1
|
Bornø ML, Zervas A, Bak F, Merl T, Koren K, Nicolaisen MH, Jensen LS, Müller-Stöver DS. Differential impacts of sewage sludge and biochar on phosphorus-related processes: An imaging study of the rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166888. [PMID: 37730064 DOI: 10.1016/j.scitotenv.2023.166888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Recycling of phosphorus (P) from waste streams in agriculture is essential to reduce the negative environmental effects of surplus P and the unsustainable mining of geological P resources. Sewage sludge (SS) is an important P source; however, several issues are associated with the handling and application of SS in agriculture. Thus, post-treatments such as pyrolysis of SS into biochar (BC) could address some of these issues. Here we elucidate how patches of SS in soil interact with the living roots of wheat and affect important P-related rhizosphere processes compared to their BC counterparts. Wheat plants were grown in rhizoboxes with sandy loam soil, and 1 cm Ø patches with either SS or BC placed 10 cm below the seed. A negative control (CK) was included. Planar optode pH sensors were used to visualize spatiotemporal pH changes during 40 days of plant growth, diffusive gradients in thin films (DGT) were applied to map labile P, and zymography was used to visualize the spatial distribution of acid (ACP) and alkaline (ALP) phosphatase activity. In addition, bulk soil measurements of available P, pH, and ACP activity were conducted. Finally, the relative abundance of bacterial P-cycling genes (phoD, phoX, phnK) was determined in the patch area rhizosphere. Labile P was only observed in the area of the SS patches, and SS further triggered root proliferation and increased the activity of ACP and ALP in interaction with the roots. In contrast, BC seemed to be inert, had no visible effect on root growth, and even reduced ACP and ALP activity in the patch area. Furthermore, there was a lower relative abundance of phoD and phnK genes in the BC rhizosphere compared to the CK. Hence, optimization of BC properties is needed to increase the short-term efficiency of BC from SS as a P fertilizer.
Collapse
Affiliation(s)
- Marie Louise Bornø
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark.
| | - Athanasios Zervas
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Frederik Bak
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark; Austrian Institute of Technology, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Theresa Merl
- Aarhus University Centre for Water Technology, Department of Biology - Microbiology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Klaus Koren
- Aarhus University Centre for Water Technology, Department of Biology - Microbiology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Mette H Nicolaisen
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
| | - Lars S Jensen
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
| | - Dorette S Müller-Stöver
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
| |
Collapse
|
2
|
Poorter H, Hummel GM, Nagel KA, Fiorani F, von Gillhaussen P, Virnich O, Schurr U, Postma JA, van de Zedde R, Wiese-Klinkenberg A. Pitfalls and potential of high-throughput plant phenotyping platforms. FRONTIERS IN PLANT SCIENCE 2023; 14:1233794. [PMID: 37680357 PMCID: PMC10481964 DOI: 10.3389/fpls.2023.1233794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023]
Abstract
Automated high-throughput plant phenotyping (HTPP) enables non-invasive, fast and standardized evaluations of a large number of plants for size, development, and certain physiological variables. Many research groups recognize the potential of HTPP and have made significant investments in HTPP infrastructure, or are considering doing so. To make optimal use of limited resources, it is important to plan and use these facilities prudently and to interpret the results carefully. Here we present a number of points that users should consider before purchasing, building or utilizing such equipment. They relate to (1) the financial and time investment for acquisition, operation, and maintenance, (2) the constraints associated with such machines in terms of flexibility and growth conditions, (3) the pros and cons of frequent non-destructive measurements, (4) the level of information provided by proxy traits, and (5) the utilization of calibration curves. Using data from an Arabidopsis experiment, we demonstrate how diurnal changes in leaf angle can impact plant size estimates from top-view cameras, causing deviations of more than 20% over the day. Growth analysis data from another rosette species showed that there was a curvilinear relationship between total and projected leaf area. Neglecting this curvilinearity resulted in linear calibration curves that, although having a high r2 (> 0.92), also exhibited large relative errors. Another important consideration we discussed is the frequency at which calibration curves need to be generated and whether different treatments, seasons, or genotypes require distinct calibration curves. In conclusion, HTPP systems have become a valuable addition to the toolbox of plant biologists, provided that these systems are tailored to the research questions of interest, and users are aware of both the possible pitfalls and potential involved.
Collapse
Affiliation(s)
- Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Natural Sciences, Macquarie University, North Ryde, NSW, Australia
| | | | - Kerstin A. Nagel
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Fabio Fiorani
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Olivia Virnich
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Schurr
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Rick van de Zedde
- Plant Sciences Group, Wageningen University & Research, Wageningen, Netherlands
| | - Anika Wiese-Klinkenberg
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Bioinformatics (IBG-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
3
|
Schrey SD, Martinez Diaz J, Becker L, Mademann JA, Ohrem B, Drobietz D, Chaloupsky P, Jablonowski ND, Wever C, Grande PM, Pestsova E, Klose H. Cell wall composition and biomass saccharification potential of Sida hermaphrodita differ between genetically distant accessions. FRONTIERS IN PLANT SCIENCE 2023; 14:1191249. [PMID: 37457355 PMCID: PMC10340120 DOI: 10.3389/fpls.2023.1191249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/26/2023] [Indexed: 07/18/2023]
Abstract
Due to its ample production of lignocellulosic biomass, Sida hermaphrodita (Sida), a perennial forb, is considered a valuable raw material for biorefinery processes. The recalcitrant nature of Sida lignocellulosic biomass towards pretreatment and fractionation processes has previously been studied. However, Sida is a non-domesticated species and here we aimed at expanding the potential of such plants in terms of their processability for downstream processes by making use of the natural variety of Sida. To achieve this goal, we established a collection comprising 16 different Sida accessions obtained from North America and Europe. First, we asked whether their cell wall characteristics are reflected in genetic distance or geographical distribution, respectively. A genotyping-by-sequencing (GBS) analysis resulting in a phylogenic tree based on 751 Single Nucleotide Polymorphisms (SNPs), revealed a high genetic diversity and a clear separation between accessions collected in North America and Europe. Further, all three North American accessions were separated from each other. Of the eleven European accessions, five form individual groups and six others belong to a single group. Clonal plants of seven selected accessions of American and European origin were produced and cultivated under greenhouse conditions and the resulting plant material was used for in-depth wet-chemical and spectroscopic cell wall characterization. Two accessions with contrasting cell wall characteristics were then selected and processed using the OrganoCat technology. Results of the different product yields and chemical compositions are reported. Overall, cell wall analyses revealed contrasting clusters regarding these main components between the accessions that can be related to genetic and, partly, geographical distance. Phenotypically, the accessions clustered into two groups that are not entirely overlapping with geographical origin. These results can be the basis for a targeted selection or cultivation of Sida accessions for biorefinery approaches.
Collapse
Affiliation(s)
- Silvia D. Schrey
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jimena Martinez Diaz
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Lukas Becker
- Institute of Developmental and Molecular Biology of Plants, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Jane A. Mademann
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Benedict Ohrem
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dagmar Drobietz
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Pavel Chaloupsky
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Nicolai D. Jablonowski
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Wever
- Institute of Developmental and Molecular Biology of Plants, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Philipp M. Grande
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Elena Pestsova
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Developmental and Molecular Biology of Plants, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Klose
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Watson C, Preißing T, Wichern F. Plant Nitrogen Uptake From Insect Frass Is Affected by the Nitrification Rate as Revealed by Urease and Nitrification Inhibitors. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.721840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect protein production is considered a sustainable alternative to livestock protein which furthermore utilizes waste streams. Its production can have positive but also potentially negative environmental effects, which require evaluation. Frass, the byproduct of insect production, is regarded an efficient organic fertilizer or soil amendment. However, several studies report negative frass effects on plant growth and nitrogen (N) cycling. Therefore, a pot trial was carried out which sought to understand N release from frass and subsequent growth and nutrient uptake of Italian ryegrass. Mealworm frass (MWF) or buffalo worm frass (BFW) was applied at two rates (1.5 and 3% w/w) to a soil-sand mix. To evaluate N release processes, frass was applied alone, with a nitrification inhibitor (NI), a urease inhibitor (UI), or both (NI+UI). Plant N, nutrient uptake and soil inorganic N were measured at the experiment's end. To gauge whether altered N fluxes induced changes in the microbial community, soil microbial biomass, bacterial/archaeal abundances and ergosterol content as a fungal biomarker, were determined. Both frass types and application rates stimulated microbial growth and N mineralization. The 3% rate inhibited seed germination, possibly due to salinity or ammonia toxicity. At the 1.5% rate, both frass types were effective fertilizers. MWF led to higher biomass and nutrient uptake, owing to its higher extractable nutrient concentrations. The 3% rate caused nitrite accumulation in the absence of NI. NI improved plant biomass, nutrient uptake, stimulated archaeal and bacterial abundances and prevented nitrite accumulation. UI reduced N mineralization, showing that a substantial fraction of frass organic N is ureic. UI enhanced fungal contribution to the microbial biomass, revealing the importance of bacteria in frass N mineralization processes when UI is not applied. NI and UI combined, induced greater N release from frass than UI or NI alone. Our study demonstrated the usefulness of NI and UI in studying N release from frass. NI can improve plant N uptake and minimize N losses following frass application, reducing its potentially negative effects. UI can retard N release from frass, allowing its application as a slow-release fertilizer, but should not be used concurrently with NI.
Collapse
|
5
|
van Duijnen R, Uther H, Härdtle W, Temperton VM, Kumar A. Timing matters: Distinct effects of nitrogen and phosphorus fertilizer application timing on root system architecture responses. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:194-205. [PMID: 37283701 PMCID: PMC10168076 DOI: 10.1002/pei3.10057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 06/08/2023]
Abstract
Aims Although different plant foraging responses to the two macronutrients nitrogen (N) and phosphorus (P) are well researched, the effect of timing of fertilizer application on root system architecture (RSA) remains largely unknown. We, therefore, aimed to understand how RSA of Hordeum vulgare L. responds to timing of N and P application. Methods Plants were grown in rhizoboxes for 38 days in nutrient-poor soil and watered with nutrient solution, lacking either N or P, with the absent nutrient applied once either 2/3/4 weeks after sowing. Positive controls were continuously receiving N and P and a negative control receiving both N and P only after 3 weeks. We tracked root growth over time, measured plant biomass and nutrient uptake. Results Late N application strongly reduced total root biomass and visible root length compared with continuous NP and late P application. Root mass fractions (total root biomass/total plant biomass) remained similar over all treatments, but relative allocation (% of total root biomass) was higher in lower depth with late N application. Shoot P concentrations remained relatively stable, but the plants receiving P later had higher N concentrations. Conclusions Late N application had overall more negative effects on early plant growth compared with late P. We propose that future studies under field conditions should try to disentangle the effect of timing from the nutrient availability on RSA responses and hence ultimately plant performance.
Collapse
Affiliation(s)
- Richard van Duijnen
- Institute of EcologyFaculty of SustainabilityLeuphana University LüneburgLüneburgGermany
| | - Hannah Uther
- Institute of EcologyFaculty of SustainabilityLeuphana University LüneburgLüneburgGermany
| | - Werner Härdtle
- Institute of EcologyFaculty of SustainabilityLeuphana University LüneburgLüneburgGermany
| | - Vicky M. Temperton
- Institute of EcologyFaculty of SustainabilityLeuphana University LüneburgLüneburgGermany
| | - Amit Kumar
- Institute of EcologyFaculty of SustainabilityLeuphana University LüneburgLüneburgGermany
| |
Collapse
|
6
|
Chen BJW, During HJ, Vermeulen PJ, Kroon H, Poorter H, Anten NPR. The analysis of plant root responses to nutrient concentration, soil volume and neighbour presence: Different statistical approaches reflect different underlying basic questions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bin J. W. Chen
- College of Biology and the Environment Nanjing Forestry University Nanjing China
| | - Heinjo J. During
- Section of Ecology and Biodiversity Institute of Environmental Biology Utrecht University Utrecht The Netherlands
| | - Peter J. Vermeulen
- Centre for Crop Systems Analysis Wageningen University Wageningen The Netherlands
| | - Hans Kroon
- Department of Experimental Plant Ecology Institute for Water and Wetland Research Radboud University Nijmegen The Netherlands
| | - Hendrik Poorter
- IBG‐2 Plant Sciences Forschungszentrum Jülich GmbH Jülich Germany
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| | - Niels P. R. Anten
- Centre for Crop Systems Analysis Wageningen University Wageningen The Netherlands
| |
Collapse
|
7
|
Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10070928] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current global temperature increases resulting from human activity threaten many ecosystems and societies, and have led to international and national policy commitments that aim to reduce greenhouse gas emissions. Bioenergy crops provide one means of reducing greenhouse gas emissions from energy production and two novel crops that could be used for this purpose are Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. This research examined the existing scientific literature available on both crops through a systematic review. The data were collated according to the agronomy, uses, and environmental benefits of each crop. Possible challenges were associated with high initial planting costs, low yields in low rainfall areas, and for Sida hermaphrodita, vulnerability to Sclerotinia sclerotiorum. However, under appropriate environmental conditions, both crops were found to provide large yields over sustained periods of time with relatively low levels of management and could be used to produce large energy surpluses, either through direct combustion or biogas production. Other potential uses included fodder, fibre, and pharmaceutical uses. Environmental benefits included the potential for phytoremediation, and improvements to soil health, biodiversity, and pollination. The review also demonstrated that environmental benefits, such as pollination, soil health, and water quality benefits could be obtained from the use of Sida hermaphrodita and Silphium perfoliatum relative to existing bioenergy crops such as maize, whilst at the same time reducing the greenhouse gas emissions associated with energy production. Future research should examine the long-term implications of using Sida hermaphrodita and Silphium perfoliatum as well as improve knowledge on how to integrate them successfully within existing farming systems and supply chains.
Collapse
|
8
|
Nutrient Loaded Biochar Doubled Biomass Production in Juvenile Maize Plants (Zea mays L.). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040567] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biochars have long been associated with elevating plant productivity. An increasing number of studies, however, report that char application might also impair plant nutrient availability and reduce yields. In particular, char accompanying compounds as well as a hypothesized immobilization of nitrogen have been identified as playing a significant role in possibly diminishing plant productivity following char application. Herein, we tested the fertilizing effects of modified biochars in order to derive knowledge required to develop tailor-made chars, which predictably affect plant nutrition. Slow-pyrolysis maize cob biochar was modified by washing with either ethanol or hydrochloric acid to remove ash and organic compounds or by loading it with nutrient-rich residues in the form of digestate from the bioenergy sector. Maize plants were grown for 35 days on biochar-amended sand. We analyzed both substrate properties (pH, total carbon, and nitrogen, available magnesium and potassium) and plant functional traits (biomass, leaf area, root to shoot ratio, specific leaf area). Our results suggest that total plant biomass production remained unaffected by the application of biochar and its washed forms. Contrastingly, nutrient-loaded biochar induced a significant increase in productivity at similar nutrient levels due to improved plant nutrient uptake. Further research is required to understand the role of biochar modifications that facilitated improvements in plant productivity.
Collapse
|