1
|
Hou Y, Zhou H, Wang C, Xie C, Tian T, Li Y, Wang W, Yu Y, Zhou T. Identification of a Flavanone 2-Hydroxylase Involved in Flavone C-Glycoside Biosynthesis from Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27417-27428. [PMID: 39620353 DOI: 10.1021/acs.jafc.4c07456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Tea contains a variety of flavone C-glycosides, which are important compounds that distinguish tea cultivars and tea categories. However, the biosynthesis pathway of flavone C-glycosides in tea plant remains unknown, and the key enzymes involved have not been characterized. In this study, a liquid chromatography-mass spectrometry method to determine 9 flavone C-glycosides was developed, and the accumulation patterns of 9 flavone C-glycosides in tea plants were examined first. Then, an entry enzyme CsF2H for flavone C-glycoside biosynthesis was identified, which had four cytochrome P450-specific conserved motifs and was targeted to the endoplasmic reticulum. Correlation analysis indicated that the expression level of CsF2H was positively correlated with all contents of 9 flavone C-glycosides. The recombinant CsF2H could convert flavanone (naringenin) into the corresponding 2-hydroxyflavonone (2-hydroxynaringenin), rather than into flavone (apigenin). Heterologous coexpression of CsF2H and CsCGT1 in yeast revealed that the substrate naringenin could be enzymatically converted to flavone mono-C-glycosides vitexin and isovitexin under the catalytic control of CsF2H and CsCGT1 following dehydration. Gene-specific antisense oligonucleotide analysis suggested that suppressing CsF2H significantly reduced the levels of 9 flavone C-glycosides. Together, CsF2H is the first key enzyme that generates flavone C-glycosides through the 2-hydroxyflavanone biosynthesis pathway in tea plants.
Collapse
Affiliation(s)
- Yihong Hou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhui Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengyang Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Tian
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianshan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Shi S, Wang H, Zha W, Wu Y, Liu K, Xu D, He G, Zhou L, You A. Recent Advances in the Genetic and Biochemical Mechanisms of Rice Resistance to Brown Planthoppers ( Nilaparvata lugens Stål). Int J Mol Sci 2023; 24:16959. [PMID: 38069282 PMCID: PMC10707318 DOI: 10.3390/ijms242316959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the staple food of more than half of Earth's population. Brown planthopper (Nilaparvata lugens Stål, BPH) is a host-specific pest of rice responsible for inducing major losses in rice production. Utilizing host resistance to control N. lugens is considered to be the most cost-effective method. Therefore, the exploration of resistance genes and resistance mechanisms has become the focus of breeders' attention. During the long-term co-evolution process, rice has evolved multiple mechanisms to defend against BPH infection, and BPHs have evolved various mechanisms to overcome the defenses of rice plants. More than 49 BPH-resistance genes/QTLs have been reported to date, and the responses of rice to BPH feeding activity involve various processes, including MAPK activation, plant hormone production, Ca2+ flux, etc. Several secretory proteins of BPHs have been identified and are involved in activating or suppressing a series of defense responses in rice. Here, we review some recent advances in our understanding of rice-BPH interactions. We also discuss research progress in controlling methods of brown planthoppers, including cultural management, trap cropping, and biological control. These studies contribute to the establishment of green integrated management systems for brown planthoppers.
Collapse
Affiliation(s)
- Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Huiying Wang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Yan Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Deze Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
3
|
Liu K, Ma X, Zhao L, Lai X, Chen J, Lang X, Han Q, Wan X, Li C. Comprehensive transcriptomic analysis of three varieties with different brown planthopper-resistance identifies leaf sheath lncRNAs in rice. BMC PLANT BIOLOGY 2023; 23:367. [PMID: 37480003 PMCID: PMC10362764 DOI: 10.1186/s12870-023-04374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been brought great attention for their crucial roles in diverse biological processes. However, systematic identification of lncRNAs associated with specialized rice pest, brown planthopper (BPH), defense in rice remains unexplored. RESULTS In this study, a genome-wide high throughput sequencing analysis was performed using leaf sheaths of susceptible rice Taichung Native 1 (TN1) and resistant rice IR36 and R476 with and without BPH feeding. A total of 2283 lncRNAs were identified, of which 649 lncRNAs were differentially expressed. During BPH infestation, 84 (120 in total), 52 (70 in total) and 63 (94 in total) of differentially expressed lncRNAs were found only in TN1, IR36 and R476, respectively. Through analyzing their cis-, trans-, and target mimic-activities, not only the lncRNAs targeting resistance genes (NBS-LRR and RLKs) and transcription factors, but also the lncRNAs acting as the targets of the well-studied stress-related miRNAs (miR2118, miR528, and miR1320) in each variety were identified. Before the BPH feeding, 238 and 312 lncRNAs were found to be differentially expressed in TN1 vs. IR36 and TN1 vs. R476, respectively. Among their putative targets, the plant-pathogen interaction pathway was significantly enriched. It is speculated that the resistant rice was in a priming state by the regulation of lncRNAs. Furthermore, the lncRNAs extensively involved in response to BPH feeding were identified by Weighted Gene Co-expression Network Analysis (WGCNA), and the possible regulation networks of the key lncRNAs were constructed. These lncRNAs regulate different pathways that contribute to the basal defense and specific resistance of rice to the BPH. CONCLUSION In summary, we identified the specific lncRNAs targeting the well-studied stress-related miRNAs, resistance genes, and transcription factors in each variety during BPH infestation. Additionally, the possible regulating network of the lncRNAs extensively responding to BPH feeding revealed by WGCNA were constructed. These findings will provide further understanding of the regulatory roles of lncRNAs in BPH defense, and lay a foundation for functional research on the candidate lncRNAs.
Collapse
Affiliation(s)
- Kai Liu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaozhi Ma
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Luyao Zhao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofeng Lai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jie Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingxuan Lang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qunxin Han
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Chunmei Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
4
|
Sun B, Shen Y, Chen S, Shi Z, Li H, Miao X. A novel transcriptional repressor complex MYB22-TOPLESS-HDAC1 promotes rice resistance to brown planthopper by repressing F3'H expression. THE NEW PHYTOLOGIST 2023; 239:720-738. [PMID: 37149887 DOI: 10.1111/nph.18958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
The brown planthopper (BPH) is the most destructive pest of rice. The MYB transcription factors are vital for rice immunity, but most are activators. Although MYB22 positively regulates rice resistance to BPH and has an EAR motif associated with active repression, it remains unclear whether it is a transcriptional repressor affecting rice-BPH interaction. Genetic analyses revealed that MYB22 regulates rice resistance to BPH via its EAR motif. Several biochemical experiments (e.g. transient transcription assay, Y2H, LCA, and BiFC) indicated that MYB22 is a transcriptional repressor that interacts with the corepressor TOPLESS via its EAR motif and recruits HDAC1 to form a tripartite complex. Flavonoid-3'-hydroxylase (F3'H) is a flavonoid biosynthesis pathway-related gene that negatively regulates rice resistance to BPH. Based on a bioinformatics analysis and the results of EMSA and transient transcription assays, MYB22 can bind directly to the F3'H promoter and repress gene expression along with TOPLESS and HDAC1. We revealed a transcriptional regulatory mechanism influencing the rice-BPH interaction that differs from previously reported mechanisms. Specifically, MYB22-TOPLESS-HDAC1 is a novel transcriptional repressor complex with components that synergistically and positively regulate rice resistance to BPH through the transcriptional repression of F3'H.
Collapse
Affiliation(s)
- Bo Sun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Shen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenying Shi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Haichao Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Xuexia Miao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| |
Collapse
|
5
|
Zhu X, Wei Q, Wan P, Wang W, Lai F, He J, Fu Q. Effect of Paclobutrazol Application on Enhancing the Efficacy of Nitenpyram against the Brown Planthopper, Nilaparvata lugens. Int J Mol Sci 2023; 24:10490. [PMID: 37445669 PMCID: PMC10341613 DOI: 10.3390/ijms241310490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive rice pests in Asia. It has already developed a high level of resistance to many commonly used insecticides including nitenpyram (NIT), which is a main synthetic insecticide that is used to control BPH with a much shorter persistence compared to other neonicotinoid insecticides. Recently, we found that an exogenous supplement of paclobutrazol (PZ) could significantly enhance the efficacy of NIT against BPH, and the molecular mechanism underlying this synergistic effect was explored. The results showed that the addition of a range of 150-300 mg/L PZ increased the toxicity of NIT against BPH with the highest mortalities of 78.0-87.0% on the 16th day after treatments, and PZ could also significantly prolong the persistence of the NIT efficacies. Further investigation suggested that PZ directly increased the content of flavonoids and H2O2 in rice and increased the activity of polyphenol oxidase, which might be involved in the constitutive defense of rice in advance. Additionally, there was an interaction between PZ and BPH infestation, indicating that PZ might activate the host defense responses. Therefore, PZ increased the efficacy of NIT against the brown planthoppers by enhancing the constitutive and inducible defense responses of rice. Our study showed for the first time that PZ could contribute to improving the control effects of insecticides via inducing the defense responses in rice plants against BPH, which provided an important theoretical basis for developing novel pest management strategies in the field.
Collapse
Affiliation(s)
| | - Qi Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China; (X.Z.); (P.W.); (W.W.); (F.L.); (J.H.)
| | | | | | | | | | - Qiang Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China; (X.Z.); (P.W.); (W.W.); (F.L.); (J.H.)
| |
Collapse
|
6
|
Zeng J, Huang Y, Zhou L, Liang X, Yang C, Wang H, Yuan L, Wang Y, Li Y. Histone Deacetylase GiSRT2 Negatively Regulates Flavonoid Biosynthesis in Glycyrrhiza inflata. Cells 2023; 12:1501. [PMID: 37296622 PMCID: PMC10252568 DOI: 10.3390/cells12111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Glycyrrhiza inflata Batalin is a medicinal licorice species that has been widely used by humans for centuries. Licochalcone A (LCA) is a characteristic flavonoid that accumulates in G. inflata roots with high economical value. However, the biosynthetic pathway and regulatory network of its accumulation remain largely unknown. Here we found that a histone deacetylase (HDAC) inhibitor nicotinamide (NIC) could enhance the accumulation of LCA and total flavonoids in G. inflata seedlings. GiSRT2, a NIC-targeted HDAC was functionally analyzed and its RNAi transgenic hairy roots accumulated much more LCA and total flavonoids than its OE lines and the controls, indicating a negative regulatory role of GiSRT2 in the accumulation of LCA and total flavonoids. Co-analysis of transcriptome and metabolome of RNAi-GiSRT2 lines revealed potential mechanisms in this process. An O-methyltransferase gene, GiLMT1 was up-regulated in RNAi-GiSRT2 lines and the encoded enzyme catalyzed an intermediate step in LCA biosynthesis pathway. Transgenic hairy roots of GiLMT1 proved that GiLMT1 is required for LCA accumulation. Together, this work highlights the critical role of GiSRT2 in the regulation of flavonoid biosynthesis and identifies GiLMT1 as a candidate gene for the biosynthesis of LCA with synthetic biology approaches.
Collapse
Affiliation(s)
- Jiangyi Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- College of Life Science, Gannan Normal University, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yun Huang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Lijun Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xiaoju Liang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Hongxia Wang
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, USA;
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- College of Life Science, Gannan Normal University, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
7
|
Qiu C, Zeng J, Tang Y, Gao Q, Xiao W, Lou Y. The Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), Influences Nilaparvata lugens Population Growth Directly, by Preying on Its Eggs, and Indirectly, by Inducing Defenses in Rice. Int J Mol Sci 2023; 24:8754. [PMID: 37240102 PMCID: PMC10217797 DOI: 10.3390/ijms24108754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, has become one of the most important pests on corn in China since it invaded in 2019. Although FAW has not been reported to cause widespread damage to rice plants in China, it has been sporadically found feeding in the field. If FAW infests rice in China, the fitness of other insect pests on rice may be influenced. However, how FAW and other insect pests on rice interact remains unknown. In this study, we found that the infestation of FAW larvae on rice plants prolonged the developmental duration of the brown planthopper (BPH, Nilaparvata lugens (Stål)) eggs and plants damaged by gravid BPH females did not induce defenses that influenced the growth of FAW larvae. Moreover, co-infestation by FAW larvae on rice plants did not influence the attractiveness of volatiles emitted from BPH-infested plants to Anagrus nilaparvatae, an egg parasitoid of rice planthoppers. FAW larvae were able to prey on BPH eggs laid on rice plants and grew faster compared to those larvae that lacked available eggs. Studies revealed that the delay in the development of BPH eggs on FAW-infested plants was probably related to the increase in levels of jasmonoyl-isoleucine, abscisic acid and the defensive compounds in the rice leaf sheaths on which BPH eggs were laid. These findings indicate that, if FAW invades rice plants in China, the population density of BPH may be decreased by intraguild predation and induced plant defenses, whereas the population density of FAW may be increased.
Collapse
Affiliation(s)
- Chen Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Jiamei Zeng
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Yingying Tang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Qing Gao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Wenhan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (J.Z.); (Y.T.); (Q.G.); (W.X.)
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
8
|
Liao F, Bao T, Tao G, Hu Y, Han C. In vitro evaluation of the composition and acaricidal efficacy of Urtica fissa leaf ethyl acetate extract against Sarcoptes scabiei mites. VET MED-CZECH 2023; 68:200-207. [PMID: 37982023 PMCID: PMC10581513 DOI: 10.17221/6/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/11/2023] [Indexed: 11/21/2023] Open
Abstract
In veterinary medicine, natural products provide an alternative to chemical agents for mite management. In the present study, the acaricidal efficacy of Urtica fissa leaf ethyl acetate extract against Sarcoptes scabiei mites was examined. The chemical composition of the extract was determined using liquid chromatography-mass spectrometry (LC-MS) analysis. The ethyl acetate extract was found to be extremely toxic to mites at a concentration of 100 mg/ml (m/v), killing all S. scabiei within two hours. The median lethal time (LT50) values for ethyl acetate extract concentrations of 25, 50, and 100 mg/ml against S. scabiei were 1.706, 1.204, and 0.750 h, respectively. The median lethal dosage (LC50) for S. scabiei was 19.14 mg/ml at two hours. The chemical composition of the ethyl acetate extract was evaluated using LC-MS, showing that the major components were schaftoside (8.259%), carnosol (6.736%), prostaglandin A2 (5.94%), 13(S)-HpOTrE (4.624%), nandrolone (4.264%), 1H-indole-3-carboxaldehyde (4.138%), 9-oxoODE (3.206%), and stearidonic acid (2.891%). In conclusion, these findings indicate that Urtica fissa contains promising new acaricidal compounds capable of successfully controlling animal mites.
Collapse
Affiliation(s)
- Fei Liao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, P.R. China
- Guizhou Vocational College of Agriculture, Qingzhen, P.R. China
| | - Taotao Bao
- Qiandongnan Center for Animal Disease Control and Prevention, Kaili, Guizhou, P.R. China
| | - Guangyao Tao
- Guizhou Vocational College of Agriculture, Qingzhen, P.R. China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, P.R. China
| | - Changquan Han
- Guizhou Vocational College of Agriculture, Qingzhen, P.R. China
| |
Collapse
|
9
|
Mahmood U, Li X, Fan Y, Chang W, Niu Y, Li J, Qu C, Lu K. Multi-omics revolution to promote plant breeding efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:1062952. [PMID: 36570904 PMCID: PMC9773847 DOI: 10.3389/fpls.2022.1062952] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Crop production is the primary goal of agricultural activities, which is always taken into consideration. However, global agricultural systems are coming under increasing pressure from the rising food demand of the rapidly growing world population and changing climate. To address these issues, improving high-yield and climate-resilient related-traits in crop breeding is an effective strategy. In recent years, advances in omics techniques, including genomics, transcriptomics, proteomics, and metabolomics, paved the way for accelerating plant/crop breeding to cope with the changing climate and enhance food production. Optimized omics and phenotypic plasticity platform integration, exploited by evolving machine learning algorithms will aid in the development of biological interpretations for complex crop traits. The precise and progressive assembly of desire alleles using precise genome editing approaches and enhanced breeding strategies would enable future crops to excel in combating the changing climates. Furthermore, plant breeding and genetic engineering ensures an exclusive approach to developing nutrient sufficient and climate-resilient crops, the productivity of which can sustainably and adequately meet the world's food, nutrition, and energy needs. This review provides an overview of how the integration of omics approaches could be exploited to select crop varieties with desired traits.
Collapse
Affiliation(s)
- Umer Mahmood
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yue Niu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
10
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Wu Z, Singh SK, Lyu R, Pattanaik S, Wang Y, Li Y, Yuan L, Liu Y. Metabolic engineering to enhance the accumulation of bioactive flavonoids licochalcone A and echinatin in Glycyrrhiza inflata (Licorice) hairy roots. FRONTIERS IN PLANT SCIENCE 2022; 13:932594. [PMID: 36061790 PMCID: PMC9434314 DOI: 10.3389/fpls.2022.932594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023]
Abstract
Echinatin and licochalcone A (LCA) are valuable chalcones preferentially accumulated in roots and rhizomes of licorice (Glycyrrhiza inflata). The licorice chalcones (licochalcones) are valued for their anti-inflammatory, antimicrobial, and antioxidant properties and have been widely used in cosmetic, pharmaceutical, and food industries. However, echinatin and LCA are accumulated in low quantities, and the biosynthesis and regulation of licochalcones have not been fully elucidated. In this study, we explored the potential of a R2R3-MYB transcription factor (TF) AtMYB12, a known regulator of flavonoid biosynthesis in Arabidopsis, for metabolic engineering of the bioactive flavonoids in G. inflata hairy roots. Overexpression of AtMYB12 in the hairy roots greatly enhanced the production of total flavonoids (threefold), echinatin (twofold), and LCA (fivefold). RNA-seq analysis of AtMYB12-overexpressing hairy roots revealed that expression of phenylpropanoid/flavonoid pathway genes, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3'-hydroxylase (F3'H), is significantly induced compared to the control. Transient promoter activity assay indicated that AtMYB12 activates the GiCHS1 promoter in plant cells, and mutation to the MYB-binding motif in the GiCHS1 promoter abolished activation. In addition, transcriptomic analysis revealed that AtMYB12 overexpression reprograms carbohydrate metabolism likely to increase carbon flux into flavonoid biosynthesis. Further, AtMYB12 activated the biotic defense pathways possibly by activating the salicylic acid and jasmonic acid signaling, as well as by upregulating WRKY TFs. The transcriptome of AtMYB12-overexpressing hairy roots serves as a valuable source in the identification of potential candidate genes involved in LCA biosynthesis. Taken together, our findings suggest that AtMYB12 is an effective gene for metabolic engineering of valuable bioactive flavonoids in plants.
Collapse
Affiliation(s)
- Zhigeng Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
12
|
Gao HY, Liu Y, Tan FF, Zhu LW, Jia KZ, Tang YJ. Advances and Challenges in Enzymatic C-glycosylation of Flavonoids in Plants. Curr Pharm Des 2022; 28:1466-1479. [PMID: 35466866 DOI: 10.2174/1381612828666220422085128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Flavonoid glycosides play required determinant roles in plants and have considerable potential for applications in medicine and biotechnology. Glycosyltransferases transfer a sugar moiety from uridine diphosphate-activated sugar molecules to an acceptor flavonoid via C-O and C-C linkages. Compared with O-glycosylflavonoids, C-glycosylflavonoids are more stable, are resistant to glycosidase or acid hydrolysis, exhibit better pharmacological properties, and have received more attention. Herein, we discuss the mining of C-glycosylflavones and the corresponding C-glycosyltransferases and evaluate the differences in structure and catalytic mechanisms between C-glycosyltransferase and O-glycosyltransferase. We conclude that promiscuity and specificity are key determinants for general flavonoid C-glycosyltransferase engineering and summarize the C-glycosyltransferase engineering strategy. A thorough understanding of the properties, catalytic mechanisms, and engineering of C-glycosyltransferases will be critical for any future biotechnological applications in areas such as the production of desired C-glycosylflavonoids for nutritional or medicinal use.
Collapse
Affiliation(s)
- Hui-Yao Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Yan Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Fei-Fan Tan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Li-Wen Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Kai-Zhi Jia
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
13
|
Zhang Q, Li T, Gao M, Ye M, Lin M, Wu D, Guo J, Guan W, Wang J, Yang K, Zhu L, Cheng Y, Du B, He G. Transcriptome and Metabolome Profiling Reveal the Resistance Mechanisms of Rice against Brown Planthopper. Int J Mol Sci 2022; 23:4083. [PMID: 35456901 PMCID: PMC9031479 DOI: 10.3390/ijms23084083] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive insects affecting rice production. To better understand the physiological mechanisms of how rice responds to BPH feeding, we analyzed BPH-induced transcriptomic and metabolic changes in leaf sheaths of both BPH-susceptible and -resistant rice varieties. Our results demonstrated that the resistant rice reduced the settling, feeding and growth of BPH. Metabolic analyses indicated that BPH infestation caused more drastic overall metabolic changes in the susceptible variety than the resistant rice. Differently accumulated metabolites (DAMs) belonging to flavonoids were downregulated in the susceptible rice but upregulated in resistant variety. Transcriptomic analyses revealed more differentially expressed genes (DEGs) in susceptible rice than resistant rice, and DEGs related to stimulus were significantly upregulated in resistant rice but downregulated in susceptible rice. Combined analyses of transcriptome and metabolome showed that many DEGs and DAMs were enriched in phenylpropane biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction. We conducted correlation analyses of DEGs and DAMs in these pathways and found a high correlation between DEGs and DAMs. Then, we found that the contents of endogenous indole 3-acetic acid (IAA) in resistant rice was lower than that of susceptible rice after BPH feeding, while the salicylic acid (SA) content was the opposite. For functional analysis, an exogenous application of IAA decreased rice resistance to BPH, but the exogenous application of SA increased resistance. In addition, biochemical assessment and quantitative PCR analysis showed that the lignin content of resistant accession was constitutively higher than in susceptible accession. By adding epigallocatechin, the substrate of anthocyanidin reductase (ANR), to the artificial diet decreased the performance of BPH. We first combined a transcriptome-metabolome-wide association study (TMWAS) on rice resistance to BPH in this study. We demonstrated that rice promoted resistance to BPH by inducing epigallocatechin and decreasing IAA. These findings provided useful transcriptomic and metabolic information for understanding the rice-BPH interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Q.Z.); (T.L.); (M.G.); (M.Y.); (M.L.); (D.W.); (J.G.); (W.G.); (J.W.); (K.Y.); (L.Z.); (Y.C.)
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Q.Z.); (T.L.); (M.G.); (M.Y.); (M.L.); (D.W.); (J.G.); (W.G.); (J.W.); (K.Y.); (L.Z.); (Y.C.)
| |
Collapse
|
14
|
Zan L, Song W, Wang W, He G, Li X, Pei J. Purification, antioxidant activities, encapsulation, and release profile of total flavonoids in Peony seed meal. Food Sci Nutr 2022; 10:1051-1057. [PMID: 35432975 PMCID: PMC9007303 DOI: 10.1002/fsn3.2731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022] Open
Abstract
As potential biomass resources, biomass waste products have been considered worldwide in recent decades. Peony seed meal (PSM) is a kind of agricultural resource waste containing polyphenols, in particular flavonoids. In this study, the total flavonoids of PSM were extracted and purified by AB‐8 macroporous resin (MR), the antioxidant activities of three extract fractions were evaluated, and the total flavonoids were encapsulated with alginate and chitosan by the complex coacervation method. After purification, the yield of total flavonoids was 11.32% and the content in the product increased to 42.89% ± 2.66. The antioxidant activities of three fractions on ·OH, DPPH, and ABTS assays exhibited the following descending order: ethanol elution fraction (ELF) > ethyl acetate extract fraction (EAF) > ethanol extract fraction (EEF). The single‐factor assay showed that the encapsulated total flavonoid microcapsules (EFMs) were prepared with a chitosan concentration of 10 mg/ml, a sodium alginate concentration of 30 mg/ml, a calcium chloride concentration of 50 mg/ml, a ratio of sodium alginate to total flavonoids of 1:3, a flavonoid concentration of 40 mg/ml, and an encapsulation yield of 80.7%. Most microcapsules are smooth‐faced, spherical and uniform in size ranging from 2 to 3 mm in diameter. In vitro release studies suggested that the EFM was stable at pH 1.2 and dissolved at pH 7.5. The result indicated that the EFM is worthy for the development of functional foods and supplements, and PSM could be a potential resource in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lixia Zan
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| | - Wangting Song
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| | - Weiwei Wang
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| | - Gang He
- College of Life Sciences Northwest University Xi'an China
| | - Xinsheng Li
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| | - Jinjin Pei
- College of Bioscience and Bioengineering Shaanxi University of Technology Hanzhong China
| |
Collapse
|
15
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
17
|
Dissection of the general two-step di- C-glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants. Proc Natl Acad Sci U S A 2020; 117:30816-30823. [PMID: 33199630 DOI: 10.1073/pnas.2012745117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schaftoside and isoschaftoside are bioactive natural products widely distributed in higher plants including cereal crops and medicinal herbs. Their biosynthesis may be related with plant defense. However, little is known on the glycosylation biosynthetic pathway of these flavonoid di-C-glycosides with different sugar residues. Herein, we report that the biosynthesis of (iso)schaftosides is sequentially catalyzed by two C-glycosyltransferases (CGTs), i.e., CGTa for C-glucosylation of the 2-hydroxyflavanone aglycone and CGTb for C-arabinosylation of the mono-C-glucoside. The two enzymes of the same plant exhibit high homology but remarkably different sugar acceptor and donor selectivities. A total of 14 CGTa and CGTb enzymes were cloned and characterized from seven dicot and monocot plants, including Scutellaria baicalensis, Glycyrrhiza uralensis, Oryza sativa ssp. japonica, and Zea mays, and the in vivo functions for three enzymes were verified by RNA interference and overexpression. Through transcriptome analysis, we found homologous genes in 119 other plants, indicating this pathway is general for the biosynthesis of (iso)schaftosides. Furthermore, we resolved the crystal structures of five CGTs and realized the functional switch of SbCGTb to SbCGTa by structural analysis and mutagenesis of key amino acids. The CGT enzymes discovered in this paper allow efficient synthesis of (iso)schaftosides, and the general glycosylation pathway presents a platform to study the chemical defense mechanisms of higher plants.
Collapse
|
18
|
Uawisetwathana U, Chevallier OP, Xu Y, Kamolsukyeunyong W, Nookaew I, Somboon T, Toojinda T, Vanavichit A, Goodacre R, Elliott CT, Karoonuthaisiri N. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics 2019; 15:151. [PMID: 31741127 DOI: 10.1007/s11306-019-1616-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Brown planthopper (BPH) is a phloem feeding insect that causes annual disease outbreaks, called hopper burn in many countries throughout Asia, resulting in severe damage to rice production. Currently, mechanistic understanding of BPH resistance in rice plant is limited, which has caused slow progression on developing effective rice varieties as well as effective farming practices against BPH infestation. OBJECTIVE To reveal rice metabolic responses during 8 days of BPH attack, this study examined polar metabolome extracts of BPH-susceptible (KD) and its BPH-resistant isogenic line (IL308) rice leaves. METHODS Ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) was combined with multi-block PCA to analyze potential metabolites in response to BPH attack. RESULTS This multivariate statistical model revealed different metabolic response patterns between the BPH-susceptible and BPH-resistant varieties during BPH infestation. The metabolite responses of the resistant IL308 variety occurred on Day 1, which was significantly earlier than those of the susceptible KD variety which showed an induced response by Days 4 and 8. BPH infestation caused metabolic perturbations in purine, phenylpropanoid, flavonoid, and terpenoid pathways. While found in both susceptible and resistant rice varieties, schaftoside (1.8 fold), iso-schaftoside (1.7 fold), rhoifolin (3.4 fold) and apigenin 6-C-α-L-arabinoside-8-C-β-L-arabinoside levels (1.6 fold) were significantly increased in the resistant variety by Day 1 post-infestation. 20-hydroxyecdysone acetate (2.5 fold) and dicaffeoylquinic acid (4.7 fold) levels were considerably higher in the resistant rice variety than those in the susceptible variety, both before and after infestation, suggesting that these secondary metabolites play important roles in inducible and constitutive defenses against the BPH infestation. CONCLUSIONS These potential secondary metabolites will be useful as metabolite markers and/or bioactive compounds for effective and durable approaches to address the BPH problem.
Collapse
Affiliation(s)
- Umaporn Uawisetwathana
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Olivier P Chevallier
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Yun Xu
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Wintai Kamolsukyeunyong
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Intawat Nookaew
- College of Medicine, Department Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thapakorn Somboon
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Theerayut Toojinda
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- Integrative Crop Biotechnology and Management Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Apichart Vanavichit
- Agronomy Department, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
19
|
Ling Y, Ang L, Weilin Z. Current understanding of the molecular players involved in resistance to rice planthoppers. PEST MANAGEMENT SCIENCE 2019; 75:2566-2574. [PMID: 31095858 DOI: 10.1002/ps.5487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Rice planthoppers are the most widespread and destructive pest of rice. Planthopper control depends greatly on the understanding of molecular players involved in resistance to planthoppers. This paper summarizes the recent progress in the understanding of some molecular players involved in resistance to planthoppers and the mechanisms involved. Recent researches showed that host-plant resistance is the most promising sustainable approach for controlling planthoppers. Planthopper-resistant varieties with a host-plant resistance gene have been released for rice products. Integrated planthopper management is a proposed strategy to prolong the durability of host-plant resistance. Bacillus spp. and their gene products or insect pathogenic fungi have great potential for application in the biological control of planthoppers. Enhancement of the activity of the natural enemies of planthoppers would be more cost-effective and environmentally friendly. Various molecular processes regulate rice-planthopper interactions. Rice encounters planthopper attacks via transcription factors, secondary metabolites, and signaling networks in which phytohormones have central roles. Maintenance of cell wall integrity and lignification act as physical barriers. Indirect defenses of rice are regulated via chemical elicitors, honeydew-associated elicitor, amendment with silicon and biochar, and salivary protein of BPH as elicitor or effector. Further research directions on planthopper control and rice defense against planthoppers are also put forward. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Ling
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
- Department of Environmental Engineering, Quzhou University, Quzhou, P.R. China
| | - Li Ang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Zhang Weilin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
20
|
Dai Z, Tan J, Zhou C, Yang X, Yang F, Zhang S, Sun S, Miao X, Shi Z. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1657-1669. [PMID: 30734457 PMCID: PMC6662109 DOI: 10.1111/pbi.13091] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/04/2018] [Accepted: 02/05/2019] [Indexed: 05/24/2023]
Abstract
Multi-functional microRNAs (miRNAs) are emerging as key modulators of plant-pathogen interactions. Although the involvement of some miRNAs in plant-insect interactions has been revealed, the underlying mechanisms are still elusive. The brown planthopper (BPH) is the most notorious rice (Oryza sativa)-specific insect that causes severe yield losses each year and requires urgent biological control. To reveal the miRNAs involved in rice-BPH interactions, we performed miRNA sequencing and identified BPH-responsive OsmiR396. Sequestering OsmiR396 by overexpressing target mimicry (MIM396) in three genetic backgrounds indicated that OsmiR396 negatively regulated BPH resistance. Overexpression of one BPH-responsive target gene of OsmiR396, growth regulating factor 8 (OsGRF8), showed resistance to BPH. Furthermore, the flavonoid contents increased in both the OsmiR396-sequestered and the OsGRF8 overexpressing plants. By analysing 39 natural rice varieties, the elevated flavonoid contents were found to correlate with enhanced BPH resistance. Artificial applications of flavonoids to wild type (WT) plants also increased resistance to BPH. A BPH-responsive flavanone 3-hydroxylase (OsF3H) gene in the flavonoid biosynthetic pathway was proved to be directly regulated by OsGRF8. A genetic functional analysis of OsF3H revealed its positive role in mediating both the flavonoid contents and BPH resistance. And analysis of the genetic correlation between OsmiR396 and OsF3H showed that down-regulation of OsF3H complemented the BPH resistance characteristic and simultaneously decreased the flavonoid contents of the MIM396 plants. Thus, we revealed a new BPH resistance mechanism mediated by the OsmiR396-OsGRF8-OsF3H-flavonoid pathway. Our study suggests potential applications of miRNAs in BPH resistance breeding.
Collapse
Affiliation(s)
- Zhengyan Dai
- Key Laboratory of Insect Developmental and Evolutionary BiologyInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jiang Tan
- Key Laboratory of Insect Developmental and Evolutionary BiologyInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Cong Zhou
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Xiaofang Yang
- Key Laboratory of Insect Developmental and Evolutionary BiologyInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesShanghaiChina
| | - Fang Yang
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Shijuan Zhang
- Shandong Province Key Laboratory of Life‐Organic AnalysisQufu Normal UniversityQufuChina
| | - Shichen Sun
- Institute of Crop Cultivation and TillageHeilongjiang Academy of Agricultural Sciences & Northern Japonica Rice Molecular Breeding Joint Research CenterChinese Academy of SciencesHaerbinChina
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary BiologyInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary BiologyInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
21
|
Schaftoside ameliorates oxygen glucose deprivation-induced inflammation associated with the TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells. J Pharmacol Sci 2019; 139:15-22. [DOI: 10.1016/j.jphs.2018.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
|