1
|
Werner FA, Homeier J. Diverging Elevational Patterns of Tree vs. Epiphyte Species Density, Beta Diversity, and Biomass in a Tropical Dry Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:2555. [PMID: 39339530 PMCID: PMC11434910 DOI: 10.3390/plants13182555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
There is evidence to suggest that vascular epiphytes experience low competition for resources (light, water, and nutrients) compared to terrestrial plants. We tested the hypothesis that low resource competition may lead to higher nestedness among vascular epiphyte assemblages compared to trees. We studied the species composition and biomass of epiphytes and trees along an elevation gradient in a tropical dry forest in SW Ecuador. Both life-forms were inventoried on 25 plots of 400 m2 across five elevation levels (550-1250 m). Tree species density and total species richness increased with elevation, whereas basal area and biomass did not show significant trends. Epiphyte species density and richness both increased strongly with elevation, in parallel to biomass. Plot-level compositional changes were similarly strong for both life-forms. We attribute elevational increases in the species richness of trees and epiphytes to increasing humidity, i.e., more mesic growth conditions. We attribute the more pronounced elevational increase in epiphyte biomass, species density, and richness-the latter coupled with a higher degree of nestedness-to the greater moisture dependency of epiphytes and relatively low direct competition for resources. Our study provides a first comparison of elevational trends in epiphyte and tree diversity and biomass for a tropical dry forest.
Collapse
Affiliation(s)
- Florian A. Werner
- Functional Ecology, Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzkystraße 9-11, 26111 Oldenburg, Germany
| | - Jürgen Homeier
- Faculty of Resource Management, HAWK University of Applied Sciences and Arts, Daimlerstraße 2, 37075 Göttingen, Germany
- Plant Ecology, Georg-August University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
2
|
Wright CL, West JB, de Lima ALA, Souza ES, Medeiros M, Wilcox BP. Contrasting water-use strategies revealed by species-specific transpiration dynamics in the Caatinga dry forest. TREE PHYSIOLOGY 2024; 44:tpad137. [PMID: 37935389 DOI: 10.1093/treephys/tpad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
In forest ecosystems, transpiration (T) patterns are important for quantifying water and carbon fluxes and are major factors in predicting ecosystem change. Seasonal changes in rainfall and soil water content can alter the sensitivity of sap flux density to daily variations in vapor pressure deficit (VPD). This sensitivity is species-specific and is thought to be related to hydraulic strategies. The aim of this work is to better understand how the sap flux density of species with low versus high wood density differ in their sensitivity to VPD and soil water content and how potentially opposing water-use strategies influence T dynamics, and ultimately, correlations to evapotranspiration (ET). We use hysteresis area analysis to quantify the sensitivity of species-specific sap flux density to changes in the VPD, breakpoint-based models to determine the soil water content threshold instigating a T response and multiscalar wavelet coherency to correlate T to ET. We found that low wood density Commiphora leptophloeos (Mart.) Gillett had a more dynamic T pattern, a greater sensitivity to VPD at high soil water content, required a higher soil water content threshold for this sensitivity to be apparent, and had a significant coherency correlation with ET at daily to monthly timescales. This behavior is consistent with a drought avoidance strategy. High wood density Cenostigma pyramidale (Tul.) E. Gagnon & G. P. Lewis, conversely, had a more stable T pattern, responded to VPD across a range of soil water content, tolerated a lower soil water content threshold to T, and had a significant coherency correlation with ET at weekly timescales. This behavior is consistent with a drought-tolerant strategy. We build on previous research to show that these species have contrasting water-use strategies that should be considered in large-scale modeling efforts.
Collapse
Affiliation(s)
- Cynthia L Wright
- Southern Research Station, USDA Forest Service, 4700 Old Kingston Pike, Knoxville, TN 37919, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA
- Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77843, USA
| | - Jason B West
- Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77843, USA
| | - André L A de Lima
- Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Av. Gregório Ferraz Nogueira, S/n, Bairro: José Tomé de Souza Ramos, Caixa Postal 063, CEP: 56.909-535, Serra Talhada, Pernambuco, Brazil
| | - Eduardo S Souza
- Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Av. Gregório Ferraz Nogueira, S/n, Bairro: José Tomé de Souza Ramos, Caixa Postal 063, CEP: 56.909-535, Serra Talhada, Pernambuco, Brazil
| | - Maria Medeiros
- Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Av. Gregório Ferraz Nogueira, S/n, Bairro: José Tomé de Souza Ramos, Caixa Postal 063, CEP: 56.909-535, Serra Talhada, Pernambuco, Brazil
- Federal University of Pernambuco, Department of Botany, Avenida Professor Moraes Rego, s/n, Cidade Universitária, CEP: 50670-901, Recife, Pernambuco, Brazil
| | - Bradford P Wilcox
- Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Blvd, College Station, TX 77843, USA
| |
Collapse
|
3
|
Ampornpitak R, Nathalang A, Tor-ngern P. Water-use characteristics of Syzygium antisepticum and Adinandra integerrima in a secondary forest of Khao Yai National Park in Thailand with implications for environmental management. PeerJ 2023; 11:e16525. [PMID: 38050611 PMCID: PMC10693818 DOI: 10.7717/peerj.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Background Southeast Asia has experienced widespread deforestation and change in land use. Consequently, many reforestation projects have been initiated in this region. However, it is imperative to carefully choose the tree species for planting, especially in light of the increasing climate variability and the potential alteration of plantation on the watershed water balance. Thus, the information regarding water-use characteristics of various tree species and sizes is critical in the tree species selection for reforestation. Methods We estimated tree water use (T) of dominant species including Syzygium antisepticum and Adinandra integerrima, hereafter Sa and Ai, respectively, in a secondary tropical forest in Khao Yai National Park, Thailand, using sap flow data, and compared T between species and size classes. Additionally, we evaluated the responses of T of both species in each size class to environmental factors including soil moisture and vapor pressure deficit (VPD). Results Results showed consistently higher T in Sa compared to Ai across ranges of VPD and soil moisture. Under low soil moisture, T of Sa responded to VPD, following a saturating exponential pattern while Ai maintained T across different VPD levels, irrespective of tree size. No responses of T to VPD were observed in either species when soil water was moderate. When soil moisture was high, T of both species significantly increased and saturated at high VPD, albeit the responses were less sensitive in large trees. Our results imply that Ai may be suitable for reforestation in water-limited areas where droughts frequently occur to minimize reforestation impact on water availability to downstream ecosystems. In contrast, Sa should be planted in regions with abundant and reliable water resources. However, a mixed species plantation should be generally considered to increase forest resilience to increasing climate variation.
Collapse
Affiliation(s)
- Ratchanon Ampornpitak
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| | - Anuttara Nathalang
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pantana Tor-ngern
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Brum M, Vadeboncoeur M, Asbjornsen H, Puma Vilca BL, Galiano D, Horwath AB, Metcalfe DB. Ecophysiological controls on water use of tropical cloud forest trees in response to experimental drought. TREE PHYSIOLOGY 2023; 43:1514-1532. [PMID: 37209136 DOI: 10.1093/treephys/tpad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Tropical montane cloud forests (TMCFs) are expected to experience more frequent and prolonged droughts over the coming century, yet understanding of TCMF tree responses to moisture stress remains weak compared with the lowland tropics. We simulated a severe drought in a throughfall reduction experiment (TFR) for 2 years in a Peruvian TCMF and evaluated the physiological responses of several dominant species (Clusia flaviflora Engl., Weinmannia bangii (Rusby) Engl., Weinmannia crassifolia Ruiz & Pav. and Prunus integrifolia (C. Presl) Walp). Measurements were taken of (i) sap flow; (ii) diurnal cycles of stem shrinkage, stem moisture variation and water-use; and (iii) intrinsic water-use efficiency (iWUE) estimated from foliar δ13C. In W. bangii, we used dendrometers and volumetric water content (VWC) sensors to quantify daily cycles of stem water storage. In 2 years of sap flow (Js) data, we found a threshold response of water use to vapor pressure deficit vapor pressure deficit (VPD) > 1.07 kPa independent of treatment, though control trees used more soil water than the treatment trees. The daily decline in water use in the TFR trees was associated with a strong reduction in both morning and afternoon Js rates at a given VPD. Soil moisture also affected the hysteresis strength between Js and VPD. Reduced hysteresis under moisture stress implies that TMCFs are strongly dependent on shallow soil water. Additionally, we suggest that hysteresis can serve as a sensitive indicator of environmental constraints on plant function. Finally, 6 months into the experiment, the TFR treatment significantly increased iWUE in all study species. Our results highlight the conservative behavior of TMCF tree water use under severe soil drought and elucidate physiological thresholds related to VPD and its interaction with soil moisture. The observed strongly isohydric response likely incurs a cost to the carbon balance of the tree and reduces overall ecosystem carbon uptake.
Collapse
Affiliation(s)
- Mauro Brum
- Department of Natural Resources & the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
| | - Matthew Vadeboncoeur
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Heidi Asbjornsen
- Department of Natural Resources & the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Beisit L Puma Vilca
- Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Av. de La Cultura 773, Cusco, Cusco Province 08000, Peru
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
| | - Darcy Galiano
- Facultad de Ciencias Biológicas, Universidad Nacional de San Antonio Abad del Cusco, Av. de La Cultura 773, Cusco, Cusco Province 08000, Peru
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
| | - Aline B Horwath
- Asociación Civil Sin Fines De Lucro Para La Biodiversidad, Investigación Y Desarrollo Ambiental En Ecosistemas Tropicales (ABIDA), Urbanización Ucchullo Grande, Avenida Argentina F-9, Cusco, Perú
| | - Daniel B Metcalfe
- Department of Ecology & Environmental Science, Umeå University, KBC-huset, Linnaeus väg 6, Umeå 901 87, Sweden
| |
Collapse
|
5
|
Luna‐Nieves AL, González EJ, Cortés‐Flores J, Ibarra‐Manríquez G, Maldonado‐Romo A, Meave JA. Interplay of environmental cues and wood density in the vegetative and reproductive phenology of seasonally dry tropical forest trees. Biotropica 2022. [DOI: 10.1111/btp.13072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Adriana L. Luna‐Nieves
- Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Edgar J. González
- Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Jorge Cortés‐Flores
- Jardín Botánico Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Guillermo Ibarra‐Manríquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México Morelia Mich. Mexico
| | - Axel Maldonado‐Romo
- Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Jorge A. Meave
- Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad de México Mexico
| |
Collapse
|
6
|
Environmental Drivers of Water Use for Caatinga Woody Plant Species: Combining Remote Sensing Phenology and Sap Flow Measurements. REMOTE SENSING 2020. [DOI: 10.3390/rs13010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the water use of Caatinga vegetation, the largest seasonally dry forest in South America. We identified and analysed the environmental phenological drivers in woody species and their relationship with transpiration. To monitor the phenological evolution, we used remote sensing indices at different spatial and temporal scales: normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and green chromatic coordinate (GCC). To represent the phenology, we used the GCC extracted from in-situ automated digital camera images; indices calculated based on sensors included NDVI, SAVI and GCC from Sentinel-2A and B satellites images, and NDVI products MYD13Q1 and MOD13Q1 from a moderate-resolution imaging spectroradiometer (MODIS). Environmental drivers included continuously monitored rainfall, air temperature, soil moisture, net radiation, and vapour pressure deficit. To monitor soil water status and vegetation water use, we installed soil moisture sensors along three soil profiles and sap flow sensors for five plant species. Our study demonstrated that the near-surface GCC data played an important role in permitting individual monitoring of species, whereas the species’ sap flow data correlated better with NDVI, SAVI, and GCC than with species’ near-surface GCC. The wood density appeared to affect the transpiration cessation times in the dry season, given that species with the lowest wood density reach negligible values of transpiration earlier in the season than those with high woody density. Our results show that soil water availability was the main limiting factor for transpiration during more than 80% of the year, and that both the phenological response and water use are directly related to water availability when relative saturation of the soil profile fell below 0.25.
Collapse
|
7
|
Li P, Zhu Q, Peng C, Zhang J, Wang M, Zhang J, Ding J, Zhou X. Change in Autumn Vegetation Phenology and the Climate Controls From 1982 to 2012 on the Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2020; 10:1677. [PMID: 32010162 PMCID: PMC6977410 DOI: 10.3389/fpls.2019.01677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Autumn vegetation phenology plays a critical role in the survival and reproduction of vegetation in changing environments. Using GIMMS3g (Global Inventory Modeling and Mapping Studies), MODIS (Moderate Resolution Imaging and Spectroradiometer), and SPOT (Systeme Probatoire d'Observation de la Terre) remote sensing data, we investigated the spatial and temporal dynamics of the vegetation dormancy onset date (DOD) and its response to temperature, precipitation, and cold degree days (CDD) in different biomes on the Qinghai-Tibet Plateau (QTP) from 1982 to 2012. Our results indicated that there was no significant temporal trend in the DOD for the vegetation on the QTP but found clear regional characteristics in the DOD trends with a notably advancing trend in the central region and a widespread delay in the southwestern region (>1 day year-1, P < 0.05). Our results also indicated that temperature plays an important role in the trend of delays in vegetation autumn phenology; in particular, the preseason temperature can delay the DOD significantly; the positive correlations were observed in more than 71% of the study areas. Consistent with previous studies, we observed significant negative correlations between preseason CDD and DOD; the negative correlations were observed in more than 72% of the study areas for all the data sets. In contrast, the effects of precipitation on DOD were biome dependent. We found that precipitation could promote the extension of the growing season in meadow and grass biomes but produce weak effects on vegetation dormancy in forest biomes. Therefore, not only the magnitude but also the timing of changes in temperature and precipitation determines the effects of climate factors on DOD and further suggests that biome-specific phenological responses also need to be integrated into vegetation phenology models for future climate change investigations on the QTP.
Collapse
Affiliation(s)
- Peng Li
- College of Resources and Environmental Science, Hunan Normal University, Changsha, China
| | - Qiuan Zhu
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Changhui Peng
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
- Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, Succ. Centre-Ville, Montreal, QC, Canada
| | - Jing Zhang
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Meng Wang
- School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Junjun Zhang
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Juhua Ding
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| | - Xiaolu Zhou
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Foliar and Wood Traits Covary along a Vertical Gradient within the Crown of Long-Lived Light-Demanding Species of the Congo Basin Semi-Deciduous Forest. FORESTS 2019. [DOI: 10.3390/f11010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant functional traits have shown to be relevant predictors of forest functional responses to climate change. However, the trait-based approach to study plant performances and ecological strategies has mostly been focused on trait comparisons at the interspecific and intraspecific levels. In this study, we analyzed traits variation and association at the individual level. We measured wood and leaf traits at different height locations within the crown of five individuals of Pericopsis elata (Harms) Meeuwen (Fabaceae) from the northern tropical forest of the Democratic Republic of the Congo. All traits varied between and within individuals. The between-individual variation was more important for leaf traits (23%–48%) than for wood traits (~10%) where the within-individual variation showed to be more important (33%–39%). The sample location height within the crown was found to be the driving factor of this within-individual variation. In a gradient from the base to the top of the crown, theoretical specific hydraulic conductivity and specific leaf area decreased while the stomatal density increased. We found significant relationships among traits and between wood and leaf traits. However, these relationships varied with the position within the crown. The relationship between vessel size and vessel density was negative at the bottom part of the crown but positive upward. Also, the negative relationship between stomatal density and stomatal size became stronger with increasing height within the crown. Finally, the positive relationship between specific leaf area and theoretical specific hydraulic conductivity became stronger in higher parts of the crown, suggesting that P. elata constantly adapts its water use with respect to its water supply, more strongly at the top of the crown where the environment is more extreme and less buffered against environmental fluctuations.
Collapse
|