1
|
Guillou E, Dumazert L, Caër C, Beigbeder A, Ouagne P, Le Saout G, Beaugrand J, Bourmaud A, Le Moigne N. In-situ monitoring of changes in ultrastructure and mechanical properties of flax cell walls during controlled heat treatment. Carbohydr Polym 2023; 321:121253. [PMID: 37739490 DOI: 10.1016/j.carbpol.2023.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/24/2023]
Abstract
Plant fibres are increasingly used as reinforcements, especially in thermoplastic composites. Understanding the impact of temperature on the properties of these fibres is an important issue for the manufacturing of high-performance materials with minimal defects. In this work, the structural evolution and mechanical behaviour of flax fibre cell walls were dynamically monitored by temperature-controlled X-ray diffraction and nanoindentation from 25 to 230 °C; detailed biochemical analysis was also conducted on fibre samples after each heating step. With increasing temperature up to 230 °C, a decrease in the local mechanical performance of the flax cell walls, of about -72 % for the indentation modulus and -35 % for the hardness, was measured. This was associated with a decrease in the packing of the cellulose crystal lattice (increase in d-spacing d200), as well as significant mass losses measured by thermogravimetric analysis and changes in the biochemical composition, i.e. non-cellulosic polysaccharides attributed to the middle lamellae but also to the cell walls. This work, which proposes for the first time an in-situ investigation of the dynamic temperature evolution of the flax cell wall properties, highlights the reversible behaviour of their crystalline structure (i.e. cellulose) and local mechanical properties after cooling to room temperature, even after exposure to high temperatures.
Collapse
Affiliation(s)
- Elouan Guillou
- IPC Laval, Rue Léonard De Vinci, Changé, France; Univ. Bretagne Sud, UMR CNRS 6027, IRDL, Lorient, France
| | - Loïc Dumazert
- Polymers Composites and Hybrids (PCH) - IMT Mines Ales, Ales, France
| | - Célia Caër
- ENSTA Bretagne, UMR CNRS 6027, IRDL, Brest, France
| | | | - Pierre Ouagne
- Laboratoire Génie de Production, LGP, Université de Toulouse, INP-ENIT, Tarbes, France
| | - Gwenn Le Saout
- LMGC, IMT Mines Ales, Univ Montpellier, CNRS, Ales, France
| | - Johnny Beaugrand
- UR 1268 Biopolymères Interactions Assemblages, INRAE, Nantes, France
| | - Alain Bourmaud
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, Lorient, France.
| | - Nicolas Le Moigne
- Polymers Composites and Hybrids (PCH) - IMT Mines Ales, Ales, France.
| |
Collapse
|
2
|
Blervacq AS, Moreau M, Duputié A, Hawkins S. Comparative Analysis of G-Layers in Bast Fiber and Xylem Cell Walls in Flax Using Raman Spectroscopy. Biomolecules 2023; 13:biom13030435. [PMID: 36979370 PMCID: PMC10046372 DOI: 10.3390/biom13030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
In a response to gravitropic stress, G-layers (gelatinous layers) were deposited in xylem cell walls of tilted flax plants. G-layers were produced in both tension wood (upper side) as expected but were also observed in opposite wood (lower side). Raman spectral profiles were acquired for xylem G-layers from the tension and opposite side as well as from the G-layer of bast fibers grown under non-tilted conditions. Statistical analysis by principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) clearly distinguished bast fiber G-layers from xylem G-layers. Discriminating bands were observed for cellulose (380–1150–1376 cm–1), hemicelluloses (517–1094–1126–1452 cm–1) and aromatics (1270–1599–1658 cm–1). PCA did not allow separation of G-layers from tension/opposite-wood sides. In contrast, the two types of xylem G-layers could be incompletely discriminated through PLS-DA. Overall, the results suggested that while the architecture (polymer spatial distribution) of bast fibers G-layers and xylem G-layers are similar, they should be considered as belonging to a different cell wall layer category based upon ontogenetical and chemical composition parameters.
Collapse
Affiliation(s)
- Anne-Sophie Blervacq
- Université de Lille, Sciences et Technologies, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
- Correspondence: ; Tel.: +33-3-2043-4030
| | - Myriam Moreau
- Université de Lille, Sciences et Technologies, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie Pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France
| | - Anne Duputié
- Université de Lille, Sciences et Technologies, CNRS, UMR 8198-EEP-Evo-Eco-Paléo, Bâtiment SN2, F-59000 Lille, France
| | - Simon Hawkins
- Université de Lille, Sciences et Technologies, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
3
|
Asaoka M, Sakamoto S, Gunji S, Mitsuda N, Tsukaya H, Sawa S, Hamant O, Ferjani A. Contribution of vasculature to stem integrity in Arabidopsis thaliana. Development 2023; 150:286909. [PMID: 36746191 DOI: 10.1242/dev.201156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
In plants, coordinated growth is important for organ mechanical integrity because cells remain contiguous through their walls. So far, defects in inflorescence stem integrity in Arabidopsis thaliana have mainly been related to epidermal defects. Although these observations suggest a growth-limiting function at the stem cortex, deeper layers of the stem could also contribute to stem integrity. The nac secondary cell wall thickening promoting factor1 (nst1) nst3 double-mutant background is characterized by weaker vascular bundles without cracks. By screening for the cracking phenotype in this background, we identified a regulator of stem cracking, the transcription factor INDETERMINATE DOMAIN9 (IDD9). Stem cracking was not caused by vascular bundle breakage in plants that expressed a dominant repressor version of IDD9. Instead, cracking emerged from increased cell expansion in non-lignified interfascicular fiber cells that stretched the epidermis. This phenotype could be enhanced through CLAVATA3-dependent cell proliferation. Collectively, our results demonstrate that stem integrity relies on three additive mechanical components: the epidermis, which resists inner cell growth; cell proliferation in inner tissues; and growth heterogeneity associated with vascular bundle distribution in deep tissues.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shingo Sakamoto
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| | - Nobutaka Mitsuda
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinichiro Sawa
- International Research Center for Agriculture and Environmental Biology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan
| |
Collapse
|
4
|
Blervacq AS, Moreau M, Duputié A, De Waele I, Duponchel L, Hawkins S. Raman spectroscopy mapping of changes in the organization and relative quantities of cell wall polymers in bast fiber cell walls of flax plants exposed to gravitropic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:976351. [PMID: 36072316 PMCID: PMC9442035 DOI: 10.3389/fpls.2022.976351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Flax is an important fiber crop that is subject to lodging. In order to gain more information about the potential role of the bast fiber cell wall in the return to the vertical position, 6-week-old flax plants were subjected to a long-term (6 week) gravitropic stress by stem tilting in an experimental set-up that excluded autotropism. Stress induced significant morphometric changes (lumen surface, lumen diameter, and cell wall thickness and lumen surface/total fiber surface ratio) in pulling- and opposite-side fibers compared to control fibers. Changes in the relative amounts and spatial distribution of cell wall polymers in flax bast fibers were determined by Raman vibrational spectroscopy. Following spectra acquisition, datasets (control, pulling- and opposite sides) were analyzed by principal component analysis, PC score imaging, and Raman chemical cartography of significant chemical bonds. Our results show that gravitropic stress induces discrete but significant changes in the composition and/or spatial organization of cellulose, hemicelluloses and lignin within the cell walls of both pulling side and opposite side fibers.
Collapse
Affiliation(s)
- Anne-Sophie Blervacq
- Université de Lille, Sciences et Technologies, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Myriam Moreau
- Université de Lille, Sciences et Technologies, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Plateforme FT-Raman, Lille, France
| | - Anne Duputié
- Université de Lille, Sciences et Technologies, CNRS, UMR 8198 - EEP - Evo-Eco-Paléo, Lille, France
| | - Isabelle De Waele
- Université de Lille, Sciences et Technologies, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Plateforme FT-Raman, Lille, France
| | - Ludovic Duponchel
- Université de Lille, Sciences et Technologies, CNRS, UMR 8516 - LASIRE – Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Lille, France
| | - Simon Hawkins
- Université de Lille, Sciences et Technologies, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
5
|
Mokshina NE, Mikshina PV, Gorshkova TA. Expression of Cellulose Synthase Genes During the Gravistimulation of Flax (Linum usitatissimum) and Poplar (Populus alba × tremula) Plants. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202203013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Takata N, Tsuyama T, Nagano S, Baba K, Yasuda Y, Sakamoto S, Mitsuda N, Taniguchi T. Prior secondary cell wall formation is required for gelatinous layer deposition and posture control in gravi-stimulated aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:725-736. [PMID: 34396622 DOI: 10.1111/tpj.15466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Cell walls, especially secondary cell walls (SCWs), maintain cell shape and reinforce wood, but their structure and shape can be altered in response to gravity. In hardwood trees, tension wood is formed along the upper side of a bending stem and contains wood fiber cells that have a gelatinous layer (G-layer) inside the SCW. In a previous study, we generated nst/snd quadruple-knockout aspens (Populus tremula × Populus tremuloides), in which SCW formation was impaired in 99% of the wood fiber cells. In the present study, we produced nst/snd triple-knockout aspens, in which a large number of wood fibers had thinner SCWs than the wild type (WT) and some had no SCW. Because SCW layers are always formed prior to G-layer deposition, the nst/snd mutants raise interesting questions of whether the mutants can form G-layers without SCW and whether they can control their postures in response to changes in gravitational direction. The nst/snd mutants and the WT plants showed growth eccentricity and vessel frequency reduction when grown on an incline, but the triple mutants recovered their upright growth only slightly, and the quadruple mutants were unable to maintain their postures. The mutants clearly showed that the G-layers were formed in SCW-containing wood fibers but not in those lacking the SCW. Our results indicate that SCWs are essential for G-layer formation and posture control. Furthermore, each wood fiber cell may be able to recognize its cell wall developmental stage to initiate the formation of the G-layer as a response to gravistimulation.
Collapse
Affiliation(s)
- Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan
| | - Taku Tsuyama
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, 889-2192, Japan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, 319-1301, Japan
| | - Kei'ichi Baba
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuko Yasuda
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, 319-1301, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Toru Taniguchi
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan
| |
Collapse
|
7
|
Kim ES, Choi W, Park SH. The thickening and modification of the galactan-enriched layer during primary phloem fibre development in Cannabis sativa. AOB PLANTS 2021; 13:plab044. [PMID: 34394905 PMCID: PMC8356173 DOI: 10.1093/aobpla/plab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Primary phloem fibres (PPFs) have higher fibre quality and are economically more important for the textile sector than secondary phloem fibres. Both the chemical composition and mechanical structure of the secondary cell wall mainly influence the quality of bast fibres. We investigated the thickening of the galactan-enriched (Gn) layer and its modification process into a gelatinous (G)-layer, which is the largest portion of the secondary cell wall, during the development of the PPF in Cannabis sativa. Stem segments of hemp collected at 17, 29, 52 and 62 days after sowing were comparatively examined using light microscopy, scanning electron microscopy and transmission electron microscopy. The initial cells of PPF started the proliferation and differentiation at 17 days, but the secondary cell wall thickening had already commenced before the 29 days. Both the G- and Gn-layer were rapidly added onto the S-layer of PPFs; thus, the secondary cell wall thickness increased approximately 2-fold at 52 days (from the 29-day mark), and 8-fold at 62 days. The cortical microtubule arrays appeared adjacent to the plasma membrane of PPF cells related to the cellulose synthesis. Additionally, cross-sectioned microfibrils were observed on Gn-layer as the cluster of tiny spots. At 62 days, the specific stratification structure consisting of several lamellae occurred on the G-layer of the secondary cell wall. The secondary cell wall thickened remarkably at 52 days through 62 days so that the mature secondary cell wall consisted of three distinctive layers, the S-, G- and Gn-layer. Cortical microtubule arrays frequently appeared adjacent to the plasma membrane together with cellulose microfibrils on secondary cell wall. The G-layer of PPF at 62 days exhibited the characteristic stratification structure, which demonstrates the modification of the Gn-layer into the G-layer.
Collapse
Affiliation(s)
- Eun-Soo Kim
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO 81001-4901, USA
| | - Wonkyun Choi
- Division of Ecological Safety, National Institute of Ecology, Seocheon 33657, South Korea
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO 81001-4901, USA
| |
Collapse
|
8
|
Petrova A, Kozlova L, Gorshkov O, Nazipova A, Ageeva M, Gorshkova T. Cell Wall Layer Induced in Xylem Fibers of Flax Upon Gravistimulation Is Similar to Constitutively Formed Cell Walls of Bast Fibers. FRONTIERS IN PLANT SCIENCE 2021; 12:660375. [PMID: 33936149 PMCID: PMC8080151 DOI: 10.3389/fpls.2021.660375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/03/2021] [Indexed: 05/29/2023]
Abstract
In the fibers of many plant species after the formation of secondary cell walls, cellulose-enriched cell wall layers (often named G-layers or tertiary cell walls) are deposited which are important in many physiological situations. Flax (Linum usitatissimum L.) phloem fibers constitutively develop tertiary cell walls during normal plant growth. During the gravitropic response after plant inclination, the deposition of a cellulose-enriched cell wall layer is induced in xylem fibers on one side of the stem, providing a system similar to that of tension wood in angiosperm trees. Atomic force microscopy (AFM), immunochemistry, and transcriptomic analyses demonstrated that the G-layer induced in flax xylem fibers was similar to the constitutively formed tertiary cell wall of bast (phloem) fibers but different from the secondary cell wall. The tertiary cell walls, independent of tissue of origin and inducibility, were twice as stiff as the secondary cell walls. In the gravitropic response, the tertiary cell wall deposition rate in xylem was higher than that of the secondary cell wall. Rhamnogalacturonan I (RG-I) with galactan side chains was a prominent component in cellulose-rich layers of both phloem and xylem flax fibers. Transcriptomic events underlying G-layer deposition in phloem and xylem fibers had much in common. At the induction of tertiary cell wall deposition, several genes for rhamnosyltransferases of the GT106 family were activated in xylem samples. The same genes were expressed in the isolated phloem fibers depositing the tertiary cell wall. The comparison of transcriptomes in fibers with both inducible and constitutive tertiary cell wall deposition and xylem tissues that formed the secondary cell walls is an effective system that revealed important molecular players involved in the formation of cellulose-enriched cell walls.
Collapse
Affiliation(s)
- Anna Petrova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Liudmila Kozlova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Oleg Gorshkov
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Alsu Nazipova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Marina Ageeva
- Microscopy Cabinet, Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
9
|
Xiao Y, Yi F, Ling J, Wang Z, Zhao K, Lu N, Qu G, Kong L, Ma W, Wang J. Transcriptomics and Proteomics Reveal the Cellulose and Pectin Metabolic Processes in the Tension Wood (Non-G-Layer) of Catalpa bungei. Int J Mol Sci 2020; 21:E1686. [PMID: 32121503 PMCID: PMC7084593 DOI: 10.3390/ijms21051686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
: Catalpa bungei is an economically important tree with high-quality wood and highly valuable to the study of wood formation. In this work, the xylem microstructure of C. bungei tension wood (TW) was observed, and we performed transcriptomics, proteomics and Raman spectroscopy of TW, opposite wood (OW) and normal wood (NW). The results showed that there was no obvious gelatinous layer (G-layer) in the TW of C. bungei and that the secondary wall deposition in the TW was reduced compared with that in the OW and NW. We found that most of the differentially expressed mRNAs and proteins were involved in carbohydrate polysaccharide synthesis. Raman spectroscopy results indicated that the cellulose and pectin content and pectin methylation in the TW were lower than those in the OW and NW, and many genes and proteins involved in the metabolic pathways of cellulose and pectin, such as galacturonosyltransferase (GAUT), polygalacturonase (PG), endoglucanase (CLE) and β-glucosidase (BGLU) genes, were significantly upregulated in TW. In addition, we found that the MYB2 transcription factor may regulate the pectin degradation genes PG1 and PG3, and ARF, ERF, SBP and MYB1 may be the key transcription factors regulating the synthesis and decomposition of cellulose. In contrast to previous studies on TW with a G-layer, our results revealed a change in metabolism in TW without a G-layer, and we inferred that the change in the pectin type, esterification and cellulose characteristics in the TW of C. bungei may contribute to high tensile stress. These results will enrich the understanding of the mechanism of TW formation.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.X.); (F.Y.); (J.L.); (Z.W.); (N.L.); (W.M.)
| | - Fei Yi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.X.); (F.Y.); (J.L.); (Z.W.); (N.L.); (W.M.)
| | - Juanjuan Ling
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.X.); (F.Y.); (J.L.); (Z.W.); (N.L.); (W.M.)
| | - Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.X.); (F.Y.); (J.L.); (Z.W.); (N.L.); (W.M.)
| | - Kun Zhao
- Luoyang Academy of Agriculture and Forestry Science, Luoyang 471002, China;
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.X.); (F.Y.); (J.L.); (Z.W.); (N.L.); (W.M.)
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P5C2, Canada;
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.X.); (F.Y.); (J.L.); (Z.W.); (N.L.); (W.M.)
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.X.); (F.Y.); (J.L.); (Z.W.); (N.L.); (W.M.)
| |
Collapse
|
10
|
Decou R, Labrousse P, Béré E, Fleurat-Lessard P, Krausz P. Structural features in tension wood and distribution of wall polymers in the G-layer of in vitro grown poplars. PROTOPLASMA 2020; 257:13-29. [PMID: 31321553 DOI: 10.1007/s00709-019-01416-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/08/2019] [Indexed: 05/19/2023]
Abstract
Under the effect of disturbances, like unbalanced stem, but also during normal development, poplar trees can develop a specific secondary xylem, called "tension wood" (TW), which is easily identifiable by the presence of a gelatinous layer in the secondary cell walls (SCW) of the xylem fibers. Since TW formation was mainly performed on 2-year-old poplar models, an in vitro poplar that produces gelatinous fibers (G-fibers) while offering the same experimental advantages as herbaceous plants has been developed. Using specific cell wall staining techniques, wood structural features and lignin/cellulose distribution were both detailed in cross-sections obtained from the curved stem part of in vitro poplars. A supposed delay in the SCW lignification process in the G-fibers, along with the presence of a G-layer, could be observed in the juvenile plants. Moreover, in this G-layer, the immunolabeling of various polymers carried out in the SCW of TW has allowed detecting crystalline cellulose, arabinogalactans proteins, and rhamnogalacturonans I; however, homogalacturonans, xylans, and xyloglucans could not be found. Interestingly, extensins were detected in this typical adaptative or stress-induced structure. These observations were corroborated by a quantitation of the immunorecognized polymer distribution using gold particle labeling. In conclusion, the in vitro poplar model seems highly convenient for TW studies focusing on the implementation of wall polymers that provide the cell wall with greater plasticity in adapting to the environment.
Collapse
Affiliation(s)
- Raphaël Decou
- University of Limoges, PEIRENE, EA 7500, F-87000, Limoges, France.
- Laboratoire de chimie des Substances naturelles, University of Limoges, UPRES EA 1069, F-87000, Limoges, France.
| | - Pascal Labrousse
- University of Limoges, PEIRENE, EA 7500, F-87000, Limoges, France
| | - Emile Béré
- Campus Sciences, Image UP, Service de Microscopie Electronique et Photonique, Pôle Biologie Santé, University of Poitiers, F-86022, Poitiers Cedex 9, France
| | - Pierrette Fleurat-Lessard
- Campus Sciences, Image UP, Service de Microscopie Electronique et Photonique, Pôle Biologie Santé, University of Poitiers, F-86022, Poitiers Cedex 9, France
- Ecologie & Biologie des Interactions, University of Poitiers, UMR CNRS 7267, F-86073, Poitiers Cedex 9, France
| | - Pierre Krausz
- Laboratoire de chimie des Substances naturelles, University of Limoges, UPRES EA 1069, F-87000, Limoges, France
| |
Collapse
|
11
|
Mokshina N, Makshakova O, Nazipova A, Gorshkov O, Gorshkova T. Flax rhamnogalacturonan lyases: phylogeny, differential expression and modeling of protein structure. PHYSIOLOGIA PLANTARUM 2019; 167:173-187. [PMID: 30474196 DOI: 10.1111/ppl.12880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Rhamnogalacturonan lyases (RGLs; EC 4.2.2.23) degrade the rhamnogalacturonan I (RG-I) backbone of pectins present in the plant cell wall. These enzymes belong to polysaccharide lyase family 4, members of which are mainly from plants and plant pathogens. RGLs are investigated, as a rule, as pathogen 'weapons' for plant cell wall degradation and subsequent infection. Despite the presence of genes annotated as RGLs in plant genomes and the presence of substrates for enzyme activity in plant cells, evidence supporting the involvement of this enzyme in certain processes is limited. The differential expression of some RGL genes in flax (Linum usitatissimum L.) tissues, revealed in our previous work, prompted us to carry out a total revision (phylogenetic analysis, analysis of expression and protein structure modeling) of all the sequences of flax predicted as coding for RGLs. Comparison of the expressions of LusRGL in various tissues of flax stem revealed that LusRGLs belong to distinct phylogenetic clades, which correspond to two co-expression groups. One of these groups comprised LusRGL6-A and LusRGL6-B genes and was specifically upregulated in flax fibers during deposition of the tertiary cell wall, which has complex RG-I as a key noncellulosic component. The results of homology modeling and docking demonstrated that the topology of the LusRGL6-A catalytic site allowed binding to the RG-I ligand. These findings lead us to suggest the presence of RGL activity in planta and the involvement of special isoforms of RGLs in the modification of RG-I of the tertiary cell wall in plant fibers.
Collapse
Affiliation(s)
- Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| | - Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| | - Alsu Nazipova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| | - Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', Kazan, 420111, Russian Federation
| |
Collapse
|
12
|
Clair B, Ghislain B, Prunier J, Lehnebach R, Beauchêne J, Alméras T. Mechanical contribution of secondary phloem to postural control in trees: the bark side of the force. THE NEW PHYTOLOGIST 2019; 221:209-217. [PMID: 30076782 DOI: 10.1111/nph.15375] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
To grow straight, plants need a motor system that controls posture by generating forces to offset gravity. This motor function in trees was long thought to be only controlled by internal forces induced in wood. Here we provide evidence that bark is involved in the generation of mechanical stresses in several tree species. Saplings of nine tropical species were grown tilted and staked in a shadehouse and the change in curvature of the stem was measured after releasing from the pole and after removing the bark. This first experiment evidenced the contribution of bark in the up-righting movement of tree stems. Combined mechanical measurements of released strains on adult trees and microstructural observations in both transverse and longitudinal/tangential plane enabled us to identify the mechanism responsible for the development of asymmetric mechanical stress in the bark of stems of these species. This mechanism does not result from cell wall maturation like in wood, or from the direct action of turgor pressure like in unlignified organs, but is the consequence of the interaction between wood radial pressure and a smartly organized trellis structure in the inner bark.
Collapse
Affiliation(s)
- Bruno Clair
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, 97310, Kourou, France
| | - Barbara Ghislain
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, 97310, Kourou, France
| | - Jonathan Prunier
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, 97310, Kourou, France
| | - Romain Lehnebach
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, 97310, Kourou, France
- LMGC, CNRS, Université de Montpellier, 34090, Montpellier, France
| | - Jacques Beauchêne
- CIRAD, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CNRS, INRA, Université des Antilles, Université de Guyane, 97310, Kourou, France
| | - Tancrède Alméras
- LMGC, CNRS, Université de Montpellier, 34090, Montpellier, France
| |
Collapse
|
13
|
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology and Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|