2 NPs and Date Pollen Extract as Partial Substitutes to Nitrogen, Phosphorus, and Potassium Fertilizers for Sweet Basil Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:172. [PMID: 38256725 PMCID: PMC10819998 DOI: 10.3390/plants13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
The reduction in mineral fertilizer usage is crucial to the production of medicinal and aromatic products for safety and health purposes. Presently, nanotechnology and the utilization of natural extracts have been extensively studied due to their significant contribution. Ocimum basilicum is commonly employed for various medicinal and aromatic applications. Therefore, randomized complete block design field experiments containing 10 treatments were conducted during the 2021 and 2022 seasons to investigate the effect of nanoparticles (NPs) of ZnO (1.5 and 2.0 g/L) and SiO2 (100 and 150 mg/L) and date palm pollen extract (DPPE) at 10 and 20 g/L either alone or in combination with the ¾ or ½ NPK recommended dose (RD). The NPK RD was served as a control treatment on basil plant production in each season. The effectiveness of ZnO NPs, SiO2 NPs, and DPPE for the decrease in NPK utilization was evaluated. Meanwhile, the most effective treatment for vegetative traits (except for plant height), essential oil %, and yield was ½ NPK RD + 20 g/L DPPE + 2.0 g/L ZnO NPs. Such a treatment increased the branch number/plant, main stem diameter, relevant chlorophyll content, fresh weight/plant, dry weight/plant, essential oil %, and essential oil yield/plant by 21.00 and 9.94%, 58.70 and 40.00%, 20.69 and 15.83%, 68.83 and 58.28%, 48.70 and 56.16%, 45.71 and 35.53%, and 113.22 and 110.32% over the control in the two seasons, respectively. For total phenol and antioxidant activity, the most effective treatments were the ¾ NPK +1.5 g/L ZnO NPs and ½ NPK +2.0 g/L ZnO NPs, respectively. Simultaneously, essential oil composition (with their compound numbers identified (11-29 for control and ¾ NPK RD + 1.5 g/L ZnO NPs)) and the percentage of total compounds, monoterpene hydrocarbons, sesquiterpene hydrocarbons, and oxygenated hydrocarbons were varied among the used applications. The major observed compounds (>8%) estragole, methyl eugenol, linalool, cineole, and caryophyllene were found in different treatments. Thus, the findings of this study indicate the favorable utilization of ZnO NPs, SiO2 NPs, and DPPE in reducing the application of NPK, which may present a novel strategy and beneficial approach.
Collapse
Affiliation(s)
| | - Ekramy Abdel Moatamed Atef
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Mohamed Kadry Gabr
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt; (M.K.G.); (M.A.A.)
| | - Mahmoud Ahmed Aly
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt; (M.K.G.); (M.A.A.)
| | - Aleksandra Głowacka
- Department of Plant Cultivation Technology and Commodity Sciences, University of Life Sciences in Lublin, 13 Akademicka Street, 20-950 Lublin, Poland
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| |
Collapse
|
9
|
Yadav P, Ansari MW, Kaula BC, Rao YR, Meselmani MA, Siddiqui ZH, Brajendra, Kumar SB, Rani V, Sarkar A, Rakwal R, Gill SS, Tuteja N. Regulation of ethylene metabolism in tomato under salinity stress involving linkages with important physiological signaling pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111736. [PMID: 37211221 DOI: 10.1016/j.plantsci.2023.111736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - β-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, β-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Babeeta C Kaula
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Yalaga Rama Rao
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Moaed Al Meselmani
- School of Biosciences, Alfred Denny Building, Grantham Centre, The University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire, England, UK
| | | | - Brajendra
- Division of Soil Science, ICAR-IIRR, Hyderabad, Telangana, India
| | - Shashi Bhushan Kumar
- Department of Soil Science, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Varsha Rani
- Department of Crop Physiology, Birsa Agricultural University, Kanke, Ranchi, Jharkhand, India
| | - Abhijit Sarkar
- Department of Botany, University of GourBanga, Malda 732103, West Bengal, India
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak 124001, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
10
|
Rawat J, Saxena J, Sanwal P, Maddela NR, Nain L, Prasad R. Improving the Growth and Productivity of Macrotyloma uniflorum Medicinal Plant by the Co-inoculation of P, Zn and K-Solubilizing Fungi Under Field Conditions. Curr Microbiol 2023; 80:277. [PMID: 37434070 DOI: 10.1007/s00284-023-03385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
The presence of small amount of soluble forms of Phosphorus (P), Potassium (K) and Zinc (Zn) in most soils is one of the limiting factors for agronomic crop production. The current study focuses on Macrotyloma uniflorum (horse gram or gahat), the most commonly cultivated crop in Uttarakhand. The current initiative and study were started, because there is a little information available on the impact of co-inoculation of beneficial fungi on crops in agricultural fields. Aspergillus niger K7 and Penicillium chrysogenum K4 were isolated and selected for the study on the basis of in vitro P, K and Zn-solubilizing activity. The solubilizing efficiency of K4 strain was 140% and K7 was 173.9% for P. However, the solubilizing efficiencies of K4 and K7 were 160% and 138.46% for Zn and 160% and 466% for K, respectively. The field trials were performed for two consecutive years, and growth and yield related parameters were measured for evaluation of the effect of P, K and Zn-solubilizing fungal strains on the crop. All the treatments showed a significant (P < 0.05) increase in growth and yield of M. uniflorum plants over uninoculated control; however, the best treatment was found to be soil inoculated with P. chrysogenum K4 + A. niger K7 in which the yield was enhanced by 71% over control. Thus, the co-inoculation of K4 and K7 strains showed a great potential to improve the growth and yield of plants. Both the fungal strains simultaneously solubilized three important nutritional elements in soil, which is a rare trait. Moreover, the capacity of these fungal strains to enhance the plant root nodulation and microbial count in soil makes the co-inoculation practice quite beneficial for sustainable agriculture.
Collapse
Affiliation(s)
- Jyoti Rawat
- Biochemical Engineering Department, B.T. Kumaon Institute of Technology, Dwarahat, India
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University Nainital, Nainital, India
| | - Jyoti Saxena
- Biochemical Engineering Department, B.T. Kumaon Institute of Technology, Dwarahat, India
| | - Pankaj Sanwal
- Biochemical Engineering Department, B.T. Kumaon Institute of Technology, Dwarahat, India
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Lata Nain
- Microbiology Division, Indian Agriculture Research Institute, New Delhi, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, India.
| |
Collapse
|
11
|
Kumar D, Punetha A, Chauhan A, Suryavanshi P, Padalia RC, Kholia S, Singh S. Growth, oil and physiological parameters of three mint species grown under saline stress levels. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1061-1072. [PMID: 37649882 PMCID: PMC10462551 DOI: 10.1007/s12298-023-01337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Salinity stress is known to have a detrimental effect on mint plants. The aim of the present work was to investigate the possible effects of salinity stress on Mentha spicata, Mentha piperita and Mentha arvensis. Plants were exposed to salinity stress using different concentrations of NaCl (0, 50, 100, 150 mM). Under salinity stress, plant growth, oil yield, content and composition, as well as physiological parameters were adversely affected. Among the studied species, M. arvensis experienced the maximum loss in terms of oil percentage. Physiological characteristics and oil composition were significantly affected with intensification of salt stress. For instance, in M. spicata, with increasing salinity stress, piperitone oxide was decreased from 78.4% in control to 38.0% in 150 mM NaCl, whereas menthol was increased from 1.0 to 37.1%. Moreover, in M. piperita, menthone, isomenthone and limonene were all increased in low stress and then were decreased in high stress conditions. In M. arvensis, the major compound; menthol was not affected but the content of menthone increased. It could be concluded that the salinity stress is detrimental but might be useful and may be recommended as an appropriate approach in improving the oil quality or to producing specific compounds under mild or moderate stress.
Collapse
Affiliation(s)
- Dipender Kumar
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Arjita Punetha
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Amit Chauhan
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Priyanka Suryavanshi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh 226015 India
| | - R. C. Padalia
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Sushma Kholia
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| | - Sonveer Singh
- Research Centre, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Pantnagar, Uttarakhand 263149 India
| |
Collapse
|
12
|
Ghassemi-Golezani K, Rahimzadeh S. Biochar-based nutritional nanocomposites: a superior treatment for alleviating salt toxicity and improving physiological performance of dill (Anethum graveolens). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3089-3111. [PMID: 36153765 DOI: 10.1007/s10653-022-01397-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/13/2022] [Indexed: 06/01/2023]
Abstract
Biochar-supported metal oxide nanocomposites as functional materials could help to improve the production and stress tolerance of plants by enhancing the physicochemical properties of biochar. This experiment was carried out to assess the effects of unmodified biochar (30 g kg-1 soil) and biochar-based nanocomposites (BNCs) of iron (30 g BNC-FeO kg-1 soil), zinc (30 g BNC-ZnO kg-1 soil), and a combined form (15 g BNC-FeO + 15 g BNC-ZnO kg-1 soil) on dill (Anethum graveolens L.) plants under various salinity levels (non-saline, 6 and 12 dS m-1). The biochar-related treatments reduced sodium content of the plants, leading to a decline in osmolytes, antioxidant enzymes activities, reactive oxygen species (ROS), lipid peroxidation, NADP reduction, abscisic acid, jasmonic acid, and salicylic acid in dill leaf tissues. The combined form of BNCs reduced sodium content of leaf tissue by about 22% and 26% under 6 and 12 dS m-1 salinities, respectively. In contrast, addition of biochar, particularly biochar-based nanocomposites to the saline soil, enhanced potassium, iron, and zinc contents of leaf tissue, photosynthetic pigments, leaf water content, oxygen evolution rate, hill reaction and ATPase activities, endogenous indole-3-acetic acid, plant organs biomass, and consequently essential oil yield of plant organs. The combined form of BNCs in comparison with unmodified biochar improved vegetative, inflorescence, and seed biomass under 12 dS m-1 salinity by about 33%, 25%, and 6%, respectively. These findings revealed that BNCs with novel structure can potentially enhance salt tolerance, plant biomass, and essential oil yield of different organs in salt-stressed dill plants through decreasing leaf sodium content and ROS generation and increasing nutrient availability, water status, and photosynthetic pigments.
Collapse
Affiliation(s)
- Kazem Ghassemi-Golezani
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Saeedeh Rahimzadeh
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Azeem MA, Ali F, Ullah A, Iqbal M, Ali K, Al Farraj DA, Elshikh MS, Naz Q, Munis MFH, Chaudhary HJ. Exploration of plant growth promoting traits and regulatory mechanisms of Bacillus anthracis PM21 in enhancing salt stress tolerance in maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27820-6. [PMID: 37256400 DOI: 10.1007/s11356-023-27820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Bacillus species have been reported to reduce the negative effects of salt stress on plants; the involvement of Bacillus anthracis PM21 and the internal mechanisms involved in this process are unclear. The effects of PM21 inoculation on maize plants under salt stress were investigated in this study. The study aimed to assess the ability of Bacillus anthracis PM21 to endure high levels of salinity stress while preserving the concentration of plant growth regulators. The biomass, photosynthetic pigments, relative water content (RWC), antioxidants, osmoprotectants, inorganic ion contents, regulation of plant hormones and expression of antioxidants enzyme encoded genes were investigated under normal and salinity stress conditions. Bacillus anthracis PM21 produced a significant amount of 1-aminocyclopropane-1-carboxylate deaminase enzyme (ACC deaminase) and exopolysaccharides (EPS) under salt stress and normal conditions. PM21 also produced plant growth stimulants including indole acetic acid, gibberellic acid (GA3), kinetin, and siderophore under salinity stress and normal conditions. Under salt stress, PM21 inoculation markedly increased plant growth indices, stimulate antioxidant enzyme mechanisms, osmoprotectants, and chlorophyll content. The use of qRT-PCR to analyze the transcription of targeted genes indicated greater expression of antioxidant-encoded genes and inferred their possible function in salinity stress tolerance. Our findings shed light on the functions of PM21 and its regulatory mechanisms in plant salt stress tolerance, as well as the importance of PM21 in this process. This study will provide a thorough analysis of the theoretical framework for adopting PM21 in agricultural production as an eco-friendly method to enhance crop growth and yield under salinity stress.
Collapse
Affiliation(s)
- Muhammad Atif Azeem
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fawad Ali
- Department of Botany, University of Baltistan, Skardu, 16400, Pakistan
| | - Abid Ullah
- Botany Department, University of Malakand, Chakdara, 18800, Pakistan
| | - Mahmood Iqbal
- Department of Agricultural Extension, Education and Communication, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Kishwar Ali
- College of General Education, University of Doha for Science and Technology, Arab League Street, P.O. Box 24449, Doha, Qatar
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Qirat Naz
- School of Social Sciences, University of South Wales, Newport, UK
| | | | | |
Collapse
|
14
|
The biochar-based nanocomposites influence the quantity, quality and antioxidant activity of essential oil in dill seeds under salt stress. Sci Rep 2022; 12:21903. [PMID: 36536073 PMCID: PMC9763235 DOI: 10.1038/s41598-022-26578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The essential oil content and composition of medicinal plants may be influenced by eco-friendly products for nutrient availability under abiotic stresses. This research was conducted to determine the effects of biochar (30 g kg-1 soil) and biochar-based nanocomposites (BNCs) of iron (30 g BNC-FeO kg-1 soil), zinc (30 g BNC-ZnO kg-1 soil), and their combined form (15 + 15 g) on dill (Anethum graveolens L.) under salinity levels (non-saline, 6 and 12 dS m-1). Application of biochar, particularly BNCs increased iron and zinc content and decreased sodium accumulation in leaf tissues. The seed essential oil content increased under high salinity. Salinity changed the values of major compounds in essential oil and induced the formation of compounds such as alpha,2-dimethylstyrene, cuminyl alcohol, p-cymene, and linalool. Biochar treatments especially BNCs with a higher production of monoterpenes increased the levels of limonene, carvone, apiol, and dillapioll. All extracts showed a considerable DPPH-inhibitory effect with application of BNCs under salinity. The maximum antioxidant activity was observed under high level of salinity with application of the combined form. Therefore, the combined form of nanocomposite was the best treatment to improve the content of basic commercial monoterpenes and consequently antioxidant activity of essential oil in salt-stressed dill plants.
Collapse
|
15
|
Swamy Gowda M, Hirtemath C, Singh S, Verma RS. The influence of NaCl salt stress on the yield and quality of the essential oil from two varieties of rose-scented geranium (Pelargonium graveleons L’Hér.). BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Gohari G, Farhadi H, Panahirad S, Zareei E, Labib P, Jafari H, Mahdavinia G, Hassanpouraghdam MB, Ioannou A, Kulak M, Fotopoulos V. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int J Biol Macromol 2022; 224:893-907. [DOI: 10.1016/j.ijbiomac.2022.10.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
17
|
Cao J, Li X, Chen L, He M, Lan H. The Developmental Delay of Seedlings With Cotyledons Only Confers Stress Tolerance to Suaeda aralocaspica (Chenopodiaceae) by Unique Performance on Morphology, Physiology, and Gene Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:844430. [PMID: 35734249 PMCID: PMC9208309 DOI: 10.3389/fpls.2022.844430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Cotyledons play an important role in seedling establishment, although they may just exist for a short time and become senescent upon the emergence of euphylla. So far, the detailed function of cotyledons has not been well understood. Suaeda aralocaspica is an annual halophyte distributed in cold deserts; its cotyledons could exist for a longer time, even last until maturity, and they must exert a unique function in seedling development. Therefore, in this study, we conducted a series of experiments to investigate the morphological and physiological performances of cotyledons under salt stress at different developmental stages. The results showed that the cotyledons kept growing slowly to maintain the normal physiological activities of seedlings by balancing phytohormone levels, accumulating osmoprotectants and antioxidants, and scavenging reactive oxygen species (ROS). Salt stress activated the expression of osmoprotectant-related genes and enhanced the accumulation of related primary metabolites. Furthermore, differentially expressed transcriptional profiles of the cotyledons were also analyzed by cDNA-AFLP to gain an understanding of cotyledons in response to development and salt stress, and the results revealed a progressive increase in the expression level of development-related genes, which accounted for a majority of the total tested TDFs. Meanwhile, key photosynthetic and important salt stress-related genes also actively responded. All these performances suggest that "big cotyledons" are experiencing a delayed but active developmental process, by which S. aralocaspica may survive the harsh condition of the seedling stage.
Collapse
|
18
|
Hassanpouraghdam MB, Vojodi Mehrabani L, Kheiri M, Chrysargyris A, Tzortzakis N. Physiological and biochemical responses of Tanacetum balsamita L. to the foliar application of Dobogen biostimulant, glucose and KNO 3 under salinity stress. Sci Rep 2022; 12:9320. [PMID: 35661114 PMCID: PMC9167303 DOI: 10.1038/s41598-022-13150-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Salinity is one of the predominant abiotic stress factors that influence the growth and productivity of plants. Salinity adversely impacts the growth responses via ionic toxicity, osmotic stress, impaired nutrients uptake, hormonal disparity, and the over-production of reactive oxygen species. To study the effects of salinity stress (0, 50, 100, and 150 mM) and foliar treatments (dH2O, 2 g L−1 Dobogen biostimulant, 2 g L−1 KNO3, and 2 g L−1d-glucose) on the growth and physiological responses of Tanacetum balsamita, a factorial experiment was conducted based on the completely randomized design at the research greenhouse of Azarbaijan Shahid Madani University, Iran. The results showed the significant interaction effects of salinity and foliar sprays on chlorophyll a, K+, Na+, Mg2+, Fe2+, Zn2+, Mn2+, and Si content, K/Na ratio, and total phenolics and flavonoids content. The highest phenolic content was acquired with 100 mM salinity and foliar spray of Dobogen and glucose, 50 mM NaCl × KNO3 application, and 50 mM salinity × no-foliar application. The highest K/Na ratio was observed in control plants and controls × KNO3 and/or Dobogen application. The greatest Si content was recorded with no-salinity × Dobogen and KNO3 applications and no-saline × no-foliar (control) plants. The independent effects of treatments influenced malondialdehyde, flavonoids, proline contents, and catalase activity. Chlorophyll b and superoxide dismutase were affected by the salinity. Total soluble solids and Ca2+ content were responsive to the foliar applications. Malondialdehyde and proline content was the highest at 150 mM salinity. Salinity adversely affected the physiological responses of costmary. However, foliar treatments partially ameliorated the salinity effect, and the results with more detailed studies would be advisable to the extension section and pioneer farmers.
Collapse
Affiliation(s)
| | - Lamia Vojodi Mehrabani
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Mehdi Kheiri
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus
| |
Collapse
|
19
|
Karalija E, Dahija S, Tarkowski P, Zeljković SĆ. Influence of Climate-Related Environmental Stresses on Economically Important Essential Oils of Mediterranean Salvia sp. FRONTIERS IN PLANT SCIENCE 2022; 13:864807. [PMID: 35599878 PMCID: PMC9114806 DOI: 10.3389/fpls.2022.864807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 05/24/2023]
Abstract
Salvia L. is the largest genus in the family Lamiaceae, with about 1,000 species and a nearly cosmopolitan distribution. Salvia species are used in both traditional and conventional medicines, and other numerous industries, such as spices and perfumes. The number of papers dealing with Salvia exceeds 12,000 and mostly investigates their chemical composition and bioactive properties. A smaller proportion of papers however consider environmental factors, mostly on the effects of microclimate conditions on its geographic distribution along an altitudinal or longitudinal gradient, and very few studies can be found on the effects of emerging stressors on the commercial production of sages of medicinal and economical importance. Here, we summarize available data on the essential oil composition of three economically important sages from the Mediterranean area, that is, Salvia officinalis, Salvia officinalis subsp. lavandulifolia, and Salvia fruticosa, and the effects of climate-related environmental stressors on their chemical profiles. Environmental stress factors, such as an increase in soil salinity and aridity, and changes in annual average temperatures, are going to impose a serious risk on the commercial production of sage essential oils, which are commercially produced in many European countries. This review highlights the already confirmed effects of these stressors on three selected Salvia species and consequently the importance of mitigating the effects of climate change on the commercial production of these essential oils.
Collapse
Affiliation(s)
- Erna Karalija
- Laboratory for Plant Physiology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sabina Dahija
- Laboratory for Plant Physiology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Petr Tarkowski
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
| |
Collapse
|
20
|
Hassanpouraghdam MB, Vojodi Mehrabani L, Bonabian Z, Aazami MA, Rasouli F, Feldo M, Strzemski M, Dresler S. Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO 2:SA Nanoparticles) Influences the Growth and Physiological Responses of Portulaca oleracea L. under Salinity. Int J Mol Sci 2022; 23:ijms23095093. [PMID: 35563484 PMCID: PMC9100700 DOI: 10.3390/ijms23095093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 01/04/2023] Open
Abstract
In the present study, the effects of foliar application of salicylic acid (100 μM), cerium oxide (50 mg L−1), and cerium oxide:salicylic acid nanoparticles (CeO2: SA-nanoparticles, 50 mg L−1 + 100 μM) on the growth and physiological responses of purslane (Portulaca oleracea L.) were examined in non-saline and saline conditions (50 and 100 mM NaCl salinity). Foliar applications mitigated salinity-induced adverse effects, and the highest plant height and N, P, Mg, and Mn content were recorded in the variant with non-saline × foliar use of CeO2: SA-nanoparticles. The highest values of fresh and dry weight were noted in the treatment with no-salinity × foliar use of CeO2:SA-nanoparticles. The highest number of sub-branches was observed in the foliar treatments with CeO2-nanoparticles and CeO2:SA-nanoparticles without salinity stress, while the lowest number was noted in the 100 mM NaCl treatment. Moreover, the foliar application of CeO2:SA-nanoparticles and cerium-oxide nanoparticles improved the total soluble solid content, K, Fe, Zn, Ca, chlorophyll a, and oil yield in the plants. The salinity of 0 and 50 mM increased the K content, 1000-seed weight, total soluble solid content, and chlorophyll b content. The use of 100 mM NaCl with no-foliar spray increased the malondialdehyde, Na, and H2O2 content and the Na+/K+ ratio. No-salinity and 50 mM NaCl × CeO2: SA-nanoparticle interactions improved the anthocyanin content in plants. The phenolic content was influenced by NaCl100 and the foliar use of CeO2:SA-nanoparticles. The study revealed that the foliar treatment with CeO2:SA-nanoparticles alleviated the side effects of salinity by improving the physiological responses and growth-related traits of purslane plants.
Collapse
Affiliation(s)
- Mohammad Bagher Hassanpouraghdam
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran; (M.A.A.); (F.R.)
- Correspondence: ; Tel.: +98-9145027100
| | - Lamia Vojodi Mehrabani
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran; (L.V.M.); (Z.B.)
| | - Zahra Bonabian
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran; (L.V.M.); (Z.B.)
| | - Mohammad Ali Aazami
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran; (M.A.A.); (F.R.)
| | - Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran; (M.A.A.); (F.R.)
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (S.D.)
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (S.D.)
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
21
|
Carbajal-Vázquez VH, Gómez-Merino FC, Alcántar-González EG, Sánchez-García P, Trejo-Téllez LI. Titanium Increases the Antioxidant Activity and Macronutrient Concentration in Tomato Seedlings Exposed to Salinity in Hydroponics. PLANTS (BASEL, SWITZERLAND) 2022; 11:1036. [PMID: 35448765 PMCID: PMC9024507 DOI: 10.3390/plants11081036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 11/17/2022]
Abstract
Global climate change affects agriculture and tends to aggravate the effect of various environmental stress factors including soil salinity. Beneficial elements such as titanium (Ti) may improve the performance of plants facing restrictive environments such as saline soils. This research work evaluated the individual effect of sodium chloride (0, 50, and 100 mM NaCl) in solution, that of leaf-applied Ti (0, 500, and 1000 mg L-1 Ti), and their interactions on physiological, biochemical, and nutritional variables of tomato (Solanum lycopersicum L.) seedlings cv. Rio Grande in a factorial design in greenhouse hydroponics. NaCl reduced seedling height, stem diameter, leaf area, SPAD units, and sugar and K concentrations, and increased antioxidant activity in stems and roots, photosynthetic pigments, sugars. Titanium increased the N, P, K, Ca, Mg, and Ti concentrations in leaves, but the concentration of total sugars in leaves was reduced when applying 500 mg Ti L-1. Under moderate salinity conditions (50 mM NaCl) the application of Ti increased the antioxidant activity in roots, while, at all salinity levels tested, Ti increased the concentrations of macro-nutrients and Ti in leaves. Titanium is concluded to have a positive effect on the antioxidant activity and nutrition of seedlings under saline stress conditions.
Collapse
Affiliation(s)
| | | | | | | | - Libia Iris Trejo-Téllez
- Laboratory of Plant Nutrition, College of Postgraduates in Agricultural Sciences Campus Montecillo, Texcoco 56230, Mexico; (V.H.C.-V.); (F.C.G.-M.); (E.G.A.-G.); (P.S.-G.)
| |
Collapse
|
22
|
Aazami MA, Mehrabani LV, Hashemi T, Hassanpouraghdam MB, Rasouli F. Soil-based nano-graphene oxide and foliar selenium and nano-Fe influence physiological responses of 'Sultana' grape under salinity. Sci Rep 2022; 12:4234. [PMID: 35273327 PMCID: PMC8913625 DOI: 10.1038/s41598-022-08251-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Salinity is a worldwide stressor that influences the growth and productivity of plants. Some novel compounds like; graphene oxide and nutrients such as Se and Fe especially as nano form may improve plant responses to the environmental stress factors. The soil-based graphene oxide (0, 50, and 100 g kg−1) and the foliar applications of Se and nano-Fe (control and 3 mg L−1) were assayed on grapevine cv. Sultana under salinity (0, 50, and 100 mM NaCl). The top flavonoids, chlorophyll b, and plant dry weight belonged to graphene oxide and nano-Fe applications. CAT activity was improved in response to Se, nano-Fe, and graphene oxide (50 g kg−1). The least Fe, K, Se, N, Mg, Mn, and Zn content was recorded for 100 mM NaCl. In contrast, the higher data for K, Se, Ca, Mg, Zn and Mn were acquired with graphene oxide × foliar treatments. In general, graphene oxide treatment (50 g kg−1) × nano-Fe and Se foliar use ameliorated the adverse salinity effects with the improved biochemical and physiological responses of Sultana grape.
Collapse
Affiliation(s)
- Mohammad Ali Aazami
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Lamia Vojodi Mehrabani
- Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Tahereh Hashemi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | | | - Farzad Rasouli
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
23
|
Razmjooei Z, Etemadi M, Eshghi S, Ramezanian A, Mirazimi Abarghuei F, Alizargar J. Potential Role of Foliar Application of Azotobacter on Growth, Nutritional Value and Quality of Lettuce under Different Nitrogen Levels. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030406. [PMID: 35161387 PMCID: PMC8839414 DOI: 10.3390/plants11030406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 05/12/2023]
Abstract
Vegetables can be treated with biofertilizers as an alternative to chemical fertilizers because of their low toxicity. We investigated the effects of foliar spraying of Azotobacter under different levels of nitrogen (100, 150 and 200 mg/L in nutrient solution) on the growth, nutritional value, nitrate accumulation and antioxidant enzyme activities of hydroponically grown lettuce. The experiment was laid out in a completely randomized design with four replicates in a factorial combination. Plants treated with Azotobacter and 200 mg/L nitrogen had greater leaf area and photosynthetic pigments than plants treated with 200 mg/L nitrogen without spraying with Azotobacter. Increasing nitrogen levels increased leaf number, fresh and dry weights, leaf area and nitrate accumulation in lettuce plants. Peroxidase (POD) activity increased by 95.4% at a nitrogen level of 200 mg/L compared to a nitrogen level of 100 mg/L. Ascorbate peroxidase (APX) activity and leaf phosphorous (P) and potassium (K) concentrations were the highest in plants treated with a nitrogen source of 100 mg/L without foliar application of Azotobacter. As nitrogen levels increased in all treatments, nitrate reductase (NR) activity decreased and reached a minimum at the 200 mg/L nitrogen level. In general, foliar application of Azotobacter sp. can be used to promote plant growth and reduce nitrate accumulation in lettuce.
Collapse
Affiliation(s)
- Zahra Razmjooei
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (Z.R.); (S.E.); (A.R.); (F.M.A.)
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (Z.R.); (S.E.); (A.R.); (F.M.A.)
- Correspondence: (M.E.); (J.A.); Tel.: +98-71-36138447 (M.E.)
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (Z.R.); (S.E.); (A.R.); (F.M.A.)
| | - Asghar Ramezanian
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (Z.R.); (S.E.); (A.R.); (F.M.A.)
| | - Faezeh Mirazimi Abarghuei
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (Z.R.); (S.E.); (A.R.); (F.M.A.)
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Correspondence: (M.E.); (J.A.); Tel.: +98-71-36138447 (M.E.)
| |
Collapse
|
24
|
The Impact of Salt Stress on Plant Growth, Mineral Composition, and Antioxidant Activity in Tetragonia decumbens Mill.: An Underutilized Edible Halophyte in South Africa. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Climate change, expanding soil salinization, and the developing shortages of freshwater have negatively affected crop production around the world. Seawater and salinized lands represent potentially cultivable areas for edible salt-tolerant plants. In the present study, the effect of salinity stress on plant growth, mineral composition (macro-and micro-nutrients), and antioxidant activity in dune spinach (Tetragonia decumbens) were evaluated. The treatments consisted of three salt concentrations, 50, 100, and 200 mM, produced by adding NaCl to the nutrient solution. The control treatment had no NaCl but was sustained and irrigated by the nutrient solution. Results revealed a significant increase in total yield, branch production, and ferric reducing antioxidant power in plants irrigated with nutrient solution incorporated with 50 mM NaCl. Conversely, an increased level of salinity (200 mM) caused a decrease in chlorophyll content (SPAD), while the phenolic content, as well as nitrogen, phosphorus, and sodium, increased. The results of this study indicate that there is potential for brackish water cultivation of dune spinach for consumption, especially in provinces experiencing the adverse effect of drought and salinity, where seawater or underground saline water could be diluted and used as irrigation water in the production of this vegetable.
Collapse
|
25
|
Quality Attributes and Storage of Tomato Fruits as Affected by an Eco-Friendly, Essential Oil-Based Product. PLANTS 2021; 10:plants10061125. [PMID: 34205988 PMCID: PMC8228351 DOI: 10.3390/plants10061125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022]
Abstract
The preservation of fresh produce quality is a major aim in the food industry since consumers demand safe and of high nutritional value products. In recent decades there has been a turn towards the use of eco-friendly, natural products (i.e., essential oils-EOs) in an attempt to reduce chemical-based sanitizing agents (i.e., chlorine and chlorine-based agents). The aim of this study was to evaluate the efficacy of an eco-friendly product (EP—based on rosemary and eucalyptus essential oils) and two different application methods (vapor and dipping) on the quality attributes of tomato fruits throughout storage at 11 °C and 90% relative humidity for 14 days. The results indicated that overall, the EP was able to maintain the quality of tomato fruits. Dipping application was found to affect less the quality attributes of tomato, such as titratable acidity, ripening index and antioxidant activity compared to the vapor application method. Vapor application of 0.4% EP increased fruit’s antioxidant activity, whereas tomatoes dipped in EP solution presented decreased damage index (hydrogen peroxide and lipid peroxidation levels), activating enzymes antioxidant capacity (catalases and peroxidases). Moreover, higher EP concentration (up to 0.8%) resulted in a less acceptable product compared to lower concentration (0.4%). Overall, the results from the present study suggest that the investigated EP can be used for the preservation of fresh produce instead of the current commercial sanitizing agent (chlorine); however, the method of application and conditions of application must be further assessed for every commodity tested.
Collapse
|
26
|
Xylia P, Chrysargyris A, Tzortzakis N. The Combined and Single Effect of Marjoram Essential Oil, Ascorbic Acid, and Chitosan on Fresh-Cut Lettuce Preservation. Foods 2021; 10:foods10030575. [PMID: 33801834 PMCID: PMC8035693 DOI: 10.3390/foods10030575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing demands by consumers for fresh, nutritional, and convenient food has led to the increase of fresh-cut produce market. Nowadays, there is a turn towards the investigation of natural products (i.e., essential oils, organic acids, and edible coatings) in an effort to lower the usage of chemical synthetic compounds (i.e., chlorine) as postharvest sanitizers. The aim of the present study was to assess the effectiveness of Origanum majorana essential oil (EO), ascorbic acid (AA), chitosan, and their combinations on quality attributes of fresh-cut lettuce stored for six days at 7 °C. When applied, Chitosan+AA resulted to a less acceptable product (visual quality and aroma), while the application of marjoram EO was able to preserve the visual quality of fresh-cut lettuce and at the same time resulted in a pleasant aroma. The application of EO+AA and Chitosan+AA increased total phenolics and antioxidant levels of fresh-cut lettuce on the fourth and sixth day of storage. The EO and EO+AA increased damage index (hydrogen peroxide and lipid peroxidation) of fresh-cut lettuce, while at the same time these treatments decreased the activity of enzymes related with plant tissue browning (i.e., peroxidase activity and polyphenol oxidase). Chitosan decreased total valuable counts and yeasts and molds counts on the sixth day of storage, while EO, AA, EO+Chitosan, and Chitosan+AA decreased yeasts and molds after four days of application. The findings of the present work indicating that the combination of marjoram EO, AA, and chitosan could be considered further as alternative means for fresh-cut produce preservation.
Collapse
Affiliation(s)
- Panayiota Xylia
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
27
|
Responses to Drought Stress Modulate the Susceptibility to Plasmopara viticola in Vitis vinifera Self-Rooted Cuttings. PLANTS 2021; 10:plants10020273. [PMID: 33573332 PMCID: PMC7912678 DOI: 10.3390/plants10020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Climate change will increase the occurrence of plants being simultaneously subjected to drought and pathogen stress. Drought can alter the way in which plants respond to pathogens. This research addresses how grapevine responds to the concurrent challenge of drought stress and Plasmopara viticola, the causal agent of downy mildew, and how one stress affects the other. Self-rooted cuttings of the drought-tolerant grapevine cultivar Xynisteri and the drought-sensitive cultivar Chardonnay were exposed to full or deficit irrigation (40% of full irrigation) and artificially inoculated with P. viticola in vitro or in planta. Leaves were sampled at an early infection stage to determine the influence of the single and combined stresses on oxidative parameters, chlorophyll, and phytohormones. Under full irrigation, Xynisteri was more susceptible to P. viticola than the drought-sensitive cultivar Chardonnay. Drought stress increased the susceptibility of grapevine leaves inoculated in vitro, but both cultivars showed resistance against P. viticola when inoculated in planta. Abscisic acid, rather than jasmonic acid and salicylic acid, seemed to play a prominent role in this resistance. The irrigation-dependent susceptibility observed in this study indicates that the practices used to mitigate the effects of climate change may have a profound impact on plant pathogens.
Collapse
|
28
|
Abdel Latef AAH, Abu Alhmad MF, Kordrostami M, Abo–Baker ABAE, Zakir A. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. JOURNAL OF PLANT GROWTH REGULATION 2020; 39:1293-1306. [DOI: 10.1007/s00344-020-10065-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/07/2020] [Indexed: 09/02/2023]
|
29
|
Salinity stress alters ion homeostasis, antioxidant activities and the production of rosmarinic acid, luteolin and apigenin in Dracocephalum kotschyi Boiss. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00562-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
30
|
Liao JX, Liang DY, Jiang QW, Mo L, Pu GZ, Zhang D. Growth performance and element concentrations reveal the calcicole-calcifuge behavior of three Adiantum species. BMC PLANT BIOLOGY 2020; 20:327. [PMID: 32650742 PMCID: PMC7350575 DOI: 10.1186/s12870-020-02538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The calcicole or calcifuge behavior of wild plants has been related to element deficiency or toxicity. For fern species, however, knowledge about their adaptive differences and responses to soil environmental changes is virtually absent. In the karst regions of southern China, most Adiantum species favor calcareous soils, but A. flabellulatum prefers acidic soils. Such contrasting preferences for soil types in the same genus are interesting and risky because their preferred soils may "pollute" each other due to extreme precipitation events. We mixed calcareous and acidic soils at 1:1 (v/v) to simulate the "polluted" soils and grew three Adiantum species (the calcicole A. capillus-veneris f. dissectum and A. malesianum and the calcifuge A. flabellulatum) on the calcareous, acidic and mixed soils for 120 d and assessed their growth performance and element concentrations. RESULTS The calcareous soil showed the highest pH, Ca, Mg and P concentrations but the lowest K concentration, followed by the mixed soil, and the acidic soil. After 120 d of growth, the calcifuge A. flabellulatum on the calcareous and mixed soils exhibited lower SPAD and relative growth rate (RGR) than those on the acidic soil, and its leaf and root Ca, Mg and Fe concentrations were higher and K was lower on the calcareous soil than on the acidic soil. The calcicole A. capillus-veneris f. dissectum on the calcareous soil had similar leaf element concentrations and RGR with those on the mixed soil, but their leaf Ca, Fe and Al were lower and leaf P and K concentrations, SPAD and RGR were higher than those on the acidic soil. For the calcicole A. malesianum, leaf Ca, Fe and Al were lowest and leaf P and RGR were highest when grown on the mixed soil, intermediated on the calcareous soil, and on the acidic soil. Compared with A. malesianum, A. capillus-veneris f. dissectum had lower leaf Ca, Fe and Al but higher leaf Mg concentration when grown on the same calcareous or mixed soils. CONCLUSIONS A. capillus-veneris f. dissectum is a low leaf Ca calcicole species while A. malesianum is an Al accumulating calcicole species. They can effectively take up P and K to leaves and hence can thrive on calcareous soils. In contrast, the calcifuge A. flabellulatum grown on calcareous soils is stunted. Such growth performance may be attributed to the increased leaf Ca and decreased leaf K concentration. If their preferred soils are "polluted", A. flabellulatum can grow worse, A. capillus-veneris f. dissectum can remain almost unaffected while A. malesianum will perform better.
Collapse
Affiliation(s)
- Jian Xiong Liao
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, P.R. China.
- College of Tourism & Landscape Architecture (College of Plant and Ecological Engineering), Guilin University of Technology, Guilin, P.R. China.
| | - Dan Yang Liang
- College of Tourism & Landscape Architecture (College of Plant and Ecological Engineering), Guilin University of Technology, Guilin, P.R. China
| | - Qian Wen Jiang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, P.R. China
| | - Ling Mo
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, P.R. China
| | - Gao Zhong Pu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, P.R. China
| | - Deng Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, P.R. China
| |
Collapse
|
31
|
Long M, Shou J, Wang J, Hu W, Hannan F, Mwamba TM, Farooq MA, Zhou W, Islam F. Ursolic Acid Limits Salt-Induced Oxidative Damage by Interfering With Nitric Oxide Production and Oxidative Defense Machinery in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:697. [PMID: 32670308 PMCID: PMC7327119 DOI: 10.3389/fpls.2020.00697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/04/2020] [Indexed: 05/03/2023]
Abstract
Crops frequently encounter abiotic stresses, and salinity is a prime factor that suppresses plant growth and crop productivity, globally. Ursolic acid (UA) is a potential signaling molecule that alters physiology and biochemical processes and activates the defense mechanism in numerous animal models; however, effects of UA in plants under stress conditions and the underlying mechanism of stress alleviation have not been explored yet. This study examined the effects of foliar application of UA (100 μM) to mitigate salt stress in three rice cultivars (HZ, 712, and HAY). A pot experiment was conducted in a climate-controlled greenhouse with different salt stress treatments. The results indicated that exposure to NaCl-induced salinity reduces growth of rice cultivars by damaging chlorophyll pigment and chloroplast, particularly at a higher stress level. Application of UA alleviated adverse effects of salinity by suppressing oxidative stress (H2O2, O2-) and stimulating activities of enzymatic and non-enzymatic antioxidants (APX, CAT, POD, GR, GSH, AsA, proline, glycinebutane), as well as protecting cell membrane integrity (MDA, LOX, EL). Furthermore, UA application brought about a significant increase in the concentration of leaf nitric oxide (NO) by modulating the expression of NR and NOS enzymes. It seems that UA application also influenced Na+ efflux and maintained a lower cytosolic Na+/K+ ratio via concomitant upregulation of OsSOS1 and OsHKT1;5 in rice cultivars. The results of pharmacological tests have shown that supply of the NO scavenger (PTI) completely reversed the UA-induced salt tolerance in rice cultivars by quenching endogenous NO and triggering oxidative stress, Na+ uptake, and lipid peroxidation. The PTI application with UA and sodium nitroprusside (SNP) also caused growth retardation and a significant increase in Na+ uptake and oxidative stress in rice cultivars. This suggests that UA promoted salt tolerance of rice cultivars by triggering NO production and limiting toxic ion and reactive oxygen species (ROS) accumulation. These results revealed that both UA and NO are together required to develop a salt tolerance response in rice.
Collapse
Affiliation(s)
- Meijuan Long
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jianyao Shou
- Zhuji Municipal Agro-Tech Extension Center, Zhuji, China
| | - Jian Wang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Weizhen Hu
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Fakhir Hannan
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | | | | | - Weijun Zhou
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Faisal Islam
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Abd El-Maboud MM, Abd Elbar OH. Adaptive responses of Limoniastrum monopetalum (L.) Boiss. growing naturally at different habitats. PLANT PHYSIOLOGY REPORTS 2020; 25:325-334. [DOI: 10.1007/s40502-020-00519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/21/2020] [Indexed: 09/01/2023]
|
33
|
Szekely-Varga Z, González-Orenga S, Cantor M, Jucan D, Boscaiu M, Vicente O. Effects of Drought and Salinity on Two Commercial Varieties of Lavandula angustifolia Mill. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9050637. [PMID: 32429357 DOI: 10.15835/nbha48412150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 05/25/2023]
Abstract
Global warming is not only affecting arid and semi-arid regions but also becoming a threat to agriculture in Central and Eastern European countries. The present study analyzes the responses to drought and salinity of two varieties of Lavandula angustifolia cultivated in Romania. Lavender seedlings were subjected to one month of salt stress (100, 200, and 300 mM NaCl) and water deficit (complete withholding of irrigation) treatments. To assess the effects of stress on the plants, several growth parameters and biochemical stress markers (photosynthetic pigments, mono and divalent ions, and different osmolytes) were determined in control and stressed plants after the treatments. Both stress conditions significantly inhibited the growth of the two varieties, but all plants survived the treatments, indicating a relative stress tolerance of the two varieties. The most relevant mechanisms of salt tolerance are based on the maintenance of foliar K+ levels and the accumulation of Ca2+ and proline as a functional osmolyte in parallel with increasing external salinities. Under water stress, significant increases of Na+ and K+ concentrations were detected in roots, indicating a possible role of these cations in osmotic adjustment, limiting root dehydration. No significant differences were found when comparing the stress tolerance and stress responses of the two selected lavender varieties.
Collapse
Affiliation(s)
- Zsolt Szekely-Varga
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara González-Orenga
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Maria Cantor
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Denisa Jucan
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
34
|
Szekely-Varga Z, González-Orenga S, Cantor M, Jucan D, Boscaiu M, Vicente O. Effects of Drought and Salinity on Two Commercial Varieties of Lavandula angustifolia Mill. PLANTS 2020; 9:plants9050637. [PMID: 32429357 PMCID: PMC7284986 DOI: 10.3390/plants9050637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Global warming is not only affecting arid and semi-arid regions but also becoming a threat to agriculture in Central and Eastern European countries. The present study analyzes the responses to drought and salinity of two varieties of Lavandula angustifolia cultivated in Romania. Lavender seedlings were subjected to one month of salt stress (100, 200, and 300 mM NaCl) and water deficit (complete withholding of irrigation) treatments. To assess the effects of stress on the plants, several growth parameters and biochemical stress markers (photosynthetic pigments, mono and divalent ions, and different osmolytes) were determined in control and stressed plants after the treatments. Both stress conditions significantly inhibited the growth of the two varieties, but all plants survived the treatments, indicating a relative stress tolerance of the two varieties. The most relevant mechanisms of salt tolerance are based on the maintenance of foliar K+ levels and the accumulation of Ca2+ and proline as a functional osmolyte in parallel with increasing external salinities. Under water stress, significant increases of Na+ and K+ concentrations were detected in roots, indicating a possible role of these cations in osmotic adjustment, limiting root dehydration. No significant differences were found when comparing the stress tolerance and stress responses of the two selected lavender varieties.
Collapse
Affiliation(s)
- Zsolt Szekely-Varga
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (Z.S.-V.); (M.C.)
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Sara González-Orenga
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - Maria Cantor
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (Z.S.-V.); (M.C.)
| | - Denisa Jucan
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (Z.S.-V.); (M.C.)
- Correspondence:
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
35
|
Napoli E, Siracusa L, Ruberto G. New Tricks for Old Guys: Recent Developments in the Chemistry, Biochemistry, Applications and Exploitation of Selected Species from the Lamiaceae Family. Chem Biodivers 2020; 17:e1900677. [PMID: 31967708 DOI: 10.1002/cbdv.201900677] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Lamiaceae is one of the largest families of flowering plants comprising about 250 genera and over 7,000 species. Most of the plants of this family are aromatic and therefore important source of essential oils. Lamiaceae are widely used as culinary herbs and reported as medicinal plants in several folk traditions. In the Mediterranean area oregano, sage, rosemary, thyme and lavender stand out for geographical diffusion and variety of uses. The aim of this review is to provide recent data dealing with the phytochemical and pharmacological studies, and the more recent applications of the essential oils and the non-volatile phytocomplexes. This literature survey suggests how the deeper understanding of biomolecular processes in the health and food sectors as per as pest control bioremediation of cultural heritage, or interaction with human microbiome, fields, leads to the rediscovery and new potential applications of well-known plants.
Collapse
Affiliation(s)
- Edoardo Napoli
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| | - Laura Siracusa
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| | - Giuseppe Ruberto
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| |
Collapse
|
36
|
Costan A, Stamatakis A, Chrysargyris A, Petropoulos SA, Tzortzakis N. Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:732-743. [PMID: 31597201 DOI: 10.1002/jsfa.10076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Using water with high salinity for plant fertigation may have detrimental effects on plant development and total yield and on the quality of the crop produced. As a possible means to alleviate the negative effects of salinity, silicon (Si) can be incorporated in the nutrient solution supplied to plants. In the present study, hydroponically grown tomato (Solanum lycopersicum Mill.) plants were subjected to two different salinity levels (0 and 50 mmol L-1 NaCl) with and without the application of Si (0 and 2 mmol L-1 K2 SiO3 ) in order to evaluate its possible positive impact on mitigation of salinity stress-induced symptoms. An additional experiment was implemented with postharvest Si application (sodium silicate) to investigate effects on the shelf-life of tomato fruit. RESULTS Salinity (50 mmol L-1 NaCl) decreased plant size, total yield and fresh fruit weight while a high percentage of blossom end rot symptoms of tomato fruit was also observed. The application of Si in the nutrient solution counteracted these detrimental effects, generating a higher yield and healthier fruit (lower blossom end rot incidence) compared to the untreated plants (no application of Si). Salinity improved several quality-related traits in tomato fruit, resulting in higher marketability, whereas the addition of Si (pre- and postharvest) maintained fruit firmness following storage thereby increasing the shelf-life of tomato fruit. CONCLUSIONS These findings indicate that Si application (pre- and postharvest) could provide an effective means of alleviating the unfavorable effects of using low-quality water in plant fertigation on tomato plant development, fruit yield and post-harvest quality, through increased fruit firmness. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrei Costan
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Aristeidis Stamatakis
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Chania, Greece
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | | | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
37
|
Shekhar S, Rustagi A, Kumar D, Yusuf MA, Sarin NB, Lawrence K. Groundnut AhcAPX conferred abiotic stress tolerance in transgenic banana through modulation of the ascorbate-glutathione pathway. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1349-1366. [PMID: 31736539 PMCID: PMC6825100 DOI: 10.1007/s12298-019-00704-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/06/2019] [Accepted: 08/19/2019] [Indexed: 05/08/2023]
Abstract
A stress inducible cytosolic ascorbate peroxidase gene (AhcAPX) was ectopically expressed in banana (cv. Grand naine) plants to strengthen their antioxidant capacity. High level of AhcAPX gene transcripts and enzyme suggested constitutive and functional expression of candidate gene in transgenic (TR) plants. The tolerance level of in vitro and in vivo grown TR banana plantlets were assessed against salt and drought stress. The TR banana plants conferred tolerance against the abiotic stresses by maintaining a high redox state of ascorbate and glutathione, which correlated with lower accumulation of H2O2, O2 ⋅- and higher level of antioxidant enzyme (SOD, APX, CAT, GR, DHAR and MDHAR) activities. The efficacy of AhcAPX over-expression was also investigated in terms of different physiochemical attributes of TR and untransformed control plants, such as, proline content, membrane stability, electrolyte leakage and chlorophyll retention. The TR plants showed higher photochemical efficiency of PSII (Fv/Fm), and stomatal attributes under photosynthesis generated reactive oxygen species (ROS) stress. The outcome of present investigation suggest that ectopic expression of AhcAPX gene in banana enhances the tolerance to drought and salt stress by annulling the damage caused by ROS.
Collapse
Affiliation(s)
- Shashi Shekhar
- Department of Biochemistry and Biochemical Engineering, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, 211007 India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049 India
| | - Deepak Kumar
- Department of Botany, Central University of Jammu, Jammu, 180011 India
| | - Mohd. Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026 India
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kapil Lawrence
- Department of Biochemistry and Biochemical Engineering, Jacob School of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, 211007 India
| |
Collapse
|
38
|
Abdel Latef AAH, Kordrostami M, Zakir A, Zaki H, Saleh OM. Eustress with H 2O 2 Facilitates Plant Growth by Improving Tolerance to Salt Stress in Two Wheat Cultivars. PLANTS (BASEL, SWITZERLAND) 2019; 8:E303. [PMID: 31461870 PMCID: PMC6783893 DOI: 10.3390/plants8090303] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022]
Abstract
In this study, the positive role of hydrogen peroxide (H2O2) pretreatment in mitigating the adverse impacts of seawater stress has been evaluated in two wheat (Triticum aestivum L.) cultivars, namely Gemmiza 11 as a salt-sensitive and Misr 1 as a salt-tolerant cultivar, with contrasting phenotypes in response to the salinity stress. Under normal conditions, wheat seeds eustress with H2O2 have shown significant effects on the improvement of plant growth parameters, such as dry weight and root and shoot lengths. Under salt stress conditions, seeds eustress with H2O2 have shown a reduction in damage to plant growth and physiological parameters as compared to the seeds kept as un-primed in both wheat cultivars. In addition, eustress of seeds with H2O2 has induced an increment in the pigments content, proline level and mineral uptake (K+, Ca2+ and Mg2+). Moreover, seeds eustress with H2O2 have shown significant decrement in Na+ content uptake in plants and that subsequently reduced lipid peroxidation. Seawater stress has increased the activity of the antioxidant system based on catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) in both cultivars, except POD in Gemmiza 11. Similarly, the application of H2O2 has further enhanced the activity of the antioxidant system in stressed plants and this enhancement of the antioxidant system further reduced Na+ content in plants and subsequently increased the growth parameters. Results of inter-simple sequence repeat (ISSR) markers have shown clear differentiation among the treatments and have provided strong evidence in support of the hypothesis proposed in this study that H2O2 eustress improves seed tolerance and enhances plant growth parameters under seawater stress.
Collapse
Affiliation(s)
- Arafat Abdel Hamed Abdel Latef
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt.
- Biology Department, Turabah University College, Taif University, Turabah Branch, 21955 Taif, Saudi Arabia.
| | - Mojtaba Kordrostami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314 Rasht, Iran
- Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 41996-13475 Rasht, Iran
| | - Ali Zakir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari 61100, Pakistan
| | - Hoida Zaki
- Botany and Microbiology Department, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Osama Moseilhy Saleh
- National Products Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, 11787 Cairo, Egypt
| |
Collapse
|
39
|
Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi J Biol Sci 2019; 26:1298-1304. [PMID: 31516361 PMCID: PMC6733775 DOI: 10.1016/j.sjbs.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/26/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Gibberellic acid (GA3) is one of the plant growth regulators which improve salt tolerance and mitigate the salt stress impact on plants. The extant analysis was carried out to study the effect of GA3 and different salt concentrations on seed germination and physiological parameters of oat cultivars. Oats is substantially less tolerant to salt than wheat and barley. Experimentation was conducted as factorial with Completely Randomized Block Design with three replicates. Different concentration of NaCl salt ((25, 50, 75 and 100 mM) were used in test control group and 100 and 150 ppm of GA3 were used in two group by pre-treated (after 24 h of the seed soaking) and plants were analyzed on 15th day. Results indicate that increasing salinity would decrease the germination percentage and growth parameter in three oat cultivars. Quotes data indicating a 13%, 19.9% and 32.48% in cultivars NDO-2, UPO-212 and UPO-94 germination reduction when soil salinity reaches 50 mM. A 36.02%, 47.33% and 56.365 reduction in germination is likely when soil salinity reaches 100 mM respectively same cultivars. Seeds treated with GA3 significantly promoted the percentage of germination, shoot and root length, total fresh and dry weight of seedling, tissue water content and seedling vigor index by NDO-2 and UPO-212 under different saline concentration. The maximum average of germination and growth parameters were observed from 150 ppm GA3 treated seeds. But this concentration was significantly inhibited root length in sensitive cultivar UPO-94 at 75 and 100 mM salt as compared to 100 ppm. We observed that, the high concentration of GA3 was not suitable for sensitive oat cultivars. Because the plant root are the real workforce behind any plants success. Thus, it may be concluding that, GA3 treatment could curtail the toxic effect of salinity by increasing germination percentage and shoot and root length, total fresh and dry weight, tissue water content and seedling vigor index in tolerant cultivar.
Collapse
|
40
|
Chrysargyris A, Papakyriakou E, Petropoulos SA, Tzortzakis N. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:584-593. [PMID: 30716568 DOI: 10.1016/j.jhazmat.2019.01.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/29/2023]
Abstract
Copper is essential for plant growth, but in excess may cause adverse effects on plant physiology. Harmful effects are also caused by plant exposure to salinity (NaCl) due to the excessive use of fertilizers, soil degradation and/or the quality of the water used for irrigation. The impact of single and combined salinity (Sal) and copper (Cu) stress on spearmint metabolism were studied in hydroponics. Spearmint plants (Mentha spicata L.) were subjected to salinity stress (150 mM NaCl) and/or excessive Cu concentration (60 μM Cu) via the nutrient solution. Not only Sal and Cu, but also their combination suppressed plant growth by decreasing plant biomass, root fresh weight and plant height. Chlorophyll content decreased mainly for the combined stress treatment (Sal + Cu). Polyphenols and antioxidants (FRAP, DPPH, ABTS) increased in single stress treatments (Sal or Cu), but decreased in the combined stress (Sal + Cu). The application of Sal or Cu stress decreased Zn, N and K (leaves), K, Ca, P and Mg (roots) content. Copper application increased Ca and Mg in leaves. In conclusion, salinity stress and Cu exposure may change the primary metabolic pathways in favor of major volatile oil components biosynthesis, resulting in significant changes of essential oil yield and composition.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, 3603, Cyprus.
| | - Eleftheria Papakyriakou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, 3603, Cyprus
| | - Spyridon A Petropoulos
- Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 N. Ionia, Magnissia, Greece
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, 3603, Cyprus.
| |
Collapse
|
41
|
Ecophysiological Responses of Carpinus turczaninowii L. to Various Salinity Treatments. FORESTS 2019. [DOI: 10.3390/f10020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Carpinus turczaninowii L., commonly known as hornbeam, has significant economic and ornamental importance and is largely distributed in the northern hemisphere, including parts of China and Korea, with high adaptation to harsh conditions in very unfertile soils. In this study, the ecophysiological responses of C. turczaninowii seedlings to various salinity stress treatments (NaCl: 0, 17, 34, 51, 68, and 85 mM) were studied for 42 days by determining stress-induced changes in growth parameters and biochemical markers. Salinity stress affected the values of all the examined parameters, both morphological and physiological, and caused the inhibition of plant growth, the degradation of photosynthetic capacity and stomatal behavior, a decrease in the photosynthetic pigments contents and relative water content, an increase in the Malondialdehyde (MDA) content and relative electrolytic conductivity, and the accumulation of Na+ and Cl− content. The presence of relatively high concentrations of organic osmolytes, the activation of antioxidant enzymes, and the ionic transport capacity from the root to shoots may represent a constitutive mechanism of defence against stress in C. turczaninowii seedlings. Our results suggest that C. turczaninowii can tolerate salinity at low and moderate concentrations (17–51 mM) under nursery conditions and can be widely used in roadsides, gardens, parks, and other urban areas.
Collapse
|
42
|
Chrysargyris A, Solomou M, Petropoulos SA, Tzortzakis N. Physiological and biochemical attributes of Mentha spicata when subjected to saline conditions and cation foliar application. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:27-38. [PMID: 30530201 DOI: 10.1016/j.jplph.2018.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Marginal water, including saline water, has been proposed as an alternative source of irrigation water for partially covering plant water requirements due to scarcity of adequate water supply in hot arid and semi-arid areas, such as those usually found in the Mediterranean basin. In the present study, spearmint plants (Mentha spicata L.) were grown in a deep flow hydroponic system under saline conditions, namely 0, 25, 50, and 100 mM NaCl. Moreover, foliar application of specific cations (K, Zn, Si) was tested as a means for alleviation of salinity stress under a plant physiological and biochemical approach. The results indicated that the highest salinity level of 100 mM NaCl severely affected plant growth, photosynthetic rates, leaf stomatal conductance, content of total phenolics and antioxidant status, while low to moderate salinity levels (25-50 mM NaCl) did not significantly affect plant growth and biochemical functions. In addition, leaf potassium and calcium accumulation decreased in saline-treated plants. Cations foliar application had small to no effect on plant growth, although it increased antioxidant activity and detoxified oxidative stress products/effects, through the increased enzymatic activities and proline accumulation. The present results have demonstrated that spearmint could be considered as a salinity tolerant species which is able to grow successfully under moderate salinity levels, while cation enrichment through foliar sprays was proved as a useful means to alleviate the stress effects caused by high salinity.
Collapse
Affiliation(s)
- Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus
| | - Maria Solomou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus
| | - Spyridon A Petropoulos
- Laboratory of Vegetable Production, University of Thessaly, Fytokou Street, 38446 N. Ionia, Magnissia, Greece
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 3603, Cyprus.
| |
Collapse
|
43
|
Chrysargyris A, Tzionis A, Xylia P, Tzortzakis N. Effects of Salinity on Tagetes Growth, Physiology, and Shelf Life of Edible Flowers Stored in Passive Modified Atmosphere Packaging or Treated With Ethanol. FRONTIERS IN PLANT SCIENCE 2018; 9:1765. [PMID: 30619383 PMCID: PMC6296340 DOI: 10.3389/fpls.2018.01765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/14/2018] [Indexed: 05/25/2023]
Abstract
Irrigation with saline water causes significant crop yield loss. However, short-term saline application might cause less negative effects on yield yet at the same time improve quality aspects of edible products. Tagetes (Tagetes patula L.) plants were subjected to salinity (0, 50, and 100 mM NaCl) and harvested flowers were stored up to 14 days in passive modified atmosphere packaging (with or without ethanol application). Salinity of 100 mM NaCl decreased plant biomass and plant size (i.e., height) and had a negative effect on physiological processes such as stomatal closure and chlorophylls content decrease. Salinity increased flower polyphenols, antioxidant activities, and total carotenoids but decreased anthocyanins, and greater impacts were found at salinity of 100 mM NaCl, providing higher antioxidant value of the edible flowers. Short-term saline exposure of tagetes plants activated metabolic processes and as a result there was an accumulation of minerals such as N, P, Na, and Zn on edible flowers. During storage, salinity maintained but ethanol application increased the flower CO2 production. Ethanol application decreased the decay of flowers subjected to 100 mM NaCl. Flower weight losses and marketability accelerated at salinity of 100 mM NaCl after 14 days of storage. Tagetes flowers demonstrated induction in both non-enzymatic (i.e., proline content) and enzymatic mechanisms (catalase) to overcome stress caused by salinity during harvest stage and/or ethanol at storage. Our results have shown that short-term exposure to salinity and/or ethanol is able to achieve higher carotenoids and anthocyanins levels and these compounds can be considered as a new source of nutraceuticals.
Collapse
|