1
|
Jia S, Zheng P, Li M, Chen C, Li X, Zhang N, Ji H, Yu J, Dong C, Liang L. The effect of cold plasma treatment on the fruit quality and aroma components of winter jujubes (Ziziphus jujuba Mill. 'Dongzao'). J Food Sci 2024; 89:6350-6361. [PMID: 39261646 DOI: 10.1111/1750-3841.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Cold plasma (CP) is a novel environmental-friendly preservation technology that causes minimal damage to fruits. The flavor and quality of winter jujubes have decreased with the extended storage time. Currently, the research on the use of CP on winter jujubes (Ziziphus jujuba Mill. 'Dongzao') mainly focuses on the effect of the treatment on storage quality. There is limited research on the effect of CP treatment on the flavor of winter jujubes. This study used different CP (80 kV) treatment durations (0, 5, and 10 min) to treat winter jujubes. The appropriate treatment time was selected by observing the changes in color, respiratory intensity, soluble sugar content, total acid content, and vitamin C (VC) content of winter jujubes. Amino acid analyzer and headspace solid-phase microextraction in combination with gas chromatography coupled with mass spectrometric detection were used to analyze the effect of CP treatment on the flavor compounds of winter jujubes. The results showed that the 5-min CP treatment could significantly slow down the red coloration of winter jujube while maintaining high soluble sugar, total acid, and VC content. At the respiration peak, the respiratory intensity of the 5-min CP treatment group was 0.74 mg CO2·kg-1·h-1 lower than that of the control group (p < 0.05). CP treatment slowed down the decrease in the content of amino acids and volatile organic compounds (such as 2-methyl-4-pentenal, 2-hexenal, and 3-hexenal) in winter jujubes. This study will provide basic data for applying CP preservation technology in postharvest winter jujubes.
Collapse
Affiliation(s)
- Sitong Jia
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| | - Pufan Zheng
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Mo Li
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Xiaoxue Li
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Na Zhang
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Haipeng Ji
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Jinze Yu
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Chenghu Dong
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Liya Liang
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
2
|
Kanbar A, Weinert CH, Kottutz D, Thinh L, Abuslima E, Kabil F, Hazman M, Egert B, Trierweiler B, Kulling SE, Nick P. Cold tolerance of woodland strawberry (Fragaria vesca) is linked to Cold Box Factor 4 and the dehydrin Xero2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5857-5879. [PMID: 39023232 DOI: 10.1093/jxb/erae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Domesticated strawberry is susceptible to sudden frost episodes, limiting the productivity of this cash crop in regions where they are grown during early spring. In contrast, the ancestral woodland strawberry (Fragaria vesca) has successfully colonized many habitats of the Northern Hemisphere. Thus, this species seems to harbour genetic factors promoting cold tolerance. Screening a germplasm established in the frame of the German Gene Bank for Crop Wild Relatives, we identified, among 70 wild accessions, a pair with contrasting cold tolerance. By following the physiological, biochemical, molecular, and metabolic responses of this contrasting pair, we identified the transcription factor Cold Box Factor 4 and the dehydrin Xero2 as molecular markers associated with superior tolerance to cold stress. Overexpression of green fluorescent protein fusions with Xero2 in tobacco BY-2 cells conferred cold tolerance to these recipient cells. A detailed analysis of the metabolome for the two contrasting genotypes allows the definition of metabolic signatures correlated with cold tolerance versus cold stress. This work provides a proof-of-concept for the value of crop wild relatives as genetic resources to identify genetic factors suitable to increase the stress resilience of crop plants.
Collapse
Affiliation(s)
- Adnan Kanbar
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Christoph Hubertus Weinert
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, D-76131 Karlsruhe, Germany
| | - David Kottutz
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - La Thinh
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Eman Abuslima
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Farida Kabil
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed Hazman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), 9 Gamma-Street, Giza-12619, Egypt
- School of Biotechnology, Nile University, Juhayna Square, 26th of July Corridor, El Sheikh Zayed, Giza, Egypt
| | - Björn Egert
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, D-76131 Karlsruhe, Germany
| | - Bernhard Trierweiler
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, D-76131 Karlsruhe, Germany
| | - Sabine Emma Kulling
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, D-76131 Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Joseph Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Navarro A, Giménez R, Val J, Moreno MÁ. The Impact of Rootstock on "Big Top" Nectarine Postharvest Concerning Chilling Injury, Biochemical and Molecular Parameters. PLANTS (BASEL, SWITZERLAND) 2024; 13:677. [PMID: 38475523 DOI: 10.3390/plants13050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Peaches and nectarines have a short shelf life even when harvested at appropriate physiological maturity. Market life is increased by storage at low temperatures. However, chilling injury symptoms can appear, causing physiological disorders and limiting shipping potential. The rootstock effect on the post-harvest quality has hardly been explored. Thus, the principal aim of this work was to study the influence of seven different Prunus rootstocks on the "Big Top" nectarine cv, considering harvest and post-harvest quality parameters and their correlation with chilling injury disorders. Basic fruit quality traits, individual sugars and organic acids analyzed by HPLC and other biochemical compounds such as relative antioxidant capacity, total phenolics content, flavonoids, anthocyanins, vitamin C and related enzyme activities (PAL, POD, PPO) were considered. In addition, correlations with possible candidate genes for chilling injury (CI) tolerance were searched by qPCR. Although a low susceptibility to CI symptoms has been found in "Big Top", rootstocks "PADAC 9902-01", "PADAC 99-05" and "ReplantPAC" exhibited lower CI symptoms. A statistically significant influence of the evaluated rootstocks was found concerning the parameters of this study. Phenols and anthocyanins seem to be important parameters to be considered in the prevention of chilling injury disorders. Moreover, PAL1, PPO4, PG2 and LDOX genes relative expressions were positively associated with chilling injury susceptibility. This study opens new perspectives for understanding peach fruit adaptation and response to cold storage temperatures during the post-harvest period.
Collapse
Affiliation(s)
- Aimar Navarro
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
| | - Rosa Giménez
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
| | - Jesús Val
- Department of Plant Biology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
| | - María Ángeles Moreno
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box 13034, 50080 Zaragoza, Spain
| |
Collapse
|
4
|
Zhang P, Wang Y, Wang J, Li G, Li S, Ma J, Peng X, Yin J, Liu Y, Zhu Y. Transcriptomic and physiological analyses reveal changes in secondary metabolite and endogenous hormone in ginger (Zingiber officinale Rosc.) in response to postharvest chilling stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107799. [PMID: 37271022 DOI: 10.1016/j.plaphy.2023.107799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Storing postharvest ginger at low temperatures can extend its shelf life, but can also lead to chilling injury, loss of flavor, and excessive water loss. To investigate the effects of chilling stress on ginger quality, morphological, physiological, and transcriptomic changes were examined after storage at 26 °C, 10 °C, and 2 °C for 24 h. Compared to 26 °C and 10 °C, storage at 2 °C significantly increased the concentrations of lignin, soluble sugar, flavonoids, and phenolics, as well as the accumulation of H2O2, O2-, and thiobarbituric acid reactive substances (TBARS). Additionally, chilling stress inhibited the levels of indoleacetic acid, while enhancing gibberellin, abscisic acid, and jasmonic acid, which may have increased postharvest ginger's adaptation to chilling. Storage at 10 °C decreased lignin concentration and oxidative damage, and induced less fluctuant changes in enzymes and hormones than storage at 2 °C. RNA-seq revealed that the number of differentially expressed genes (DEGs) increased with decreasing temperature. Functional enrichment analysis of the 523 DEGs that exhibited similar expression patterns between all treatments indicated that they were primarily enriched in phytohormone signaling, biosynthesis of secondary metabolites, and cold-associated MAPK signaling pathways. Key enzymes related to 6-gingerol and curcumin biosynthesis were downregulated at 2 °C, suggesting that cold storage may negatively impact ginger quality. Additionally, 2 °C activated the MKK4/5-MPK3/6-related protein kinase pathway, indicating that chilling may increase the risk of ginger pathogenesis.
Collapse
Affiliation(s)
- Pan Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yanhong Wang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jie Wang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Gang Li
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Siyun Li
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiawei Ma
- Jingzhou Jiazhiyuan Biotechnology Co. Ltd., Jingzhou, 434025, Hubei, China
| | - Xiangyan Peng
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yongxing Zhu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
5
|
Li Y, Tian Q, Wang Z, Li J, Liu S, Chang R, Chen H, Liu G. Integrated analysis of transcriptomics and metabolomics of peach under cold stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1153902. [PMID: 37051086 PMCID: PMC10083366 DOI: 10.3389/fpls.2023.1153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Low temperature is one of the environmental factors that restrict the growth and geographical distribution of peach (Prunus persica L. Batsch). To explore the molecular mechanisms of peach brunches in response to cold, we analyzed the metabolomics and transcriptomics of 'Donghe No.1' (cold-tolerant, CT) and '21st Century' (cold-sensitive, CS) treated by different temperatures (-5 to -30°C) for 12 h. Some cold-responsive metabolites (e.g., saccharides, phenolic acids and flavones) were identified with upregulation only in CT. Further, we identified 1991 cold tolerance associated genes in these samples and they were significantly enriched in the pathways of 'galactose metabolism', 'phenylpropanoid biosynthesis' and 'flavonoids biosynthesis'. Weighted gene correlation network analysis showed that soluble sugar, flavone, and lignin biosynthetic associated genes might play a key role in the cold tolerance of peach. In addition, several key genes (e.g., COMT, CCR, CAD, PER and F3'H) were substantially expressed more in CT than CS under cold stress, indicating that they might be major factors during the adaptation of peach to low temperature. This study will not only improve our understanding towards the molecular mechanisms of peach trees under cold stress but also contribute to the screening and breeding program of peach in the future.
Collapse
|
6
|
Olmedo P, Zepeda B, Delgado-Rioseco J, Leiva C, Moreno AA, Sagredo K, Blanco-Herrera F, Pedreschi R, Infante R, Meneses C, Campos-Vargas R. Metabolite Profiling Reveals the Effect of Cold Storage on Primary Metabolism in Nectarine Varieties with Contrasting Mealiness. PLANTS (BASEL, SWITZERLAND) 2023; 12:766. [PMID: 36840114 PMCID: PMC9965640 DOI: 10.3390/plants12040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Chilling injury is a physiological disorder caused by cold storage in peaches and nectarines. The main symptom of chilling injury is mealiness/wooliness, described as a lack of juice in fruit flesh. In this work, we studied two nectarine varieties (Andes Nec-2 and Andes Nec-3) with contrasting susceptibility to mealiness after cold storage. A non-targeted metabolomic analysis was conducted by GC-MS to understand if changes in metabolite abundance are associated with nectarine mealiness induced by cold storage. Multivariate analyses indicated that in unripe nectarines, cold storage promoted a higher accumulation of amino acids in both varieties. Interestingly, for ripe nectarines, cold storage induced an accumulation of fewer amino acids in both varieties and showed an increased abundance of sugars and organic acids. A pathway reconstruction of primary metabolism revealed that in ripe nectarines, cold storage disrupted metabolite abundance in sugar metabolism and the TCA cycle, leading to a differential accumulation of amino acids, organic acids, and sugars in mealy and juicy nectarines.
Collapse
Affiliation(s)
- Patricio Olmedo
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| | - Baltasar Zepeda
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Joaquín Delgado-Rioseco
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Carol Leiva
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| | - Adrián A. Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Karen Sagredo
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
- ANID—Millennium Science Initiative Program—Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
| | - Rodrigo Infante
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| | - Claudio Meneses
- ANID—Millennium Science Initiative Program—Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Reinaldo Campos-Vargas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile
| |
Collapse
|
7
|
Differences in total phenolics, antioxidant activity and metabolic characteristics in peach fruits at different stages of ripening. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
8
|
Manzoor I, Samantara K, Bhat MS, Farooq I, Bhat KM, Mir MA, Wani SH. Advances in genomics for diversity studies and trait improvement in temperate fruit and nut crops under changing climatic scenarios. FRONTIERS IN PLANT SCIENCE 2023; 13:1048217. [PMID: 36743560 PMCID: PMC9893892 DOI: 10.3389/fpls.2022.1048217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 06/18/2023]
Abstract
Genetic improvement of temperate fruit and nut crops through conventional breeding methods is not sufficient alone due to its extreme time-consuming, cost-intensive, and hard-to-handle approach. Again, few other constraints that are associated with these species, viz., their long juvenile period, high heterozygosity, sterility, presence of sexual incompatibility, polyploidy, etc., make their selection and improvement process more complicated. Therefore, to promote precise and accurate selection of plants based on their genotypes, supplement of advanced biotechnological tools, viz., molecular marker approaches along with traditional breeding methods, is highly required in these species. Different markers, especially the molecular ones, enable direct selection of genomic regions governing the trait of interest such as high quality, yield, and resistance to abiotic and biotic stresses instead of the trait itself, thus saving the overall time and space and helping screen fruit quality and other related desired traits at early stages. The availability of molecular markers like SNP (single-nucleotide polymorphism), DArT (Diversity Arrays Technology) markers, and dense molecular genetic maps in crop plants, including fruit and nut crops, led to a revelation of facts from genetic markers, thus assisting in precise line selection. This review highlighted several aspects of the molecular marker approach that opens up tremendous possibilities to reveal valuable information about genetic diversity and phylogeny to boost the efficacy of selection in temperate fruit crops through genome sequencing and thus cultivar improvement with respect to adaptability and biotic and abiotic stress resistance in temperate fruit and nut species.
Collapse
Affiliation(s)
- Ikra Manzoor
- Division of Fruit Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Momin Showkat Bhat
- Division of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Iqra Farooq
- Field Station Bonera, Pulwama, Council of Industrial and Scientific Research (CSIR) Indian Institute of Integrative Medicine, J&K, Jammu, India
| | - Khalid Mushtaq Bhat
- Division of Fruit Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Mohammad Amin Mir
- Ambri Apple Research Centre, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shopian, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, Anantnag, India
| |
Collapse
|
9
|
Lurie S. Proteomic and metabolomic studies on chilling injury in peach and nectarine. FRONTIERS IN PLANT SCIENCE 2022; 13:958312. [PMID: 36267944 PMCID: PMC9577496 DOI: 10.3389/fpls.2022.958312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Peaches and nectarines are temperate climate stone fruits, which should be stored at 0°C to prevent the ripening of these climacteric fruits. However, if stored for too long or if stored at a higher temperature (4 or 5°C), they develop chilling injury. Chilling injury damage includes (1) dry, mealy, wooly (lack of juice) fruits, (2) hard-textured fruits with no juice (leatheriness), (3) flesh browning, and (4) flesh bleeding or internal reddening. There are genetic components to these disorders in that early season fruits are generally more resistant than late season fruits, and white-fleshed fruits are more susceptible to internal browning than yellow-fleshed fruits. A recent review covered the recent research in genomic and transcriptomic studies, and this review examines findings from proteomic and metabolomics studies. Proteomic studies found that the ethylene synthesis proteins are decreased in cold compromised fruits, and this affects the processes initiated by ethylene including cell wall and volatile changes. Enzymes in metabolic pathways were both higher and lower in abundance in CI fruits, an indication of an imbalance in energy production. Stress proteins increased in both fruits with or without CI, but were higher in damaged fruits. Metabolomics showed the role of levels of sugars, sucrose, raffinose, galactinol, and glucose-6-phosphate in protection against chilling injury, along with other membrane stabilizers such as polyamines. Amino acid changes were inconsistent among the studies. Lipid species changes during storage could be correlated with sensitivity or resistance to CI, but more studies are needed.
Collapse
|
10
|
Fruitomics: The Importance of Combining Sensory and Chemical Analyses in Assessing Cold Storage Responses of Six Peach (Prunus persica L. Batsch) Cultivars. Foods 2022; 11:foods11172554. [PMID: 36076741 PMCID: PMC9455255 DOI: 10.3390/foods11172554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Cold storage is used to extend peach commercial life, but can affect quality. Quality changes are assessed through the content of nutritionally relevant compounds, aroma, physical characters and/or sensorially. Here, six peach and nectarine cultivars were sampled at commercial harvest and after 7 days of 1 °C storage. A trained panel was used to evaluate sensorial characters, while carotenoids, phenolics, vitamin C, total sugars, and qualitative traits including firmness, titrable acidity and soluble solid content were integrated with volatile organic compound (VOC) analysis previously reported. The different analyses reveal interesting patterns of correlation, and the six cultivars responded differently to cold storage. Sensory parameters were correlated with 64 VOCs and seven intrinsic characters. Acidity, firmness, and 10 VOCs were strongly negatively correlated with harmony and sweetness, but positively correlated with bitterness, astringency, and crunchiness. In contrast, Brix, b-carotene, and six VOCs were positively correlated with harmony and sweetness.
Collapse
|
11
|
Changes of Sensory Quality, Flavor-Related Metabolites and Gene Expression in Peach Fruit Treated by Controlled Atmosphere (CA) under Cold Storage. Int J Mol Sci 2022; 23:ijms23137141. [PMID: 35806145 PMCID: PMC9266655 DOI: 10.3390/ijms23137141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Controlled atmosphere (CA) has been used to alleviate chilling injury (CI) of horticultural crops caused by cold storage. However, the effects of CA treatment on peach fruit sensory quality and flavor-related chemicals suffering from CI remain largely unknown. Here, we stored peach fruit under CA with 5% O2 and 10% CO2 at 0 °C up to 28 d followed by a subsequent 3 d shelf-life at 20 °C (28S3). CA significantly reduced flesh browning and improved sensory quality at 28S3. Though total volatiles declined during extended cold storage, CA accumulated higher content of volatile esters and lactones than control at 28S3. A total of 14 volatiles were positively correlated with consumer acceptability, mainly including three C6 compounds, three esters and four lactones derived from the fatty acid lipoxygenase (LOX) pathway. Correspondingly, the expression levels of genes including PpLOX1, hyperoxide lyase PpHPL1 and alcohol acyltransferase PpAAT1 were positively correlated with the change of esters and lactones. CA elevated the sucrose content and the degree of fatty acids unsaturation under cold storage, which gave us clues to clarify the mechanism of resistance to cold stress. The results suggested that CA treatment improved sensory quality by alleviating CI of peach fruits under cold storage.
Collapse
|
12
|
Muthuramalingam P, Shin H, Adarshan S, Jeyasri R, Priya A, Chen JT, Ramesh M. Molecular Insights into Freezing Stress in Peach Based on Multi-Omics and Biotechnology: An Overview. PLANTS 2022; 11:plants11060812. [PMID: 35336695 PMCID: PMC8954506 DOI: 10.3390/plants11060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022]
Abstract
In nature or field conditions, plants are frequently exposed to diverse environmental stressors. Among abiotic stresses, the low temperature of freezing conditions is a critical factor that influences plants, including horticultural crops, decreasing their growth, development, and eventually quality and productivity. Fortunately, plants have developed a mechanism to improve the tolerance to freezing during exposure to a range of low temperatures. In this present review, current findings on freezing stress physiology and genetics in peach (Prunus persica) were refined with an emphasis on adaptive mechanisms for cold acclimation, deacclimation, and reacclimation. In addition, advancements using multi-omics and genetic engineering approaches unravel the molecular physiological mechanisms, including hormonal regulations and their general perceptions of freezing tolerance in peach were comprehensively described. This review might pave the way for future research to the horticulturalists and research scientists to overcome the challenges of freezing temperature and improvement of crop management in these conditions.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea;
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea;
- Correspondence:
| | - Sivakumar Adarshan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Arumugam Priya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan;
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India; (S.A.); (R.J.); (A.P.); (M.R.)
| |
Collapse
|
13
|
Parijadi AAR, Yamamoto K, Ikram MMM, Dwivany FM, Wikantika K, Putri SP, Fukusaki E. Metabolome Analysis of Banana (Musa acuminata) Treated With Chitosan Coating and Low Temperature Reveals Different Mechanisms Modulating Delayed Ripening. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.835978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Banana (Musa acuminata) is one of the most important crop plants consumed in many countries. However, the commercial value decreases during storage and transportation. To maintain fruit quality, postharvest technologies have been developed. Storage at low temperature is a common method to prolong the shelf life of food products, especially during transportation and distribution. Another emerging approach is the use of chitosan biopolymer as an edible coating, which can extend the shelf life of fruit by preventing moisture and aroma loss, and inhibiting oxygen penetration into the plant tissue. Gas chromatography-mass spectrometry metabolite profiling of the banana ripening process was performed to clarify the global metabolism changes in banana after chitosan coating or storage at low temperature. Both postharvest treatments were effective in delaying banana ripening. Interestingly, principal component analysis and orthogonal projection to latent structure regression analysis revealed significant differences of both treatments in the metabolite changes, indicating that the mechanism of prolonging the banana shelf life may be different. Chitosan (1.25% w/v) treatment stored for 11 days resulted in a distinct accumulation of 1-aminocyclopropane-1-carboxylic acid metabolite, an important precursor of ethylene that is responsible for the climacteric fruit ripening process. Low temperature (LT, 14 ± 1°C) treatment stored for 9 days resulted in higher levels of putrescine, a polyamine that responds to plant stress, at the end of ripening days. The findings clarify how chitosan delays fruit ripening and provides a deeper understanding of how storage at low temperature affects banana metabolism. The results may aid in more effective development of banana postharvest strategies.
Collapse
|
14
|
iTRAQ-based quantitative proteome analysis insights into cold stress of Winter Rapeseed (Brassica rapa L.) grown in the field. Sci Rep 2021; 11:23434. [PMID: 34873178 PMCID: PMC8648733 DOI: 10.1038/s41598-021-02707-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Winter rapeseed (Brassica rapa L.) is a major oilseed crop in Northern China, where its production was severely affected by chilling and freezing stress. However, not much is known about the role of differentially accumulated proteins (DAPs) during the chilling and freezing stress. In this study, isobaric tag for relative and absolute quantification (iTRAQ) technology was performed to identify DAPs under freezing stress. To explore the molecular mechanisms of cold stress tolerance at the cellular and protein levels, the morphological and physiological differences in the shoot apical meristem (SAM) of two winter rapeseed varieties, Longyou 7 (cold-tolerant) and Lenox (cold-sensitive), were explored in field-grown plants. Compared to Lenox, Longyou 7 had a lower SAM height and higher collar diameter. The level of malondialdehyde (MDA) and indole-3-acetic acid (IAA) content was also decreased. Simultaneously, the soluble sugars (SS) content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, soluble protein (SP) content, and collar diameter were increased in Longyou 7 as compared to Lenox. A total of 6330 proteins were identified. Among this, 98, 107, 183 and 111 DAPs were expressed in L7 CK/Le CK, L7 d/Le d, Le d/Le CK and L7 d/L7 CK, respectively. Quantitative real-time PCR (RT-qPCR) analysis of the coding genes for seventeen randomly selected DAPs was performed for validation. These DAPs were identified based on gene ontology enrichment analysis, which revealed that glutathione transferase activity, carbohydrate-binding, glutathione binding, metabolic process, and IAA response were closely associated with the cold stress response. In addition, some cold-induced proteins, such as glutathione S-transferase phi 2(GSTF2), might play an essential role during cold acclimation in the SAM of Brassica rapa. The present study provides valuable information on the involvement of DAPs during cold stress responses in Brassica rapa L, and hence could be used for breeding experiments.
Collapse
|
15
|
Effect of Pectin/Nanochitosan-Based Coatings and Storage Temperature on Shelf-Life Extension of "Elephant" Mango ( Mangifera indica L.) Fruit. Polymers (Basel) 2021; 13:polym13193430. [PMID: 34641244 PMCID: PMC8512021 DOI: 10.3390/polym13193430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of extending shelf-life and maintaining quality is one of the major issues regarding mango fruit preservation. The quality of mango fruits is greatly affected by postharvest factors, especially temperature and fruit treatment. In this study, the effect of coating and storage temperature on the characteristics of mango fruits was investigated. The mango fruits were immersed in different concentrations (1.5%, 2.0%, and 2.5%) of pectin/nanochitosan dispersion (with ratios of pectin:nanochitosan 50:50), and (0.75%, 1% and 1.25%) of nanochitosan dispersion and stored at 17, 25, and 32 °C for 24 days. Changes in fruit, including weight loss, firmness, color, chemical composition (such as the total soluble solids concentration (TSS)), total sugar, reducing sugar, titratable acidity (TA), and vitamin C were periodically recorded. The results indicated that the pectin/nanochitosan coating significantly prevented reductions in the fruit weight, firmness, TSS, TA, and vitamin C content. Additionally, pectin/nanochitosan at a low temperature (17 °C) had a greater positive effect on fruit shelf-life and weight maintenance than 25 and 32 °C. The coated mango fruits maintained good quality for 24 days at 17 °C, while coated fruits stored at 25 °C and 32 °C, as well as uncoated ones stored at 17 °C, were destroyed after two weeks. At the maximum storage time evaluated, the coating formulations containing pectin and nanochitosan exhibited microbial counts below the storage life limit of 106 CFU/g of fruit. In general, the results showed that the pectin/nanochitosan coating (2%) with a storage temperature of 17 °C is the most effective strategy for improving quality and extending the shelf-life of mango fruits.
Collapse
|
16
|
Drincovich MF. Identifying sources of metabolomic diversity and reconfiguration in peach fruit: taking notes for quality fruit improvement. FEBS Open Bio 2021; 11:3211-3217. [PMID: 34176215 PMCID: PMC8634865 DOI: 10.1002/2211-5463.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022] Open
Abstract
The metabolomic content determines many of the important features of a fruit, such as its taste, flavor, color, nutritional value, and abiotic or biotic resistance. Peach (Prunus persica (L.) Batsch) is one of the best genetically characterized species used as a model for Rosaceae, the drupes of which are a source of minerals, vitamins, fiber, and antioxidant compounds for healthy diets around the world. During the last few years, a great advance in the analysis of the metabolic diversity and reconfiguration in different peach varieties in response to developmental and environmental factors has occurred. These studies have shown that the great phenotypic diversity among different peach varieties is correlated with differential metabolomic content. Besides, the fruit metabolome of each peach variety is not static; on the contrary, it is drastically configured in response to both developmental and environmental signals, and moreover, it was found that these metabolic reconfigurations are also variety dependent. In the present review, the main sources of metabolic diversity and conditions that induce modifications in the peach fruit metabolome are summarized. It is postulated that comparison of the metabolic reconfigurations that take place among the fruits from different varieties may help us better understand peach fruit metabolism and their key drivers, which in turn may aid in the future design of high‐quality peach fruits.
Collapse
Affiliation(s)
- María F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| |
Collapse
|
17
|
Meucci A, Shiriaev A, Rosellini I, Malorgio F, Pezzarossa B. Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages. PLANTS 2021; 10:plants10061050. [PMID: 34071129 PMCID: PMC8224791 DOI: 10.3390/plants10061050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
Foliar spray with selenium salts can be used to fortify tomatoes, but the results vary in relation to the Se concentration and the plant developmental stage. The effects of foliar spraying with sodium selenate at concentrations of 0, 1, and 1.5 mg Se L−1 at flowering and fruit immature green stage on Se accumulation and quality traits of tomatoes at ripening were investigated. Selenium accumulated up to 0.95 µg 100 g FW−1, with no significant difference between the two concentrations used in fruit of the first truss. The treatment performed at the flowering stage resulted in a higher selenium concentration compared to the immature green treatment in the fruit of the second truss. Cu, Zn, K, and Ca content was slightly modified by Se application, with no decrease in fruit quality. When applied at the immature green stage, Se reduced the incidence of blossom-end rot. A group of volatile organic compounds (2-phenylethyl alcohol, guaiacol, (E)-2-heptenal, 1-penten-3-one and (E)-2-pentenal), positively correlated with consumer liking and flavor intensity, increased following Se treatment. These findings indicate that foliar spraying, particularly if performed at flowering stage, is an efficient method to enrich tomatoes with Se, also resulting in positive changes in fruit aroma profile.
Collapse
Affiliation(s)
- Annalisa Meucci
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
| | - Anton Shiriaev
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
- Correspondence:
| | - Irene Rosellini
- Research Institute on Terrestrial Ecosystems, 56124 Pisa, Italy; (I.R.); (B.P.)
| | - Fernando Malorgio
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy;
| | - Beatrice Pezzarossa
- Research Institute on Terrestrial Ecosystems, 56124 Pisa, Italy; (I.R.); (B.P.)
| |
Collapse
|
18
|
Scalisi A, O'Connell MG. Application of visible/NIR spectroscopy for the estimation of soluble solids, dry matter and flesh firmness in stone fruits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2100-2107. [PMID: 32978810 DOI: 10.1002/jsfa.10832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Soluble solids concentration (SSC), dry matter concentration (DMC) and flesh firmness (FF) are important fruit quality parameters in stone fruits. This study investigated the ability of a commercial visible/near-infrared (NIR) spectrometer to determine SSC, DMC and FF in nectarine, peach, apricot and Japanese plum cultivars at harvest. The work was conducted in summer 2019/2020 on 14 stone fruit cultivars at Tatura, Australia. Two sub-samples of 100 fruit each were collected before and after commercial maturity (± 5 days) in order to maximize sample variability. RESULTS Partial least square (PLS) regression models based on the second derivative of the absorbance in the 729-975 nm spectral region proved accurate for the prediction of SSC and DMC (R2 CV > 0.750). Only the model generated for SSC in 'Golden May' apricot was less precise compared to other cultivars. No visible/NIR models were accurate enough to predict FF in the cultivars under study (R2 CV < 0.750). CONCLUSION This study demonstrated that the visible/NIR spectrometer was a reliable tool to monitor SSC and DMC in stone fruits at harvest but proved less useful for FF estimation. These results highlight the potential of visible/NIR spectrometry to evaluate stone fruit quality both in situ pre-harvest and in the laboratory after harvest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alessio Scalisi
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Tatura, VIC, Australia
| | - Mark Glenn O'Connell
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Tatura, VIC, Australia
| |
Collapse
|
19
|
Ren L, Zhang T, Wu H, Ge Y, Zhao X, Shen X, Zhou W, Wang T, Zhang Y, Ma D, Wang A. Exploring the metabolic changes in sweet potato during postharvest storage using a widely targeted metabolomics approach. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lei Ren
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Tingting Zhang
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Haixia Wu
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Yuxin Ge
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Xuehong Zhao
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Xiaodie Shen
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Wuyu Zhou
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Tianlong Wang
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| | - Yungang Zhang
- Key Laboratory for Biology and Genetic Breeding of Sweetpotato (Xuzhou) Ministry of Agriculture/Jiangsu Xuzhou Sweetpotato Research Center Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District Xuzhou People’s Republic of China
| | - Daifu Ma
- Key Laboratory for Biology and Genetic Breeding of Sweetpotato (Xuzhou) Ministry of Agriculture/Jiangsu Xuzhou Sweetpotato Research Center Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District Xuzhou People’s Republic of China
| | - Aimin Wang
- Institute of Integrative Plant Biology School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics School of Life Science Jiangsu Normal University Xuzhou People’s Republic of China
| |
Collapse
|
20
|
Tiwari S, Kate A, Mohapatra D, Tripathi MK, Ray H, Akuli A, Ghosh A, Modhera B. Volatile organic compounds (VOCs): Biomarkers for quality management of horticultural commodities during storage through e-sensing. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Marchioni I, Pistelli L, Ferri B, Copetta A, Ruffoni B, Pistelli L, Najar B. Phytonutritional Content and Aroma Profile Changes During Postharvest Storage of Edible Flowers. FRONTIERS IN PLANT SCIENCE 2020; 11:590968. [PMID: 33329654 PMCID: PMC7731506 DOI: 10.3389/fpls.2020.590968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Edible flowers are niche horticultural products, routinely used as cooking ingredients in the food industry. Currently, new species are required with the aim of enlarging the number of species with a long shelf-life, healthy nutraceutical compounds, and new fragrance and tastes. Ageratum houstonianum Mill, Tagetes lemmonii A. Gray, Salvia dorisiana Standl, and Pelargonium odoratissimum (L.) L'Hér "Lemon" were selected for their different morphological characteristics and color. Fresh flowers were analyzed to characterize their phytonutritional content and aroma profile. Postharvest was determined up to 6 days of cold storage at 4°C in transparent polypropylene boxes. Visual quality and cellular membrane damage were observed. The relative content of different antioxidant constituents (e.g., polyphenols, flavonoids, anthocyanins, ascorbic acid), nutritional compounds (soluble sugars, crude proteins), the antioxidant scavenging activity, and the volatile profile were determined and correlated to the quality of shelf-life of the different species. The yellow T. lemmonii freshly picked flowers showed the highest ascorbic acid and flavonoids content, which was maintained during the cold storage, as well as the best visual quality. Limited changes in metabolites were detected in the light blue A. houstonianum during postharvest, although the visual quality is severely compromised. Magenta S. dorisiana and light pink P. odoratissimum showed similar changes in antioxidant constituents during cold storage. For the first time, the volatile compounds have been identified in the four species. Sesquiterpene hydrocarbons are the main class in fresh flowers of A. houstonianum, S. dorisiana, and P. odoratissimum, while monoterpene hydrocarbons are abundant in T. lemmonii. The cold storage influenced mainly P. odoratissimum and S. dorisiana flavor initially dominated by the increase in total monoterpenes at 6 days, reaching a relative content of 90%. Both A. houstonianum and T. lemmonii conserved the prevalence of the same class of constituents in all the analyzed conditions, even though the cold storage influenced the major compound abundance. On the basis of the results, T. lemmonii was the most interesting species with the longest shelf-life due to its phytonutritional and aromatic constituents. Results indicated the peculiar metabolic and physiological attitude of flowers species to cold storage.
Collapse
Affiliation(s)
- Ilaria Marchioni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
- Interdepartmental Research Center NUTRAFOOD “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | | | - Andrea Copetta
- Research Centre for Vegetable and Ornamental Crops (CREA), Sanremo, Italy
| | - Barbara Ruffoni
- Research Centre for Vegetable and Ornamental Crops (CREA), Sanremo, Italy
| | - Luisa Pistelli
- Interdepartmental Research Center NUTRAFOOD “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Basma Najar
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Lwin HP, Lee J. Fruit quality and major metabolites in cold-stored 'Wonhwang' Asian pears are differentially affected by fruit size. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5117-5125. [PMID: 32297316 DOI: 10.1002/jsfa.10422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND The size of 'Wonhwang' Asian pear fruit may affect fruit quality and physiological disorders differentially during distribution. Thus, this study aimed to evaluate the effect of fruit size on fruit physiological attributes and metabolic responses in terms of soluble carbohydrates and free amino acids in different-sized 'Wonhwang' Asian pears during cold storage and shelf life. RESULTS The rate of weight loss and the severity of fruit shriveling were higher in small fruit than in large fruit, while the severity of decay was lower during shelf life. Lightness and chroma values were lower in the cortex and core tissues of large fruit than small fruit, but hue angle values were higher in large fruit compared to small fruit. Glucose and fructose were higher in large fruit than in small fruit but sucrose and sorbitol were lower during shelf life after cold storage. The levels of most free amino acids were higher in large fruit than in small fruit, and only γ-aminobutyric acid (GABA) level was lower in large fruit. CONCLUSION These results indicate that fruit physiological and metabolic responses are differentially affected by fruit size during cold storage and shelf life. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hnin Phyu Lwin
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jinwook Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
23
|
Fruit volatilome profiling through GC × GC-ToF-MS and gene expression analyses reveal differences amongst peach cultivars in their response to cold storage. Sci Rep 2020; 10:18333. [PMID: 33110132 PMCID: PMC7591569 DOI: 10.1038/s41598-020-75322-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Peaches have a short shelf life and require chilling during storage and transport. Peach aroma is important for consumer preference and determined by underlying metabolic pathways and gene expression. Differences in aroma (profiles of volatile organic compounds, VOCs) have been widely reported across cultivars and in response to cold storage. However, few studies used intact peaches, or used equilibrium sampling methods subject to saturation. We analysed VOC profiles using TD-GC × GC-ToF-MS and expression of 12 key VOC pathway genes of intact fruit from six cultivars (three peaches, three nectarines) before and after storage at 1 °C for 7 days including 36 h shelf life storage at 20 °C. Two dimensional GC (GC × GC) significantly enhances discrimination of thermal desorption gas chromatography time-of-flight mass spectrometry (TD-GC-ToF-MS) and detected a total of 115 VOCs. A subset of 15 VOCs from analysis with Random Forest discriminated between cultivars. Another 16 VOCs correlated strongly with expression profiles of eleven key genes in the lipoxygenase pathway, and both expression profiles and VOCs discriminated amongst cultivars, peach versus nectarines and between treatments. The cultivar-specific response to cold storage underlines the need to understand more fully the genetic basis for VOC changes across cultivars.
Collapse
|
24
|
Zhao J, Quan P, Liu H, Li L, Qi S, Zhang M, Zhang B, Li H, Zhao Y, Ma B, Han M, Zhang H, Xing L. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4699-4716. [PMID: 32078318 DOI: 10.1021/acs.jafc.9b07107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors.
Collapse
Affiliation(s)
- Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Pengkun Quan
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Lei Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Baiquan Ma
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Haihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| |
Collapse
|
25
|
Lillo-Carmona V, Espinoza A, Rothkegel K, Rubilar M, Nilo-Poyanco R, Pedreschi R, Campos-Vargas R, Meneses C. Identification of Metabolite and Lipid Profiles in a Segregating Peach Population Associated with Mealiness in Prunus persica (L.) Batsch. Metabolites 2020; 10:metabo10040154. [PMID: 32316167 PMCID: PMC7240955 DOI: 10.3390/metabo10040154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The peach is the third most important temperate fruit crop considering fruit production and harvested area in the world. Exporting peaches represents a challenge due to the long-distance nature of export markets. This requires fruit to be placed in cold storage for a long time, which can induce a physiological disorder known as chilling injury (CI). The main symptom of CI is mealiness, which is perceived as non-juicy fruit by consumers. The purpose of this work was to identify and compare the metabolite and lipid profiles between two siblings from contrasting populations for juice content, at harvest and after 30 days at 0 °C. A total of 119 metabolites and 189 lipids were identified, which showed significant differences in abundance, mainly in amino acids, sugars and lipids. Metabolites displaying significant changes from the E1 to E3 stages corresponded to lipids such as phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG) and lysophosphatidylcholines (LPC), and sugars such as fructose 1 and 1-fructose-6 phosphate. These metabolites might be used as early stage biomarkers associated with mealiness at harvest and after cold storage.
Collapse
Affiliation(s)
- Victoria Lillo-Carmona
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Alonso Espinoza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Karin Rothkegel
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Miguel Rubilar
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile;
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota 2260000, Chile;
| | - Reinaldo Campos-Vargas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
- FONDAP Center for Genome Regulation, Universidad Andrés Bello, Blanco Encalada 2085, Santiago 87370415, Chile
- Correspondence:
| |
Collapse
|
26
|
Innamorato V, Longobardi F, Cervellieri S, Cefola M, Pace B, Capotorto I, Gallo V, Rizzuti A, Logrieco AF, Lippolis V. Quality evaluation of table grapes during storage by using 1H NMR, LC-HRMS, MS-eNose and multivariate statistical analysis. Food Chem 2020; 315:126247. [PMID: 32006866 DOI: 10.1016/j.foodchem.2020.126247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
Three non-targeted methods, i.e. 1H NMR, LC-HRMS, and HS-SPME/MS-eNose, combined with chemometrics, were used to classify two table grape cultivars (Italia and Victoria) based on five quality levels (5, 4, 3, 2, 1). Grapes at marketable quality levels (5, 4, 3) were also discriminated from non-marketable quality levels (2 and 1). PCA-LDA and PLS-DA were applied, and results showed that, the MS-eNose provided the best results. Specifically, with the Italia table grapes, mean prediction abilities ranging from 87% to 88% and from 98% to 99% were obtained for discrimination amongst the five quality levels and of marketability/non-marketability, respectively. For the cultivar Victoria, mean predictive abilities higher than 99% were achieved for both classifications. Good models were also obtained for both cultivars using NMR and HRMS data, but only for classification by marketability. Satisfying models were further validated by MCCV. Finally, the compounds that contributed the most to the discriminations were identified.
Collapse
Affiliation(s)
- Valentina Innamorato
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy; Consiglio Nazionale delle Ricerche (CNR), Istituto Scienze delle Produzioni Alimentari (ISPA), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesco Longobardi
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy.
| | - Salvatore Cervellieri
- Consiglio Nazionale delle Ricerche (CNR), Istituto Scienze delle Produzioni Alimentari (ISPA), Via Amendola 122/O, 70126 Bari, Italy
| | - Maria Cefola
- Consiglio Nazionale delle Ricerche (CNR), Istituto Scienze delle Produzioni Alimentari (ISPA), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Bernardo Pace
- Consiglio Nazionale delle Ricerche (CNR), Istituto Scienze delle Produzioni Alimentari (ISPA), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Imperatrice Capotorto
- Consiglio Nazionale delle Ricerche (CNR), Istituto Scienze delle Produzioni Alimentari (ISPA), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, Bari I-70125, Italy
| | - Antonino Rizzuti
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, Bari I-70125, Italy
| | - Antonio F Logrieco
- Consiglio Nazionale delle Ricerche (CNR), Istituto Scienze delle Produzioni Alimentari (ISPA), Via Amendola 122/O, 70126 Bari, Italy
| | - Vincenzo Lippolis
- Consiglio Nazionale delle Ricerche (CNR), Istituto Scienze delle Produzioni Alimentari (ISPA), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
27
|
Gismondi M, Daurelio LD, Maiorano C, Monti LL, Lara MV, Drincovich MF, Bustamante CA. Generation of fruit postharvest gene datasets and a novel motif analysis tool for functional studies: uncovering links between peach fruit heat treatment and cold storage responses. PLANTA 2020; 251:53. [PMID: 31950388 DOI: 10.1007/s00425-020-03340-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
A survey of developed fruit gene-specific datasets and the implementation of a novel cis-element analysis tool indicate specific transcription factors as novel regulatory actors under HT response and CI protection. Heat treatment (HT) prior to cold storage (CS) has been successfully applied to ameliorate fruit chilling injury (CI) disorders. Molecular studies have identified several HT-driven benefits and putative CI-protective molecules and mechanisms. However, bioinformatic tools and analyses able to integrate fruit-specific information are necessary to begin functional studies and breeding projects. In this work, a HT-responsive gene dataset (HTds) and four fruit expression datasets (FEds), containing gene-specific information from several species and postharvest conditions, were developed and characterized. FEds provided information about HT-responsive genes, not only validating their sensitivity to HT in different systems but also revealing most of them as CS-responsive. A special focus was given to peach heat treatment-sensitive transcriptional regulation by the development of a novel Perl motif analysis software (cisAnalyzer) and a curated plant cis-elements dataset (PASPds). cisAnalyzer is able to assess sequence motifs presence, localization, enrichment and discovery on biological sequences. Its implementation for the enrichment analysis of PASPds motifs on the promoters of HTds genes rendered particular cis-elements that indicate certain transcription factor (TF) families as responsible of fruit HT-sensitive transcription regulation. Phylogenetic and postharvest expression data of these TFs showed a functional diversity of TF families, with members able to fulfil roles under HT, CS and/or both treatments. All integrated datasets and cisAnalyzer tool were deposited in FruitGeneDB (https://www.cefobi-conicet.gov.ar/FruitGeneDB/search1.php), a new available database with a great potential for fruit gene functional studies, including the markers of HT and CS responses whose study will contribute to unravel HT-driven CI-protection and select tolerant cultivars.
Collapse
Affiliation(s)
- Mauro Gismondi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| | - Lucas D Daurelio
- Laboratorio de Investigaciones en Fisiología y Biología Molecular Vegetal (LIFiBVe), Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2808 (S3080HOF), Esperanza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Claudia Maiorano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Laura L Monti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Maria V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Maria F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| | - Claudia A Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2000), Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina.
| |
Collapse
|
28
|
Brizzolara S, Manganaris GA, Fotopoulos V, Watkins CB, Tonutti P. Primary Metabolism in Fresh Fruits During Storage. FRONTIERS IN PLANT SCIENCE 2020; 11:80. [PMID: 32140162 PMCID: PMC7042374 DOI: 10.3389/fpls.2020.00080] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 05/07/2023]
Abstract
The extension of commercial life and the reduction of postharvest losses of perishable fruits is mainly based on storage at low temperatures alone or in combination with modified atmospheres (MAs) and controlled atmospheres (CAs), directed primarily at reducing their overall metabolism thus delaying ripening and senescence. Fruits react to postharvest conditions with desirable changes if appropriate protocols are applied, but otherwise can develop negative and unacceptable traits due to the onset of physiological disorders. Extended cold storage periods and/or inappropriate temperatures can result in development of chilling injuries (CIs). The etiology, incidence, and severity of such symptoms vary even within cultivars of the same species, indicating the genotype significance. Carbohydrates and amino acids have protective/regulating roles in CI development. MA/CA storage protocols involve storage under hypoxic conditions and high carbon dioxide concentrations that can maximize quality over extended storage periods but are also affected by the cultivar, exposure time, and storage temperatures. Pyruvate metabolism is highly reactive to changes in oxygen concentration and is greatly affected by the shift from aerobic to anaerobic metabolism. Ethylene-induced changes in fruits can also have deleterious effects under cold storage and MA/CA conditions, affecting susceptibility to chilling and carbon dioxide injuries. The availability of the inhibitor of ethylene perception 1-methylcyclopropene (1-MCP) has not only resulted in development of a new technology but has also been used to increase understanding of the role of ethylene in ripening of both non-climacteric and climacteric fruits. Temperature, MA/CA, and 1-MCP alter fruit physiology and biochemistry, resulting in compositional changes in carbon- and nitrogen-related metabolisms and compounds. Successful application of these storage technologies to fruits must consider their effects on the metabolism of carbohydrates, organic acids, amino acids and lipids.
Collapse
Affiliation(s)
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Christopher B. Watkins
- School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Pietro Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- *Correspondence: Pietro Tonutti,
| |
Collapse
|
29
|
Covarrubias MP, Lillo-Carmona V, Melet L, Benedetto G, Andrade D, Maucourt M, Deborde C, Fuentealba C, Moing A, Valenzuela ML, Pedreschi R, Almeida AM. Metabolite Fruit Profile Is Altered in Response to Source-Sink Imbalance and Can Be Used as an Early Predictor of Fruit Quality in Nectarine. FRONTIERS IN PLANT SCIENCE 2020; 11:604133. [PMID: 33488653 PMCID: PMC7820367 DOI: 10.3389/fpls.2020.604133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/26/2020] [Indexed: 05/08/2023]
Abstract
Peaches and nectarines [Prunus persica (L.) Batsch] are among the most exported fresh fruit from Chile to the Northern Hemisphere. Fruit acceptance by final consumers is defined by quality parameters such as the size, weight, taste, aroma, color, and juiciness of the fruit. In peaches and nectarines, the balance between soluble sugars present in the mesocarp and the predominant organic acids determines the taste. Biomass production and metabolite accumulation by fruits occur during the different developmental stages and depend on photosynthesis and carbon export by source leaves. Carbon supply to fruit can be potentiated through the field practice of thinning (removal of flowers and young fruit), leading to a change in the source-sink balance favoring fruit development. Thinning leads to fruit with increased size, but it is not known how this practice could influence fruit quality in terms of individual metabolite composition. In this work, we analyzed soluble metabolite profiles of nectarine fruit cv "Magique" at different developmental stages and from trees subjected to different thinning treatments. Mesocarp metabolites were analyzed throughout fruit development until harvest during two consecutive harvest seasons. Major polar compounds such as soluble sugars, amino acids, organic acids, and some secondary metabolites were measured by quantitative 1H-NMR profiling in the first season and GC-MS profiling in the second season. In addition, harvest and ripening quality parameters such as fruit weight, firmness, and acidity were determined. Our results indicated that thinning (i.e., source-sink imbalance) mainly affects fruit metabolic composition at early developmental stages. Metabolomic data revealed that sugar, organic acid, and phenylpropanoid pathway intermediates at early stages of development can be used to segregate fruits impacted by the change in source-sink balance. In conclusion, we suggest that the metabolite profile at early stages of development could be a metabolic predictor of final fruit quality in nectarines.
Collapse
Affiliation(s)
- María Paz Covarrubias
- Departamento de Biología, Facultad de Ciencias, Centro de Biología Molecular Vegetal, Universidad de Chile, Santiago, Chile
| | - Victoria Lillo-Carmona
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Lorena Melet
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Huechuraba, Chile
| | - Gianfranco Benedetto
- Escuela Ingeniería en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Diego Andrade
- Escuela Ingeniería en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mickael Maucourt
- Centre INRAE de Nouvelle Aquitaine Bordeaux, MetaboHUB, INRAE 2018, Bordeaux Metabolome, UMR 1332, Biologie du Fruit et Pathologie, Universit de Bordeaux, INRAE, Bordeaux, France
| | - Catherine Deborde
- Centre INRAE de Nouvelle Aquitaine Bordeaux, MetaboHUB, INRAE 2018, Bordeaux Metabolome, UMR 1332, Biologie du Fruit et Pathologie, Universit de Bordeaux, INRAE, Bordeaux, France
| | - Claudia Fuentealba
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Annick Moing
- Centre INRAE de Nouvelle Aquitaine Bordeaux, MetaboHUB, INRAE 2018, Bordeaux Metabolome, UMR 1332, Biologie du Fruit et Pathologie, Universit de Bordeaux, INRAE, Bordeaux, France
| | - María Luisa Valenzuela
- Inorganic Chemistry and Molecular Material Center, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago, Chile
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Andréa Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Huechuraba, Chile
- Escuela de Agronom a, Facultad de Ciencias, Universidad Mayor, Huechuraba, Chile
- *Correspondence: Andréa Miyasaka Almeida, ;
| |
Collapse
|
30
|
Dourou AM, Brizzolara S, Meoni G, Tenori L, Famiani F, Luchinat C, Tonutti P. The inner temperature of the olives (cv. Leccino) before processing affects the volatile profile and the composition of the oil. Food Res Int 2019; 129:108861. [PMID: 32036874 DOI: 10.1016/j.foodres.2019.108861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/01/2023]
Abstract
The effects of pre-processing decreasing temperature (19, 15 and 10 °C) of olive fruit (cv. Leccino) harvested at three developmental stages (semi-ripe, ripe, advanced ripening) have been evaluated on oil in terms of basic quality parameters, composition, organoleptic traits, and aroma profiles. A total of 40 metabolites (volatiles and non-volatiles) were identified by 1H NMR and GC/MS analyses. Multivariate statistical analysis showed that samples obtained from ripe and advanced ripe olives cooled at 10 and 15 °C better correlated with C6 aldehydes, mainly associated with herbal/green olfactory traits. Compounds responsible for sweet/fruity traits were more abundantly present in oil extracted from 19 °C olive samples. Decreasing pulp temperature before crushing also resulted in reduced presence of 1-penten-3-ol, 1-penten-3-one, acetic acid and ethyl alcohol, associated with specific defects of the oil. Results indicate that slightly lowering fruit temperature just before crushing modulates oil composition by reducing oil off flavours while enhancing green and fresh attributes in particular when ripe olives are processed.
Collapse
Affiliation(s)
- Athanasia-Maria Dourou
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Stefano Brizzolara
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Firenze, Via L. Sacconi 6, 50019 Sesto Fiorentino (Firenze), Italy
| | - Leonardo Tenori
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50100 Firenze, Italy
| | - Franco Famiani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Firenze, Via L. Sacconi 6, 50019 Sesto Fiorentino (Firenze), Italy; Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 5001 Sesto Fiorentino (Firenze), Italy
| | - Pietro Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| |
Collapse
|
31
|
Wu Q, Li Z, Chen X, Yun Z, Li T, Jiang Y. Comparative metabolites profiling of harvested papaya (Carica papaya L.) peel in response to chilling stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6868-6881. [PMID: 31386200 DOI: 10.1002/jsfa.9972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Papaya, as one of the most important tropical fruits in the world, is easily subjected to chilling injury (CI). Research on the effect of chilling temperature storage on the metabolic changes of papaya peel is limited. RESULTS Chilling temperature (4 °C) inhibited fruit ripening and induced CI on papaya fruit. Additionally, low temperature altered the concentrations of 45 primary metabolites and 52 aroma volatile compounds in the papaya peel. Papaya fruit stored at different temperatures could be separated using partial least squares-discriminant analysis (PLS-DA) with primary metabolites and volatile compounds as variables. In total, 18 primary metabolites and 22 volatiles with variable importance in projection (VIP) score higher than one might be considered as potential markers in papaya peel in response to chilling stress. Metabolites related to aroma, such as organic acid, amino acids, hexanal, carbonic acid, pentadecyl propyl ester and methyl geranate, caryophyllene accounted for major part of the metabolism changes of papaya peel and contributed a lot in response to cold stress. CONCLUSION This study added new insights regarding effect of chilling stress on metabolites in papaya peel. Some important metabolites might be indicator for chilling stress and detection of these metabolites will guide us to regulate the storage temperature to avoid chilling and to prolong storage of papaya fruit. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qixian Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, School of Life Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, School of Life Sciences, Beijing, P. R. China
| | - Zhiwei Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, School of Life Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, School of Life Sciences, Beijing, P. R. China
| | - Xi Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, School of Life Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, School of Life Sciences, Beijing, P. R. China
| | - Ze Yun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, School of Life Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, School of Life Sciences, Beijing, P. R. China
| | - Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, School of Life Sciences, Guangzhou, P. R. China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, School of Life Sciences, Guangzhou, P. R. China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P. R. China
| |
Collapse
|
32
|
Pu Y, Liu L, Wu J, Zhao Y, Bai J, Ma L, Yue J, Jin J, Niu Z, Fang Y, Sun W. Transcriptome Profile Analysis of Winter Rapeseed ( Brassica napus L.) in Response to Freezing Stress, Reveal Potentially Connected Events to Freezing Stress. Int J Mol Sci 2019; 20:ijms20112771. [PMID: 31195741 PMCID: PMC6600501 DOI: 10.3390/ijms20112771] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
Winter rapeseed is not only an important oilseed crop, but also a winter cover crop in Northern China, where its production was severely limited by freezing stress. As an overwinter crop, the production is severely limited by freezing stress. Therefore, understanding the physiological and molecular mechanism of winter rapeseed (Brassica napus L.) in freezing stress responses becomes essential for the improvement and development of freezing-tolerant varieties of Brassica napus. In this study, morphological, physiological, ultrastructure and transcriptome changes in the Brassica napus line "2016TS(G)10" (freezing-tolerance line) that was exposed to -2 °C for 0 h, 1 h, 3 h and 24 h were characterized. The results showed that freezing stress caused seedling dehydration, and chloroplast dilation and degradation. The content of malondialdehyde (MDA), proline, soluble protein and soluble sugars were increased, as well as the relative electrolyte leakage (REL) which was significantly increased at frozen 24 h. Subsequently, RNA-seq analysis revealed a total of 98,672 UniGenes that were annotated in Brassica napus and 3905 UniGenes were identified as differentially expressed genes after being exposed to freezing stress. Among these genes, 2312 (59.21%) were up-regulated and 1593 (40.79%) were down-regulated. Most of these DEGs were significantly annotated in the carbohydrates and energy metabolism, signal transduction, amino acid metabolism and translation. Most of the up-regulated DEGs were especially enriched in plant hormone signal transduction, starch and sucrose metabolism pathways. Transcription factor enrichment analysis showed that the AP2/ERF, WRKY and MYB families were also significantly changed. Furthermore, 20 DEGs were selected to validate the transcriptome profiles via quantitative real-time PCR (qRT-PCR). In conclusion, the results provide an overall view of the dynamic changes in physiology and insights into the molecular regulation mechanisms of winter Brassica napus in response to freezing treatment, expanding our understanding on the complex molecular mechanism in plant response to freezing stress.
Collapse
Affiliation(s)
- Yuanyuan Pu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Lijun Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuhong Zhao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jing Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Li Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jinli Yue
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Jiaojiao Jin
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Zaoxia Niu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Yan Fang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China.
| |
Collapse
|
33
|
R Parijadi AA, Ridwani S, Dwivany FM, Putri SP, Fukusaki E. A metabolomics-based approach for the evaluation of off-tree ripening conditions and different postharvest treatments in mangosteen (Garcinia mangostana). Metabolomics 2019; 15:73. [PMID: 31054000 DOI: 10.1007/s11306-019-1526-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/10/2019] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Metabolomics is an important tool to support postharvest fruit development and ripening studies. Mangosteen (Garcinia mangostana L.) is a tropical fruit with high market value but has short shelf-life during postharvest handling. Several postharvest technologies have been applied to maintain mangosteen fruit quality during storage. However, there is no study to evaluate the metabolite changes that occur in different harvesting and ripening condition. Additionally, the effect of postharvest treatment using a metabolomics approach has never been studied in mangosteen. OBJECTIVES The aims of this study were to evaluate the metabolic changes between different harvesting and ripening condition and to evaluate the effect of postharvest treatment in mangosteen. METHODS Mangosteen ripening stage were collected with several different conditions ("natural on-tree", "random on-tree" and "off-tree"). The metabolite changes were investigated for each ripening condition. Additionally, mangosteen fruit was harvested in stage 2 and was treated with several different treatments (storage at low temperature (LT; 12.3 ± 1.4 °C) and stress inducer treatment (methyl jasmonate and salicylic acid) in comparison with control treatment (normal temperature storage) and the metabolite changes were monitored over the course of 10 days after treatment. The metabolome data obtained from gas chromatography coupled with mass spectrometry were analyzed by multivariate analysis, including hierarchical clustering analysis, principal component analysis, and partial to latent squares analysis. RESULTS "On-tree" ripening condition showed the progression of ripening process in accordance with the accumulation of some aroma precursor metabolites in the flesh part and pectin breakdown in the peel part. Interestingly, similar trend was found in the "off-tree" ripening condition although the progression of ripening process observed through color changes occurred much faster compared to "on-tree" ripening. Additionally, low-temperature treatment is shown as the most effective treatment to prolong mangosteen shelf-life among all postharvest treatments tested in this study compared to control treatment. After postharvest treatment, a total of 71 and 65 metabolites were annotated in peel and flesh part of mangosteen, respectively. Several contributed metabolites (xylose, galactose, galacturonic acid, glucuronate, glycine, and rhamnose) were decreased after treatment in the peel part. However, low-temperature treatment did not show any significant differences compared to a room temperature treatment in the flesh part. CONCLUSIONS Our findings clearly indicate that there is a similar trend of metabolic changes between on-tree and off-tree ripening conditions. Additionally, postharvest treatment directly or indirectly influences many metabolic processes (cell-wall degrading process, sweet-acidic taste quality) during postharvest treatment.
Collapse
Affiliation(s)
- Anjaritha A R Parijadi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sobir Ridwani
- Center of Tropical Horticultural Studies, Institut Pertanian Bogor, Jl. Raya Pajajaran, Bogor, 16144, Indonesia
| | - Fenny M Dwivany
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat, 40132, Indonesia
| | - Sastia P Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Jawa Barat, 40132, Indonesia.
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|