1
|
Weiland JJ, Wyatt N, Camelo V, Spanner RE, Hladky LJ, Ramachandran V, Secor GA, Martin FN, Wintermantel WM, Bolton MD. Beet Soil-Borne Virus Is a Helper Virus for the Novel Beta vulgaris Satellite Virus 1A. PHYTOPATHOLOGY 2024; 114:1126-1136. [PMID: 38451582 DOI: 10.1094/phyto-08-23-0299-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.
Collapse
Affiliation(s)
- John J Weiland
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Nathan Wyatt
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Viviana Camelo
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Rebecca E Spanner
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Laura Jenkins Hladky
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Vanitharani Ramachandran
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Gary A Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Frank N Martin
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - William M Wintermantel
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Melvin D Bolton
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| |
Collapse
|
2
|
Liebe S, Maiss E, Varrelmann M. The arms race between beet necrotic yellow vein virus and host resistance in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1098786. [PMID: 37063189 PMCID: PMC10102433 DOI: 10.3389/fpls.2023.1098786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) causes rhizomania disease in sugar beet (Beta vulgaris), which is controlled since more than two decades by cultivars harboring the Rz1 resistance gene. The development of resistance-breaking strains has been favored by a high selection pressure on the soil-borne virus population. Resistance-breaking is associated with mutations at amino acid positions 67-70 (tetrad) in the RNA3 encoded pathogenicity factor P25 and the presence of an additional RNA component (RNA5). However, natural BNYVV populations are highly diverse making investigations on the resistance-breaking mechanism rather difficult. Therefore, we applied a reverse genetic system for BNYVV (A type) to study Rz1 resistance-breaking by direct agroinoculation of sugar beet seedlings. The bioassay allowed a clear discrimination between susceptible and Rz1 resistant plants already four weeks after infection, and resistance-breaking was independent of the sugar beet Rz1 genotype. A comprehensive screen of natural tetrads for resistance-breaking revealed several new mutations allowing BNYVV to overcome Rz1. The supplementation of an additional RNA5 encoding the pathogenicity factor P26 allowed virus accumulation in the Rz1 genotype independent of the P25 tetrad. This suggests the presence of two distinct resistance-breaking mechanisms allowing BNYVV to overcome Rz1. Finally, we showed that the resistance-breaking effect of the tetrad and the RNA5 is specific to Rz1 and has no effect on the stability of the second resistance gene Rz2. Consequently, double resistant cultivars (Rz1+Rz2) should provide effective control of Rz1 resistance-breaking strains. Our study highlights the flexibility of the viral genome allowing BNYVV to overcome host resistance, which underlines the need for a continuous search for alternative resistance genes.
Collapse
Affiliation(s)
- Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Edgar Maiss
- Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, Hannover, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
3
|
Rajabi A, Ahmadi M, Bazrafshan M, Hassani M, Saremirad A. Evaluation of resistance and determination of stability of different sugar beet ( Beta vulgaris L.) genotypes in rhizomania-infected conditions. Food Sci Nutr 2023; 11:1403-1414. [PMID: 36911820 PMCID: PMC10002986 DOI: 10.1002/fsn3.3180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Plant diseases are considered one of the main factors reducing yield and quality of crops, which are constantly developing and creating more virulent races and cause the resistance of more genes to break. Identifying resistance sources and including them in breeding programs will improve resistant genotypes. Rhizomania is the most common, widespread, and devastating disease of sugar beet in Iran and worldwide. Breeding genotypes with disease resistance genes is one of the most important ways to deal with this destructive disease. Twenty sugar beet genotypes along with five controls were evaluated in a randomized complete block design with four replications in rhizomania-infected conditions in four regions of Mashhad, Shiraz, Miandoab, and Hamedan for 2 years. The results of genotypic reaction to rhizomania showed that the genotypes with resistance reaction were much more frequent than those with susceptibility reaction. The analysis of multiplicative effects of the AMMI model showed that the first six components were significant and explained 98.80% of the interaction variations. The biplot obtained from the mean white sugar yield and the first interaction principal component confirmed the superiority of the RM5 genotype due to its high white sugar yield and stability in infected conditions. The results obtained from the first three principal components biplot showed that the RM9 genotype with a mean white sugar yield of 11.91 t. ha-1 was a genotype with vast general stability in all disease-infected environments. Based on the results of the MTSI index, RM3, RM17, RM9, RM13, and RM15 are introduced as stable genotypes under rhizomania-infected conditions. In conclusion, it seems that the studied genotypes have valuable and useful genes inherited from their parents to deal with rhizomania disease. Applying these genotypes in sugar beet breeding programs can effectively prevent the threat of rhizomania.
Collapse
Affiliation(s)
- Abazar Rajabi
- Sugar Beet Seed Institute (SBSI)Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| | - Masoud Ahmadi
- Khorasan Razvi Agricultural and Natural Resources Research and Education CenterAgricultural Research, Education and Extension Organization (AREEO)MashhadIran
| | - Mohsen Bazrafshan
- Fars Agricultural and Natural Resources Research and Education CenterAgricultural Research, Education and Extension Organization (AREEO)ShirazIran
| | - Mehdi Hassani
- Hamedan Agricultural and Natural Resources Research and Education CenterAgricultural Research, Education and Extension Organization (AREEO)HamedanIran
| | - Ali Saremirad
- Sugar Beet Seed Institute (SBSI)Agricultural Research, Education and Extension Organization (AREEO)KarajIran
| |
Collapse
|
4
|
Müllender MM, Varrelmann M, Maiss E, Liebe S. Comparative analysis of virus pathogenicity and resistance-breaking between the P- and A-type from the beet necrotic yellow vein virus using infectious cDNA clones. J Gen Virol 2022; 103. [PMID: 35947097 DOI: 10.1099/jgv.0.001777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The A-type of beet necrotic yellow vein virus (BNYVV) is widely distributed in Europe and is one of the major virus types causing rhizomania disease in sugar beet. The closely related P-type is mainly limited to a small region in France (Pithiviers). Both virus types possess four RNAs (RNA1-4), but the P-type harbours an additional fifth RNA species (RNA5). The P-type is associated with stronger disease symptoms and resistance-breaking of Rz1, one of the two resistance genes which are used to control BNYVV infection. These characteristics are presumably due to the presence of RNA5, but experimental evidence for this is lacking. We generated the first infectious cDNA clone of BNYVV P-type to study its pathogenicity in sugar beet in comparison to a previously developed A-type clone. Using this tool, we confirmed the pathogenicity of the P-type clone in the experimental host Nicotiana benthamiana and two Beta species, B. macrocarpa and B. vulgaris. Independent of RNA5, both the A- and the P-type accumulated in lateral roots and reduced the taproot weight of a susceptible sugar beet genotype to a similar extent. In contrast, only the P-type clone was able to accumulate a virus titre in an Rz1-resistant variety whereas the A-type clone failed to infect this variety. The efficiency of the P-type to overcome Rz1 resistance was strongly associated with the presence of RNA5. Only a double resistant variety, harbouring Rz1 and Rz2, prevented an infection with the P-type. Reassortment experiments between the P- and A-type clones demonstrated that both virus types can exchange whole RNA components without losing the ability to replicate and to move systemically in sugar beet. Although our study highlights the close evolutionary relationship between the two virus types, we were able to demonstrate distinct pathogenicity properties that are attributed to the presence of RNA5 in the P-type.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Edgar Maiss
- Institute of Horticultural Production Systems, Plant Virology, Department of Phytomedicine, Leibniz University, Hannover, Germany
| | - Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
5
|
Hejri S, Salimi A, Ali Malboobi M, Fatehi F, Yousefiara M. Investigation of Possible Changes Induced by RNA Silencing in Some Leaf Metabolites of Transgenic Sugar Beet Events. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100073. [PMID: 35415694 PMCID: PMC8991520 DOI: 10.1016/j.fochms.2022.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022]
Abstract
Metabolite contents of transgenic sugar beets, S3 and S6, resistant to rhizomania through RNA silencing mechanism, were compared to wild type plant as a part of a risk assessment study. The alteration of S6 transgenic sugar beet metabolites was low and probably due to micro-environmental or natural individual differences. The alteration of S3 transgenic sugar beet metabolites were significant but still within the natural range and, also, beneficial because of high contents of some amino acids, especially essential ones.
Sugar beet is vulnerable to rhizomania as the most destructive viral disease. Two selected events of transgenic sugar beet carrying cassettes inducing RNA silencing mechanism, 219-T3:S3-13.2 (S3) and 6018-T3:S6-44 (S6), were shown to inhibit propagation of Beet Necrotic Yellow Vein Virus, the causative agent. As a method for signifying the substantial equivalence, we analyzed the levels of some metabolites through LC-MS in order to demonstrate possible unintended changes in the leaves of the transgenic events. There was no significant difference in the concentrations of examined key metabolites but cis-aconitate and fructose-1,6-bisphosphatase which were decreased in S3. Also, ATP was reduced in both genetically modified sugar beets. Among free amino acids, only glycine level in S6 was increased compared to the wild plant, while the production levels of 5 and 12 ones were increased in S3 compared to S6 event and the wild type plants, respectively.
Collapse
|
6
|
Decroës A, Li JM, Richardson L, Mutasa-Gottgens E, Lima-Mendez G, Mahillon M, Bragard C, Finn RD, Legrève A. Metagenomics approach for Polymyxa betae genome assembly enables comparative analysis towards deciphering the intracellular parasitic lifestyle of the plasmodiophorids. Genomics 2021; 114:9-22. [PMID: 34798282 DOI: 10.1016/j.ygeno.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022]
Abstract
Genomic knowledge of the tree of life is biased to specific groups of organisms. For example, only six full genomes are currently available in the rhizaria clade. Here, we have applied metagenomic techniques enabling the assembly of the genome of Polymyxa betae (Rhizaria, Plasmodiophorida) RES F41 isolate from unpurified zoospore holobiont and comparison with the A26-41 isolate. Furthermore, the first P. betae mitochondrial genome was assembled. The two P. betae nuclear genomes were highly similar, each with just ~10.2 k predicted protein coding genes, ~3% of which were unique to each isolate. Extending genomic comparisons revealed a greater overlap with Spongospora subterranea than with Plasmodiophora brassicae, including orthologs of the mammalian cation channel sperm-associated proteins, raising some intriguing questions about zoospore physiology. This work validates our metagenomics pipeline for eukaryote genome assembly from unpurified samples and enriches plasmodiophorid genomics; providing the first full annotation of the P. betae genome.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Lorna Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Euphemia Mutasa-Gottgens
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK; University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Mathieu Mahillon
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
7
|
Wetzel V, Willlems G, Darracq A, Galein Y, Liebe S, Varrelmann M. The Beta vulgaris-derived resistance gene Rz2 confers broad-spectrum resistance against soilborne sugar beet-infecting viruses from different families by recognizing triple gene block protein 1. MOLECULAR PLANT PATHOLOGY 2021; 22:829-842. [PMID: 33951264 PMCID: PMC8232027 DOI: 10.1111/mpp.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/03/2023]
Abstract
Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.
Collapse
|
8
|
Dehnen‐Schmutz K, Di Serio F, Gonthier P, Jacques M, Jaques Miret JA, Fejer Justesen A, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Maiorano A, Delbianco A, Bragard C. Pest categorisation of beet necrotic yellow vein virus. EFSA J 2020; 18:e06360. [PMID: 33363645 PMCID: PMC7754942 DOI: 10.2903/j.efsa.2020.6360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health performed a categorisation of beet necrotic yellow vein virus (BNYVV), the causal agent of the sugar beet rhizomania disease. The virus is currently listed in Annex III as a protected zone (PZ) quarantine pest of the Commission Implementing Regulation (EU) 2019/2072. The identity of the BNYVV is well established. BNYVV is a soil-borne virus transmitted by the obligate root plasmodiophorid endoparasite Polymyxa betae. BNYVV is widely distributed in the EU, but is not reported in the following EU PZs: Ireland, France (Brittany), Portugal (Azores), Finland and Northern Ireland. The virus may enter, become established and spread in the PZs via P. betae resting spores with soil and growing media as such or attached to machinery and with roots and tubercles of species other than B. vulgaris and with plants for planting. Introduction of BNYVV would have a negative impact on sugar beet and other beet crops in PZs, because of yield and sugar content reduction. Phytosanitary measures are available to reduce the likelihood of entry and spread in the PZs. Once the virus and its plasmodiophorid vector have entered a PZ, their eradication would be difficult due to the persistence of viruliferous resting spores in the soil. The main knowledge gaps or uncertainties identified concerning the presence of BNYVV in the PZs and the incidence and distribution of BNYVV in Switzerland, a country to which a range of specific requirements do not apply. BNYVV meets all the criteria that are within the remit of EFSA to qualify as a potential protected zone union quarantine pest. Plants for planting are not considered as a main means of spread, and therefore BNYVV does not satisfy all the criteria evaluated by EFSA to qualify as potential Union regulated non-quarantine pest.
Collapse
|
9
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
10
|
Liebe S, Wibberg D, Maiss E, Varrelmann M. Application of a Reverse Genetic System for Beet Necrotic Yellow Vein Virus to Study Rz1 Resistance Response in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2020; 10:1703. [PMID: 32010172 PMCID: PMC6978805 DOI: 10.3389/fpls.2019.01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is causal agent of rhizomania disease, which is the most devastating viral disease in sugar beet production leading to a dramatic reduction in beet yield and sugar content. The virus is transmitted by the ubiquitous distributed soil-borne plasmodiophoromycete Polymyxa betae that infects the root tissue of young sugar beet plants. Rz1 is the major resistance gene widely used in most sugar beet varieties to control BNYVV. The strong selection pressure on the virus population promoted the development of strains that can overcome Rz1 resistance. Resistance-breaking has been associated with mutations in the RNA3-encoded pathogenicity factor P25 at amino acid positions 67-70 (tetrad) as well as with the presence of an additional RNA component (RNA5). However, respective studies investigating the resistance-breaking mechanism by a reverse genetic system are rather scarce. Therefore, we studied Rz1 resistance-breaking in sugar beet using a recently developed infectious clone of BNYVV A-type. A vector free infection system for the inoculation of young sugar beet seedlings was established. This assay allowed a clear separation between a susceptible and a Rz1 resistant genotype by measuring the virus content in lateral roots at 52 dpi. However, mechanical inoculation of sugar beet leaves led to the occurrence of genotype independent local lesions, suggesting that Rz1 mediates a root specific resistance toward BNYVV that is not active in leaves. Mutation analysis demonstrated that different motifs within the P25 tetrad enable increased virus replication in roots of the resistant genotype. The resistance-breaking ability was further confirmed by the visualization of BNYVV in lateral roots and leaves using a fluorescent-labeled complementary DNA clone of RNA2. Apart from that, reassortment experiments evidenced that RNA5 enables Rz1 resistance-breaking independent of the P25 tetrad motif. Finally, we could identify a new resistance-breaking mutation, which was selected by high-throughput sequencing of a clonal virus population after one host passage in a resistant genotype. Our results demonstrate the feasibility of the reverse genetic system for resistance-breaking analysis and illustrates the genome plasticity of BNYVV allowing the virus to adapt rapidly to sugar beet resistance traits.
Collapse
Affiliation(s)
- Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Edgar Maiss
- Plant Virology, Department of Phytomedicine, Institute of Horticultural Production Systems, Leibniz University, Hannover, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
11
|
Weiland JJ, Bornemann K, Neubauer JD, Khan MFR, Bolton MD. Prevalence and Distribution of Beet Necrotic Yellow Vein Virus Strains in North Dakota and Minnesota. PLANT DISEASE 2019; 103:2083-2089. [PMID: 31210599 DOI: 10.1094/pdis-02-19-0360-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is the causal agent of rhizomania, a disease of global importance to the sugar beet industry. The most widely implemented resistance gene to rhizomania to date is Rz1, but resistance has been circumvented by resistance-breaking (RB) isolates worldwide. In an effort to gain greater understanding of the distribution of BNYVV and the nature of RB isolates in Minnesota and eastern North Dakota, sugar beet plants were grown in 594 soil samples obtained from production fields and subsequently were analyzed for the presence of BNYVV as well as coding variability in the viral P25 gene, the gene previously implicated in the RB pathotype. Baiting of virus from the soil with sugar beet varieties possessing no known resistance to rhizomania resulted in a disease incidence level of 10.6% in the region examined. Parallel baiting analysis of sugar beet genotypes possessing Rz1, the more recently introgressed Rz2, and with the combination of Rz1 + Rz2 resulted in a disease incidence level of 4.2, 1.0, and 0.8%, respectively. Virus sequences recovered from sugar beet bait plants possessing resistance genes Rz1 and/or Rz2 exhibited reduced genetic diversity in the P25 gene relative to those recovered from the susceptible genotype while confirming the hypervariable nature of the coding for amino acids (AAs) at position 67 and 68 in the P25 protein. In contrast to previous reports, we did not find an association between any one specific AA signature at these positions and the ability to circumvent Rz1-mediated resistance. The data document ongoing virulence development in BNYVV populations to previously resistant varieties and provide a baseline for the analysis of genetic change in the virus population that may accompany the implementation of new resistance genes to manage rhizomania.
Collapse
Affiliation(s)
- John J Weiland
- 1United States Department of Agriculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Kathrin Bornemann
- 1United States Department of Agriculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- 2Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Jonathan D Neubauer
- 1United States Department of Agriculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Mohamed F R Khan
- 2Department of Plant Pathology, North Dakota State University, Fargo, ND
- 3Department of Plant Pathology, University of Minnesota, St. Paul, MN
| | - Melvin D Bolton
- 1United States Department of Agriculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- 2Department of Plant Pathology, North Dakota State University, Fargo, ND
| |
Collapse
|