1
|
Vukmirović A, Škvorc Ž, Bogdan S, Krstonošić D, Bogdan IK, Karažija T, Bačurin M, Brener M, Sever K. Photosynthetic Response to Phosphorus Fertilization in Drought-Stressed Common Beech and Sessile Oak from Different Provenances. PLANTS (BASEL, SWITZERLAND) 2024; 13:2270. [PMID: 39204706 PMCID: PMC11360473 DOI: 10.3390/plants13162270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Increasingly frequent and severe droughts pose significant threats to forest ecosystems, particularly affecting photosynthesis, a crucial physiological process for plant growth and biomass production. This study investigates the impact of phosphorus fertilization on the photosynthesis of common beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). In a common garden experiment, saplings originating from two provenances (wetter KA and drier SB provenances) were exposed to regular watering and drought in interaction with moderate and high phosphorus concentrations in the growing substrate. Results indicated that drought significantly reduced pre-dawn leaf water potential (ΨPD), net photosynthesis (Anet), stomatal conductance (gs) and photosynthetic performance index (PIabs) in both species. Phosphorus fertilization had a negative impact on Anet and PIabs, thus exacerbating the negative impact of drought on photosynthetic efficiency, potentially due to excessive phosphorus absorption by saplings. Provenance differences were notable, with the KA provenance showing better drought resilience. This research highlights the complexity of nutrient-drought interactions and underscores the need for cautious application of fertilization strategies in reforestation efforts under changing climatic conditions.
Collapse
Affiliation(s)
- Antonia Vukmirović
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Željko Škvorc
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Saša Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Daniel Krstonošić
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Ida Katičić Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Tomislav Karažija
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia
| | - Marko Bačurin
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Magdalena Brener
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Krunoslav Sever
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| |
Collapse
|
2
|
Westergren M, Archambeau J, Bajc M, Damjanić R, Theraroz A, Kraigher H, Oddou-Muratorio S, González-Martínez SC. Low but significant evolutionary potential for growth, phenology and reproduction traits in European beech. Mol Ecol 2023. [PMID: 37962106 DOI: 10.1111/mec.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Local survival of forest tree populations under climate change depends on existing genetic variation and their adaptability to changing environments. Responses to selection were studied in European beech (Fagus sylvatica) under field conditions. A total of 1087 adult trees, seeds, 1-year-old seedlings and established multiyear saplings were genotyped with 16 nuSSRs. Adult trees were assessed for phenotypic traits related to growth, phenology and reproduction. Parentage and paternity analyses were used to estimate effective female and male fecundity as a proxy of fitness and showed that few parents contributed to successful regeneration. Selection gradients were estimated from the relationship between traits and fecundity, while heritability and evolvability were estimated using mixed models and the breeder's equation. Larger trees bearing more fruit and early male flowering had higher total fecundity, while trees with longer growth season had lower total fecundity (directional selection). Stabilizing selection on spring phenology was found for female fecundity, highlighting the role of late frosts as a selection driver. Selection gradients for other traits varied between measurement years and the offspring cohort used to estimate parental fecundity. Compared to other studies in natural populations, we found low to moderate heritability and evolvability for most traits. Response to selection was higher for growth than for budburst, leaf senescence or reproduction traits, reflecting more consistent selection gradients across years and sex functions, and higher phenotypic variability in the population. Our study provides empirical evidence suggesting that populations of long-lived organisms such as forest trees can adapt locally, even at short-time scales.
Collapse
Affiliation(s)
| | | | - Marko Bajc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Rok Damjanić
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | | | | | - Sylvie Oddou-Muratorio
- INRAE, URFM, Avignon, France
- INRAE, Univ. de Pau et des Pays de l'Adour, E2S UPPA, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | | |
Collapse
|
3
|
Silva FMDO, Bulgarelli RG, Mubeen U, Caldana C, Andrade SAL, Mazzafera P. Low phosphorus induces differential metabolic responses in eucalyptus species improving nutrient use efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:989827. [PMID: 36186027 PMCID: PMC9520260 DOI: 10.3389/fpls.2022.989827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is a vital nutrient for plant growth. P availability is generally low in soils, and plant responses to low P availability need to be better understood. In a previous study, we studied the growth and physiological responses of 24 species to low P availability in the soil and verified of eucalypts, five (Eucalyptus acmenoides, E. grandis, E. globulus, E. tereticornis, and Corymbia maculata) contrasted regarding their efficiency and responsiveness to soil P availability. Here, we obtained the metabolomic and lipidomic profile of leaves, stems, and roots from these species growing under low (4.5 mg dm-3) and sufficient (10.8 mg dm-3) P in the soil. Disregarding the level of P in the soils, P allocation was always higher in the stems. However, when grown in the P-sufficient soil, the stems steadily were the largest compartment of the total plant P. Under low P, the relative contents of primary metabolites, such as amino acids, TCA cycle intermediates, organic acids and carbohydrates, changed differently depending on the species. Additionally, phosphorylated metabolites showed enhanced turnover or reductions. While photosynthetic efficiencies were not related to higher biomass production, A/Ci curves showed that reduced P availability increased the eucalypt species' Vcmax, Jmax and photosynthetic P-use efficiency. Plants of E. acmenoides increased galactolipids and sulfolipids in leaves more than other eucalypt species, suggesting that lipid remodelling can be a strategy to cope with the P shortage in this species. Our findings offer insights to understand genotypic efficiency among eucalypt species to accommodate primary metabolism under low soil P availability and eventually be used as biochemical markers for breeding programs.
Collapse
Affiliation(s)
| | | | - Umarah Mubeen
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Camila Caldana
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sara Adrian L. Andrade
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
- Department of Crop Production, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Ventura G, Calvano CD, Cinquepalmi V, Losito I, Cataldi TRI. Characterization of Glucuronosyl-diacyl/monoacylglycerols and Discovery of Their Acylated Derivatives in Tomato Lipid Extracts by Reversed-Phase Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2227-2240. [PMID: 34260857 DOI: 10.1021/jasms.1c00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucuronic acid containing diacylglycerols (3-(O-α-d-glucuronopyranosyl)-1,2-diacyl-sn-glycerols, GlcA-DAG) are glycolipids of plant membranes especially formed under phosphate-depletion conditions. An analytical approach for the structural characterization of GlcA-DAG in red ripe tomato (Solanum lycopersicum L.) extracts, based on reversed-phase liquid chromatography (RPLC) coupled with electrospray ionization (ESI) and tandem mass spectrometry (MS/MS) using a linear ion trap, is described in this paper. At least 14 GlcA-DAG (R1/R2) species, including four regioisomers, containing three predominant fatty acyl chains C16:0, C18:2, and C18:3, were identified for the first time. Moreover, 29 GlcA-DAG acylated on the glucuronosyl ring (acyl-R3 GlcA-DAG) were discovered, alongside 15 acylated lyso-forms, i.e., acylated 3-(O-α-d-glucuronosyl)monoacylglycerols, abbreviated as acyl-R3 GlcA-MAG (R1/0) or (0/R2). Although many of these acylated lyso-forms were isomeric with GlcA-DAG (i.e., acyl chains with equivalent sum composition), they were successfully separated by reversed-phase liquid chromatography (RPLC) using a solid-core C18 column packed with 2.6 μm particle size. Tandem MS (and eventually MS3) data obtained from sodium adducts ([M + Na]+) and deprotonated molecules ([M - H]-) were fundamental to detect diagnostic product ions related to the glucuronosyl ring and then determine the identity of all investigated glycolipids, especially to recognize the acyl chain linked to the ring. A classification of GlcA-MAG, GlcA-DAG, and acylated GlcA-DAG and GlcA-MAG was generated by an in house-built database. The discovery of acylated derivatives emphasized the already surprising heterogeneity of glucuronic acid-containing mono- and diacylglycerols in tomato plants, stimulating interesting questions on the role played by these glycolipids.
Collapse
|
5
|
Sergeeva A, Liu H, Mai HJ, Mettler-Altmann T, Kiefer C, Coupland G, Bauer P. Cytokinin-promoted secondary growth and nutrient storage in the perennial stem zone of Arabis alpina. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1459-1476. [PMID: 33336445 DOI: 10.1111/tpj.15123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Perennial plants maintain their lifespan through several growth seasons. Arabis alpina serves as a model Brassicaceae species to study perennial traits. Lateral stems of A. alpina have a proximal vegetative zone with a dormant bud zone and a distal senescing seed-producing inflorescence zone. We addressed how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage and which signals affect the zonation. We found that the vegetative zone exhibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular-weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and the sequestration of storage compounds. The inflorescence zone with only primary growth, termed the annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis, cytokinin-related genes represented enriched gene ontology terms and were expressed at a higher level in the PZ than in the AZ. Thus, A. alpina primarily uses the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.
Collapse
Affiliation(s)
- Anna Sergeeva
- Institute of Botany, Heinrich Heine University, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Hongjiu Liu
- Institute of Botany, Heinrich Heine University, Düsseldorf, D-40225, Germany
| | - Hans-Jörg Mai
- Institute of Botany, Heinrich Heine University, Düsseldorf, D-40225, Germany
| | - Tabea Mettler-Altmann
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Institute of Plant Biochemistry, Heinrich Heine University, Düsseldorf, D-40225, Germany
| | - Christiane Kiefer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - George Coupland
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, D-50829, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, D-40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
7
|
Watanabe M, Netzer F, Tohge T, Orf I, Brotman Y, Dubbert D, Fernie AR, Rennenberg H, Hoefgen R, Herschbach C. Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S. FRONTIERS IN PLANT SCIENCE 2018; 9:1292. [PMID: 30233628 PMCID: PMC6133996 DOI: 10.3389/fpls.2018.01292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/16/2018] [Indexed: 05/06/2023]
Abstract
The temperate climax tree species Fagus sylvatica and the floodplain tree species Populus × canescens possess contrasting phosphorus (P) nutrition strategies. While F. sylvatica has been documented to display P storage and mobilization (Netzer et al., 2017), this was not observed for Populus × canescens (Netzer et al., 2018b). Nevertheless, changes in the abundance of organic bound P in gray poplar trees indicated adaptation of the P nutrition to different needs during annual growth. The present study aimed at characterizing seasonal changes in metabolite and lipid abundances in gray poplar and uncovering differences in metabolite requirement due to specific needs depending on the season. Seasonal variations in the abundance of (i) sugar-Ps and phospholipids, (ii) amino acids, (iii) sulfur compounds, and (iv) carbon metabolites were expected. It was hypothesized that seasonal changes in metabolite levels relate to N, S, and C storage and mobilization. Changes in organic metabolites binding Pi (Porg) are supposed to support these processes. Variation in triacylglycerols, in sugar-phosphates, in metabolites of the TCA cycle and in the amino acid abundance of poplar twig buds, leaves, bark, and wood were found to be linked to changes in metabolite abundances as well as to C, N, and S storage and mobilization processes. The observed changes support the view of a lack of any P storage in poplar. Yet, during dormancy, contents of phospholipids in twig bark and wood were highest probably due to frost-hardening and to its function in extra-plastidic membranes such as amyloplasts, oleosomes, and protein bodies. Consistent with this assumption, in spring sugar-Ps increased when phospholipids declined and poplar plants entering the vegetative growth period and, hence, metabolic activity increases. These results indicate that poplar trees adopt a policy of P nutrition without P storage and mobilization that is different from their N- and S-nutrition strategies.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- NARA Institute of Science and Technology, Ikoma, Japan
| | - Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- NARA Institute of Science and Technology, Ikoma, Japan
| | - Isabel Orf
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - David Dubbert
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|