1
|
Hankin LE, Barrios-Masias FH, Urza AK, Bisbing SM. Lethal combination for seedlings: extreme heat drives mortality of drought-exposed high-elevation pine seedlings. ANNALS OF BOTANY 2025; 135:293-304. [PMID: 38687134 PMCID: PMC11805925 DOI: 10.1093/aob/mcae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND AIMS Hotter drought- and biotically driven tree mortality are expected to increase with climate change in much of the western USA, and species persistence will depend upon ongoing establishment in novel conditions or migration to track ecological niche requirements. High-elevation tree species might be particularly vulnerable to increasing water stress as snowpack declines, increasing the potential for adult mortality and simultaneous regeneration failures. Seedling survival will be determined by ecophysiological limitations in response to changing water availability and temperature. METHODS We exposed seedlings from populations of Pinus longaeva, Pinus flexilis and Pinus albicaulis to severe drought and concurrent temperature stress in common gardens, testing the timing of drought onset under two different temperature regimes. We monitored seedling functional traits, physiological function and survival. KEY RESULTS The combined stressors of water limitation and extreme heat led to conservative water-use strategies and declines in physiological function, with these joint stressors ultimately exceeding species tolerances and leading to complete episodic mortality across all species. Growing conditions were the primary determinant of seedling trait expression, with seedlings exhibiting more drought-resistant traits, such as lower specific leaf area, in the hottest, driest treatment conditions. Water stress-induced stomatal closure was also widely apparent. In the presence of adequate soil moisture, seedlings endured prolonged exposure to high air and surface temperatures, suggesting broad margins for survival. CONCLUSIONS The critical interaction between soil moisture and temperature suggests that rising temperatures will exacerbate moisture stress during the growing season. Our results highlight the importance of local conditions over population- and species-level influences in shaping strategies for stress tolerance and resistance to desiccation at this early life stage. By quantifying some of the physiological consequences of drought and heat that lead to seedling mortality, we can gain a better understanding of the future effects of global change on the composition and distribution of high-elevation conifer forests.
Collapse
Affiliation(s)
- Lacey E Hankin
- Department of Natural Resources & Environmental Science, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
- Graduate Program in Ecology, Evolution, & Conservation Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Alexandra K Urza
- Rocky Mountain Research Station, USDA Forest Service, 920 Valley Road, Reno, NV 89512, USA
| | - Sarah M Bisbing
- Department of Natural Resources & Environmental Science, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
- Graduate Program in Ecology, Evolution, & Conservation Biology, University of Nevada Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
2
|
Cazzavillan A, Gerdol R, Marrocchino E, Vaccaro C, Brancaleoni L. Fine-Scale Lithogeochemical Features Influence Plant Distribution Patterns in Alpine Grasslands in the Western Alps of Italy. PLANTS (BASEL, SWITZERLAND) 2024; 13:2280. [PMID: 39204716 PMCID: PMC11360244 DOI: 10.3390/plants13162280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Bedrock geology is crucial in structuring alpine plant communities. Old studies mainly focused on the compositional differences between alpine plant communities on carbonate rocks and crystalline rocks, i.e., calcareous vs. siliceous vegetation. Increasing attention is being paid to bedrock types other than calcareous or siliceous ones, viz. those which have intermediate geochemical characteristics between pure calcareous and pure siliceous ones. Among these types of 'intermediate' bedrocks, calc-schists and serpentines are generally characterized by vegetation comprised of a mixture of basiphilous and acidophilous species. We selected several sites in alpine grasslands in the Western Italian Alps, on calc-schist and serpentine bedrocks, located at 2500 ± 100 m above sea level. X-ray fluorescence quantification of major and trace elements, combined with stereomicroscopic examination of bedrock samples with a petrographic approach, revealed a much broader range of bedrock types than recognized by inspection of geological maps. The vegetation investigated in our study was mostly composed of a set of species found more or less frequently in alpine silicicolous or calcicolous plant communities of the Alps and other European mountains. The carbonate content in the bedrock was one of the main drivers of variation in grassland vegetation, not necessarily related to soil pH. There were no distinctive species uniquely characterizing grassland vegetation on serpentines or calc-schists.
Collapse
Affiliation(s)
| | - Renato Gerdol
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este 32, 44121 Ferrara, Italy; (A.C.); (E.M.); (C.V.); (L.B.)
| | | | | | | |
Collapse
|
3
|
John C, Avgar T, Rittger K, Smith JA, Stephenson LW, Stephenson TR, Post E. Pursuit and escape drive fine-scale movement variation during migration in a temperate alpine ungulate. Sci Rep 2024; 14:15068. [PMID: 38956435 PMCID: PMC11219842 DOI: 10.1038/s41598-024-65948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Climate change reduces snowpack, advances snowmelt phenology, drives summer warming, alters growing season precipitation regimes, and consequently modifies vegetation phenology in mountain systems. Elevational migrants track spatial variation in seasonal plant growth by moving between ranges at different elevations during spring, so climate-driven vegetation change may disrupt historic benefits of migration. Elevational migrants can furthermore cope with short-term environmental variability by undertaking brief vertical movements to refugia when sudden adverse conditions arise. We uncover drivers of fine-scale vertical movement variation during upland migration in an endangered alpine specialist, Sierra Nevada bighorn sheep (Ovis canadensis sierrae) using a 20-year study of GPS collar data collected from 311 unique individuals. We used integrated step-selection analysis to determine factors that promote vertical movements and drive selection of destinations following vertical movements. Our results reveal that relatively high temperatures consistently drive uphill movements, while precipitation likely drives downhill movements. Furthermore, bighorn select destinations at their peak annual biomass and maximal time since snowmelt. These results indicate that although Sierra Nevada bighorn sheep seek out foraging opportunities related to landscape phenology, they compensate for short-term environmental stressors by undertaking brief up- and downslope vertical movements. Migrants may therefore be impacted by future warming and increased storm frequency or intensity, with shifts in annual migration timing, and fine-scale vertical movement responses to environmental variability.
Collapse
Affiliation(s)
- Christian John
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA.
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Tal Avgar
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
- Department of Biology, University of British Columbia - Okanagan, Kelowna, BC, Canada
- Wildlife Science Centre, Biodiversity Pathways Ltd., Kelowna, BC, Canada
| | - Karl Rittger
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Boulder, CO, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Logan W Stephenson
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | - Thomas R Stephenson
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, Bishop, CA, USA
| | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
4
|
Crepaz H, Quaglia E, Lombardi G, Lonati M, Rossi M, Ravetto Enri S, Dullinger S, Tappeiner U, Niedrist G. Phenological responses of alpine snowbed communities to advancing snowmelt. Ecol Evol 2024; 14:e11714. [PMID: 39005886 PMCID: PMC11246788 DOI: 10.1002/ece3.11714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Climate change is leading to advanced snowmelt date in alpine regions. Consequently, alpine plant species and ecosystems experience substantial changes due to prolonged phenological seasons, while the responses, mechanisms and implications remain widely unclear. In this 3-year study, we investigated the effects of advancing snowmelt on the phenology of alpine snowbed species. We related microclimatic drivers to species and ecosystem phenology using in situ monitoring and phenocams. We further used predictive modelling to determine whether early snowmelt sites could be used as sentinels for future conditions. Temperature during the snow-free period primarily influenced flowering phenology, followed by snowmelt timing. Salix herbacea and Gnaphalium supinum showed the most opportunistic phenology, while annual Euphrasia minima struggled to complete its phenology in short growing seasons. Phenological responses varied more between years than sites, indicating potential local long-term adaptations and suggesting these species' potential to track future earlier melting dates. Phenocams captured ecosystem-level phenology (start, peak and end of phenological season) but failed to explain species-level variance. Our findings highlight species-specific responses to advancing snowmelt, with snowbed species responding highly opportunistically to changes in snowmelt timings while following species-specific developmental programs. While species from surrounding grasslands may benefit from extended growing seasons, snowbed species may become outcompeted due to internal-clock-driven, non-opportunistic senescence, despite displaying a high level of phenological plasticity.
Collapse
Affiliation(s)
- Harald Crepaz
- Institute for Alpine EnvironmentEurac ResearchBozenItaly
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | | | - Giampiero Lombardi
- Department of Agricultural, Forest and Food Sciences, University of TorinoUniversità degli Studi di TorinoGrugliascoItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Michele Lonati
- Department of Agricultural, Forest and Food Sciences, University of TorinoUniversità degli Studi di TorinoGrugliascoItaly
| | - Mattia Rossi
- European CommissionIspraItaly
- Institute for Earth ObservationEurac ResearchBozenItaly
| | - Simone Ravetto Enri
- Department of Agricultural, Forest and Food Sciences, University of TorinoUniversità degli Studi di TorinoGrugliascoItaly
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Ulrike Tappeiner
- Institute for Alpine EnvironmentEurac ResearchBozenItaly
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Georg Niedrist
- Institute for Alpine EnvironmentEurac ResearchBozenItaly
| |
Collapse
|
5
|
Temporal dynamics in alpine snowpatch plants along a snowmelt gradient explained by functional traits and strategies. Oecologia 2023; 201:155-171. [PMID: 36472669 DOI: 10.1007/s00442-022-05297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Alpine snowpatches are characterised by persistent snow cover, short growing seasons and periglacial processes, which has resulted in highly specialised plant communities. Hence, these snowpatch communities are among the most threatened from climate change. However, temporal dynamics in snowpatch microclimate and plant composition are rarely explored, especially in the marginal alpine environments of Australia. Seven snowpatches were categorised into early, mid and late snowmelt zones based on growing season length, with soil temperatures recorded from 2003 to 2020 and plant composition surveyed in 84 1 m2 quadrats in 2007, 2013 and 2020. Microclimate, species diversity, plant cover and composition, along with community-weighted trait means and plant strategies were assessed to understand snowpatch dynamics in response to climate change. We found that growing season length and temperatures have increased in late melt zones, while changes were less consistent in early and mid melt zones. There were few changes in species diversity, but increases in graminoids and declines in snowpatch specialists in mid and late melt zones. Community-weighted plant height, leaf area and leaf weight also increased, particularly in mid and late melt zones, while plant strategies shifted from compositions of ruderal-tolerant to stress-tolerant. Here, we show that snowpatch communities are rapidly changing in response to longer growing seasons and warmer temperatures, with the greatest changes occurring where snow persists the longest. The results highlight the climate-induced loss of defining biotic and abiotic characteristics of snowpatches, as temporal convergence of compositions along snowmelt gradients threatens the distinctiveness of snowpatch plant communities.
Collapse
|
6
|
Maihoff F, Friess N, Hoiss B, Schmid‐Egger C, Kerner J, Neumayer J, Hopfenmüller S, Bässler C, Müller J, Classen A. Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Fabienne Maihoff
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| | - Nicolas Friess
- Faculty of Geography University of Marburg Marburg Germany
| | - Bernhard Hoiss
- Bayerische Akademie für Naturschutz und Landschaftspflege Laufen Germany
| | | | - Janika Kerner
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| | | | - Sebastian Hopfenmüller
- Institute of Evolutionary Ecology and Conservation Genomics University of Ulm Ulm Germany
| | - Claus Bässler
- Department of Conservation Biology, Institute for Ecology, Evolution and Diversity University of Frankfurt Frankfurt am Main Germany
- National Park Bavarian Forest Grafenau Germany
| | - Jörg Müller
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
- National Park Bavarian Forest Grafenau Germany
| | - Alice Classen
- Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
| |
Collapse
|
7
|
Lee BR, Miller TK, Rosche C, Yang Y, Heberling JM, Kuebbing SE, Primack RB. Wildflower phenological escape differs by continent and spring temperature. Nat Commun 2022; 13:7157. [PMID: 36418327 PMCID: PMC9684453 DOI: 10.1038/s41467-022-34936-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Temperate understory plant species are at risk from climate change and anthropogenic threats that include increased deer herbivory, habitat loss, pollinator declines and mismatch, and nutrient pollution. Recent work suggests that spring ephemeral wildflowers may be at additional risk due to phenological mismatch with deciduous canopy trees. The study of this dynamic, commonly referred to as "phenological escape", and its sensitivity to spring temperature is limited to eastern North America. Here, we use herbarium specimens to show that phenological sensitivity to spring temperature is remarkably conserved for understory wildflowers across North America, Europe, and Asia, but that canopy trees in North America are significantly more sensitive to spring temperature compared to in Asia and Europe. We predict that advancing tree phenology will lead to decreasing spring light windows in North America while spring light windows will be maintained or even increase in Asia and Europe in response to projected climate warming.
Collapse
Affiliation(s)
- Benjamin R Lee
- Section of Botany, Carnegie Museum of Natural History, Pittsburgh, PA, USA.
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Holden Forests and Gardens, Kirtland, OH, USA.
- Biology Department, Boston University, Boston, MA, USA.
| | - Tara K Miller
- Biology Department, Boston University, Boston, MA, USA
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | - J Mason Heberling
- Section of Botany, Carnegie Museum of Natural History, Pittsburgh, PA, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara E Kuebbing
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Yale Applied Science Synthesis Program, The Forest School at the School of the Environment, Yale University, 195 Prospect Street, New Haven, CT, USA
| | | |
Collapse
|
8
|
Revuelto J, Gómez D, Alonso-González E, Vidaller I, Rojas-Heredia F, Deschamps-Berger C, García-Jiménez J, Rodríguez-López G, Sobrino J, Montorio R, Perez-Cabello F, López-Moreno JI. Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees. Sci Rep 2022; 12:18328. [PMID: 36316348 PMCID: PMC9622740 DOI: 10.1038/s41598-022-22391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022] Open
Abstract
In mountain areas, the phenology and productivity of grassland are closely related to snow dynamics. However, the influence that snow melt timing has on grassland growing still needs further attention for a full understanding, particularly at high spatial resolution. Aiming to reduce this knowledge gap, this work exploits 1 m resolution snow depth and Normalized Difference Vegetation Index observations acquired with an Unmanned Aerial Vehicle at a sub-alpine site in the Pyrenees. During two snow seasons (2019-2020 and 2020-2021), 14 NDVI and 17 snow depth distributions were acquired over 48 ha. Despite the snow dynamics being different in the two seasons, the response of grasslands greening to snow melt-out exhibited a very similar pattern in both. The NDVI temporal evolution in areas with distinct melt-out dates reveals that sectors where the melt-out date occurs in late April or early May (optimum melt-out) reach the maximum vegetation productivity. Zones with an earlier or a later melt-out rarely reach peak NDVI values. The results obtained in this study area, suggest that knowledge about snow depth distribution is not needed to understand NDVI grassland dynamics. The analysis did not reveal a clear link between the spatial variability in snow duration and the diversity and richness of grassland communities within the study area.
Collapse
Affiliation(s)
- J. Revuelto
- grid.452561.10000 0001 2159 7377Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - D. Gómez
- grid.452561.10000 0001 2159 7377Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - E. Alonso-González
- grid.500939.6Centre d’Etudes Spatiales de la Biosphère, CESBIO, Univ. Toulouse, CNES/CNRS/INRAE/IRD/UPS, Toulouse, France
| | - I. Vidaller
- grid.452561.10000 0001 2159 7377Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - F. Rojas-Heredia
- grid.452561.10000 0001 2159 7377Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - C. Deschamps-Berger
- grid.452561.10000 0001 2159 7377Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - J. García-Jiménez
- grid.452561.10000 0001 2159 7377Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - G. Rodríguez-López
- grid.11205.370000 0001 2152 8769Departamento de Análisis Económico, Universidad de Zaragoza, Zaragoza, Spain
| | - J. Sobrino
- grid.5515.40000000119578126Facultad de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - R. Montorio
- grid.11205.370000 0001 2152 8769Departamento de Geografía y Ordenación del Territorio-Instituto Universitario en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - F. Perez-Cabello
- grid.11205.370000 0001 2152 8769Departamento de Geografía y Ordenación del Territorio-Instituto Universitario en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain
| | - J. I. López-Moreno
- grid.452561.10000 0001 2159 7377Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| |
Collapse
|
9
|
Navarro J, Powers JM, Paul A, Campbell DR. Phenotypic plasticity and selection on leaf traits in response to snowmelt timing and summer precipitation. THE NEW PHYTOLOGIST 2022; 234:1477-1490. [PMID: 35274312 DOI: 10.1111/nph.18084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/09/2022] [Indexed: 05/21/2023]
Abstract
Vegetative traits of plants can respond directly to changes in the environment, such as those occurring under climate change. That phenotypic plasticity could be adaptive, maladaptive, or neutral. We manipulated the timing of spring snowmelt and amount of summer precipitation in factorial combination and examined responses of specific leaf area (SLA), trichome density, leaf water content (LWC), photosynthetic rate, stomatal conductance and intrinsic water-use efficiency (iWUE) in the subalpine herb Ipomopsis aggregata. The experiment was repeated in three years differing in natural timing of snowmelt. To examine natural selection, we used survival, relative growth rate, and flowering as fitness indices. A 50% reduction in summer precipitation reduced stomatal conductance and increased iWUE, and doubled precipitation increased LWC. Combining natural and experimental variation, earlier snowmelt reduced soil moisture, photosynthetic rate and stomatal conductance, and increased trichome density and iWUE. Precipitation reduction reversed the mortality selection favoring high stomatal conductance under normal and doubled precipitation, and higher LWC improved growth. Earlier snowmelt is a strong signal of climate change and can change expression of leaf morphology and gas exchange traits, just as reduced precipitation can. Stomatal conductance and SLA showed adaptive plasticity under some conditions.
Collapse
Affiliation(s)
- Jocelyn Navarro
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ, 85721, USA
- Rocky Mountain Biological Laboratory, 8000 County Road 317, Crested Butte, CO, 81224, USA
| | - John M Powers
- Rocky Mountain Biological Laboratory, 8000 County Road 317, Crested Butte, CO, 81224, USA
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, 92697, USA
| | - Ayaka Paul
- Rocky Mountain Biological Laboratory, 8000 County Road 317, Crested Butte, CO, 81224, USA
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Diane R Campbell
- Rocky Mountain Biological Laboratory, 8000 County Road 317, Crested Butte, CO, 81224, USA
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, 92697, USA
| |
Collapse
|
10
|
Drake A, Bishop CA, Moran AJ, Wilson S. Geographic and Temporal Variation in Annual Survival of a Declining Neotropical Migrant Hummingbird (Selasphorus rufus) Under Varying Fire, Snowpack, and Climatic Conditions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.825026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rufous hummingbirds (Selasphorus rufus) have shown consistent declines in abundance since 1970, with an acceleration in this trend starting in the mid-2000s. Demographic data is needed to isolate possible drivers. We employ mark-recapture data to calculate sex-specific adult apparent annual survival, accounting for residency probability, within the coastal and interior regions of British Columbia, Canada between 1998 and 2017. For the coastal region, we also examine associations between apparent survival and a suite of migratory factors: the amount of recently and historically burned flyway habitat, fall moisture availability in the alpine (snowpack), and a broad-scale climate index (SOI), under the assumption that these factors are associated with food availability during a critical period of the annual cycle. We find no trend in adult apparent survival over the 20-year period, implicating changes in recruitment rather than adult survival as driving the declining trend in abundance. Interior birds of both sexes showed lower residency probability than coastal individuals suggesting interior sites captured more late northbound individuals or more early southbound individuals within the breeding period. Adult apparent annual survival was not correlated with any of the migratory variables we examined. Our findings suggest a need to focus on juvenile recruitment as a possible driver of the long-term declines in Rufous Hummingbirds. Future studies should consider both potential threats to productivity on the breeding grounds and to juvenile survival on the non-breeding grounds.
Collapse
|
11
|
Lin Y, West G. Periconnection: A novel macroecological effect in snow cover phenology modulating ecosystem productivity over upper Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150164. [PMID: 34537700 DOI: 10.1016/j.scitotenv.2021.150164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Snow cover plays an important role in maintaining ecosystems. However, knowledge on how snow cover phenology (SP) modulates ecosystem productivity (EP), especially for the lower- and higher-productivity ecosystems, is limited yet. The situation becomes more embarrassed when asking a more in-depth question as to the macroecological pattern of SP modulating EP - does this process act with the neighborhood effect common in ecology or any other? To answer this question, we proposed a new concept of "periconnection", by following the way of defining "teleconnection" but also exploring the potential effect from the surrounding sites. In the case study of two published data of plant dynamics (1999-2013) and SP (2001-2014), we made a series of new findings as follows. Over upper Northern Hemisphere, the lower- and higher-productivity ecosystems presented weaker trends of productivity increasing than the entire ecosystems did. But for the ecosystems of all these three types, their productivity was all more sensitive to the snow-onset than -end SP. Further, the interannual variations of their productivity was all more modulated by the SP around - the neighborhood effect, in principle, was detected but also with other novel traits. Such modulations occurred more to north in North America while more to south in North Eurasia - termed directional effect. The first two inferences added the common knowledge of SP modulating EP, while the in-depth question was solved with the last two coherent effects, which compose a new macroecological beyond-neighborhood effect - periconnection. As a creative theoretical term and its principle framework in macroecology, this basic concept is of referencing implication on extensively advancing various sphere-interaction fields at other scales.
Collapse
Affiliation(s)
- Yi Lin
- School of Earth and Space Sciences, Peking University, Beijing 100871, China.
| | - Geoff West
- Department of Spatial Sciences, Curtin University of Technology, Perth 6708, Australia
| |
Collapse
|
12
|
Wagner J, Gruber K, Ladinig U, Buchner O, Neuner G. Winter Frosts Reduce Flower Bud Survival in High-Mountain Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:1507. [PMID: 34451552 PMCID: PMC8400932 DOI: 10.3390/plants10081507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
At higher elevations in the European Alps, plants may experience winter temperatures of -30 °C and lower at snow-free sites. Vegetative organs are usually sufficiently frost hardy to survive such low temperatures, but it is largely unknown if this also applies to generative structures. We investigated winter frost effects on flower buds in the cushion plants Saxifraga bryoides L. (subnival-nival) and Saxifraga moschata Wulfen (alpine-nival) growing at differently exposed sites, and the chionophilous cryptophyte Ranunculus glacialis L. (subnival-nival). Potted plants were subjected to short-time (ST) and long-time (LT) freezing between -10 and -30 °C in temperature-controlled freezers. Frost damage, ice nucleation and flowering frequency in summer were determined. Flower bud viability and flowering frequency decreased significantly with decreasing temperature and exposure time in both saxifrages. Already, -10 °C LT-freezing caused the first injuries. Below -20 °C, the mean losses were 47% (ST) and 75% (LT) in S. bryoides, and 19% (ST) and 38% (LT) in S. moschata. Winter buds of both saxifrages did not supercool, suggesting that damages were caused by freeze dehydration. R. glacialis remained largely undamaged down to -30 °C in the ST experiment, but did not survive permanent freezing below -20 °C. Winter snow cover is essential for the survival of flower buds and indirectly for reproductive fitness. This problem gains particular relevance in the context of winter periods with low precipitation and winter warming events leading to the melting of the protective snowpack.
Collapse
Affiliation(s)
- Johanna Wagner
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria; (K.G.); (U.L.); (O.B.)
| | | | | | | | - Gilbert Neuner
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria; (K.G.); (U.L.); (O.B.)
| |
Collapse
|
13
|
Kawai Y, Kudo G. Climate change shifts population structure and demographics of an alpine herb,
Anemone narcissiflora ssp. sachalinensis
(Ranunculaceae), along a snowmelt gradient. POPUL ECOL 2021. [DOI: 10.1002/1438-390x.12089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuka Kawai
- Faculty of Environmental Earth Science Hokkaido University Sapporo Hokkaido Japan
| | - Gaku Kudo
- Faculty of Environmental Earth Science Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
14
|
Climate Change, Ecosystem Processes and Biological Diversity Responses in High Elevation Communities. CLIMATE 2021. [DOI: 10.3390/cli9050087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The populations, species, and communities in high elevation mountainous regions at or above tree line are being impacted by the changing climate. Mountain systems have been recognized as both resilient and extremely threatened by climate change, requiring a more nuanced understanding of potential trajectories of the biotic communities. For high elevation systems in particular, we need to consider how the interactions among climate drivers and topography currently structure the diversity, species composition, and life-history strategies of these communities. Further, predicting biotic responses to changing climate requires knowledge of intra- and inter-specific climate associations within the context of topographically heterogenous landscapes. Changes in temperature, snow, and rain characteristics at regional scales are amplified or attenuated by slope, aspect, and wind patterns occurring at local scales that are often under a hectare or even a meter in extent. Community assemblages are structured by the soil moisture and growing season duration at these local sites, and directional climate change has the potential to alter these two drivers together, independently, or in opposition to one another due to local, intervening variables. Changes threaten species whose water and growing season duration requirements are locally extirpated or species who may be outcompeted by nearby faster-growing, warmer/drier adapted species. However, barring non-analogue climate conditions, species may also be able to more easily track required resource regimes in topographically heterogenous landscapes. New species arrivals composed of competitors, predators and pathogens can further mediate the direct impacts of the changing climate. Plants are moving uphill, demonstrating primary succession with the emergence of new habitats from snow and rock, but these shifts are constrained over the short term by soil limitations and microbes and ultimately by the lack of colonizable terrestrial surfaces. Meanwhile, both subalpine herbaceous and woody species pose threats to more cold-adapted species. Overall, the multiple interacting direct and indirect effects of the changing climate on high elevation systems may lead to multiple potential trajectories for these systems.
Collapse
|
15
|
Arroyo MTK, Tamburrino Í, Pliscoff P, Robles V, Colldecarrera M, Guerrero PC. Flowering Phenology Adjustment and Flower Longevity in a South American Alpine Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10030461. [PMID: 33671053 PMCID: PMC7997458 DOI: 10.3390/plants10030461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 05/30/2023]
Abstract
Delayed flowering due to later snowmelt and colder temperatures at higher elevations in the alpine are expected to lead to flowering phenological adjustment to prevent decoupling of peak flowering from the warmest time of the year, thereby favoring pollination. However, even if flowering is brought forward in the season at higher elevations, an elevational temperature gap is likely to remain between the high- and low-elevation populations of a species at the time these reach peak flowering on account of the atmospheric reduction in temperature with increasing elevation. The negative effect of this temperature gap on pollination could be compensated by plastically-prolonged flower life spans at higher elevations, increasing the probability of pollination. In a tightly temperature-controlled study, the flowering phenology adjustment and flower longevity compensation hypotheses were investigated in an alpine species in the Andes of central Chile. The snow free period varied from 7 to 8.2 months over 810 m elevation. Temperatures were suitable for growth on 82-98% of the snow free days. Flowering onset was temporally displaced at the rate of 4.6 d per 100 m increase in elevation and flowering was more synchronous at higher elevations. Flowering phenology was adjusted over elevation. The latter was manifest in thermal sums tending to decrease with elevation for population flowering onset, 50% flowering, and peak flowering when the lower thermal limit for growth (TBASE) was held constant over elevation. For TBASE graded over elevation so as to reflect the growing season temperature decline, thermal sums did not vary with elevation, opening the door to a possible elevational decline in the thermal temperature threshold for growth. Potential flower longevity was reduced by passive warming and was more prolonged in natural populations when temperatures were lower, indicating a plastic trait. Pollination rates, as evaluated with the Relative Pollination Rate index (RPR), when weighted for differences in floral abundance over the flowering season, declined with elevation as did fruit set. Contrary to expectation, the life-spans of flowers at higher elevations were not more prolonged and failed to compensate for the elevational decrease in pollination rates. Although strong evidence for phenological adjustment was forthcoming, flower longevity compensation did not occur over Oxalis squamata´s elevational range. Thus, flower longevity compensation is not applicable in all alpine species. Comparison with work conducted several decades ago on the same species in the same area provides valuable clues regarding the effects of climate change on flowering phenology and fitness in the central Chilean alpine where temperatures have been increasing and winter snow accumulation has been declining.
Collapse
Affiliation(s)
- Mary T. K. Arroyo
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile; (Í.T.); (V.R.)
- Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Santiago 7800003, Chile;
| | - Ítalo Tamburrino
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile; (Í.T.); (V.R.)
- Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Santiago 7800003, Chile;
| | - Patricio Pliscoff
- Departamento de Ecología, Facultad de Ciencias Biológicas, Ponticia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile;
- Instituto de Geografía, Facultad de Historia, Geografía y Ciencia Política, Ponticia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
| | - Valeria Robles
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile; (Í.T.); (V.R.)
- Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Santiago 7800003, Chile;
| | - Maria Colldecarrera
- Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Santiago 7800003, Chile;
| | - Pablo C. Guerrero
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, Casilla 160C, Concepción 4030000, Chile;
| |
Collapse
|
16
|
Verrall B, Pickering CM. Alpine vegetation in the context of climate change: A global review of past research and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141344. [PMID: 32814293 DOI: 10.1016/j.scitotenv.2020.141344] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Climate change is causing extensive alterations to ecosystems globally, with some more vulnerable than others. Alpine ecosystems, characterised by low-temperatures and cryophilic vegetation, provide ecosystems services for billions of people but are considered among the most susceptible to climate change. Therefore, it is timely to review research on climate change on alpine vegetation including assessing trends, topics, themes and gaps. Using a multicomponent bibliometric approach, we extracted bibliometric metadata from 3143 publications identified by searching titles, keywords and abstracts for research on 'climate change' and 'alpine vegetation' from Scopus and Web of Science. While primarily focusing on 'alpine vegetation', some literature that also assessed vegetation below the treeline was captured. There has been an exponential increase in research over 50 years, greater engagement and diversification in who does research, and where it is published and conducted, with increasing focus beyond Europe, particularly in China. Content analysis of titles, keywords and abstracts revealed that most of the research has focused on alpine grasslands but there have been relatively few publications that examine specialist vegetation communities such as snowbeds, subnival vegetation and fellfields. Important themes emerged from analysis of keywords, including treelines and vegetation dynamics, biodiversity, the Tibetan Plateau as well as grasslands and meadows. Traditional ecological monitoring techniques were important early on, but remote sensing has become the primary method for assessment. A key book on alpine plants, the IPCC reports and a few papers in leading journals underpin much of the research. Overall, research on this topic is increasing, with new methods and directions but thematic and geographical gaps remain particularly for research on extreme climatic events, and research in South America, in part due to limited capacity for research on these rare but valuable ecosystems.
Collapse
Affiliation(s)
- Brodie Verrall
- Environment Futures Research Institute and School of Environment and Sciences, Griffith University, Queensland, Australia.
| | - Catherine Marina Pickering
- Environment Futures Research Institute and School of Environment and Sciences, Griffith University, Queensland, Australia
| |
Collapse
|
17
|
Yang Y, Klein JA, Winkler DE, Peng A, Lazarus BE, Germino MJ, Suding KN, Smith JG, Kueppers LM. Warming of alpine tundra enhances belowground production and shifts community towards resource acquisition traits. Ecosphere 2020. [DOI: 10.1002/ecs2.3270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yan Yang
- Institute of Mountain Hazards and Environment Chinese Academy of Sciences No. 9 Section 4, Renminnan Road Chengdu Sichuan 610041 China
- Department of Ecosystem Science and Sustainability Colorado State University Campus Delivery 1476 Fort Collins Colorado 80523 USA
| | - Julia A. Klein
- Department of Ecosystem Science and Sustainability Colorado State University Campus Delivery 1476 Fort Collins Colorado 80523 USA
| | - Daniel E. Winkler
- Southwest Biological Science Center United States Geological Survey 2290 S West Resource Boulevard Moab Utah 84532 USA
| | - Ahui Peng
- Institute of Mountain Hazards and Environment Chinese Academy of Sciences No. 9 Section 4, Renminnan Road Chengdu Sichuan 610041 China
| | - Brynne E. Lazarus
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center 970 Lusk Street Boise Idaho 83706 USA
| | - Matthew J. Germino
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center 970 Lusk Street Boise Idaho 83706 USA
| | - Katharine N. Suding
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado 80309‐0450 USA
| | - Jane G. Smith
- Institute of Arctic and Alpine Research University of Colorado Boulder Colorado 80309‐0450 USA
| | - Lara M. Kueppers
- Energy and Resources Group University of California, Berkeley 310 Barrows Hall #3050 Berkeley California 94720 USA
| |
Collapse
|
18
|
Jabis MD, Winkler DE, Kueppers LM. Warming acts through earlier snowmelt to advance but not extend alpine community flowering. Ecology 2020; 101:e03108. [DOI: 10.1002/ecy.3108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/04/2020] [Accepted: 04/21/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Meredith D. Jabis
- Department of Environmental Science, Policy and Management University of California Berkeley 133 Mulford Hall Berkeley California 94720‐3114 USA
| | - Daniel E. Winkler
- Department of Ecology and Evolutionary Biology University of California 321 Steinhaus Hall Irvine California 92697‐2525 USA
- United States Geological Survey Southwest Biological Science Center 2290 S W Resource Boulevard Moab Utah 84532 USA
| | - Lara M. Kueppers
- Energy and Resources Group University of California Berkeley 310 Barrows Hall Berkeley California 94720‐3050 USA
- Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley California 94720 USA
| |
Collapse
|
19
|
Westover ML, Smith FA. Investigating the role of environment in pika (Ochotona) body size patterns across taxonomic levels, space, and time. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Body size is an important trait in animals because it influences a multitude of additional life history traits. The causal mechanisms underlying body size patterns across spatial, temporal, and taxonomic hierarchies are debated, and of renewed interest in this era of climate change. Here, we tested multiple hypotheses regarding body mass patterns at the intraspecific and interspecific levels. We investigated body size patterns within a climate-sensitive small mammal species, Ochotona princeps (n = 2,873 individuals), across their range with local environmental variables. We also examined body mass of populations over time to determine if body size has evolved in situ in response to environmental change. At the interspecific level we compared the mean mass of 26 pika species (genus Ochotona) to determine if environmental temperatures, food availability, habitat variability, or range area influence body size. We found correlations between temperature, vegetation, and particularly precipitation variables, with body mass within O. princeps, but no linear relationship between body size and any climate or habitat variable for Ochotona species. Body size trends in relation to climate were stronger at the intraspecific than the interspecific level. Our results suggest that body size within O. princeps likely is related to food availability, and that body size evolution is not always a viable response to temperature change. Different mechanisms may be driving body size at the interspecific and intraspecific levels and factors other than environment, such as biotic interactions, may also be influential in determining body size over space and time.
Collapse
Affiliation(s)
- Marie L Westover
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Felisa A Smith
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
20
|
Tao Y, Wang Z, Ma C, He H, Xu J, Jin Y, Wang H, Zheng X. Soil Mesofauna Respond to the Upward Expansion of Deyeuxia purpurea in the Alpine Tundra of the Changbai Mountains, China. PLANTS 2019; 8:plants8120615. [PMID: 31861181 PMCID: PMC6963277 DOI: 10.3390/plants8120615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022]
Abstract
Deyeuxia purpurea, a low-altitude species, has been expanding upwards into alpine tundra, and this upward expansion is causing serious ecological consequences. However, few studies have been performed regarding its effects on soil faunal communities. We examine how the upward expansion of D. purpurea affects the abundance, richness, and diversity of soil mesofauna, and evaluate how different taxa of soil mesofauna respond to the upward expansion of D. purpurea in the alpine tundra of Changbai Mountains, northeast China. A total of 128 soil mesofaunal samples were collected from four treatments, namely high upward expansion (HU), medium upward expansion (MU), low upward expansion (LU), and native plant habitats (NP). The results revealed that the abundance of soil mesofauna was increased with the rise of D. purpurea upward expansion, and the taxonomic composition varied with the different levels of D. purpurea upward expansion in the alpine tundra of the Changbai Mountains. No unique taxa were collected in the native plant habitats, and the upward expansion of D. purpurea promoted the colonization of predatory invertebrates. Isotomidae and Gamasida responded positively to the herbaceous plant upward expansion, and thus they were considered to be a positive indicator of upward expansion. Hypogastruridae and Enchytraeidae responded relatively negatively, while Oribatida, Actinedida, and Pseudachorutidae had ambivalent responses to the upward expansion. Overall, the abundance of soil mesofauna can indicate the levels of the upward expansion of D. purpurea. Soil mesofaunal guild characteristics were altered by the upward expansion. The different taxa of soil mesofauna responded to herbaceous plants’ upward expansion to various degrees. Therefore, this study provide evidence supporting the fact that the abundance of soil mesofauna can indicate the levels of upward expansion of D. purpurea, but the responses of soil mesofauna to the upward expansion of D. purpurea differ among their taxa.
Collapse
Affiliation(s)
- Yan Tao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, Jilin Province, China; (Y.T.); (Z.W.); (H.H.); (J.X.); (Y.J.); (H.W.); (X.Z.)
| | - Zhongqiang Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, Jilin Province, China; (Y.T.); (Z.W.); (H.H.); (J.X.); (Y.J.); (H.W.); (X.Z.)
| | - Chen Ma
- School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, China
- Correspondence: ; Tel.: +86-185-0431-4175
| | - Hongshi He
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, Jilin Province, China; (Y.T.); (Z.W.); (H.H.); (J.X.); (Y.J.); (H.W.); (X.Z.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Jiawei Xu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, Jilin Province, China; (Y.T.); (Z.W.); (H.H.); (J.X.); (Y.J.); (H.W.); (X.Z.)
| | - Yinghua Jin
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, Jilin Province, China; (Y.T.); (Z.W.); (H.H.); (J.X.); (Y.J.); (H.W.); (X.Z.)
| | - Haixia Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, Jilin Province, China; (Y.T.); (Z.W.); (H.H.); (J.X.); (Y.J.); (H.W.); (X.Z.)
| | - Xiaoxue Zheng
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, Jilin Province, China; (Y.T.); (Z.W.); (H.H.); (J.X.); (Y.J.); (H.W.); (X.Z.)
| |
Collapse
|
21
|
Characterizing ecosystem phenological diversity and its macroecology with snow cover phenology. Sci Rep 2019; 9:15074. [PMID: 31636336 PMCID: PMC6803678 DOI: 10.1038/s41598-019-51602-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/04/2019] [Indexed: 11/23/2022] Open
Abstract
One critical challenge of exploring flora phenology is on characterizing ecosystem phenological diversity (EPD), and thus how EPD’s performance is influenced by climate changes has also been an open macro-ecological question. To fill these two gaps, we proposed an innovative method for reflecting EPD, by taking the advantage of the often-classified inverse factor of spatial resolution discrepancy between the used remote sensing datasets of vegetation phenological dates (green-up and brown-up) and snow cover phenological dates (SPDs) (onset and end) around the Arctic, and further, we examined the cross response/feedbacks of the two kinds of EPDs to the two categories of SPDs. We found that the circumpolar green-up and brown-up EPDs both were shrinking, driven more by the delaying of the onset SPDs than the advancing of the end SPDs; North America and North Eurasia performed with inconsistent EPD response/feedbacks to the related SPD anomalies; and further, the EPD-SPD response/feedbacks in some locations exhibited the time-lag effect, e.g., the green-up EPDs made the strongest response to the onset SPDs of two years earlier. Overall, the validated method and the new findings are of implications for improving the phenology modules in Earth system models, and the contributions of the present study have enlightening significance for kicking off the new EPD branch in macrosystem phenological ecology.
Collapse
|
22
|
Marx HE, Richards M, Johnson GM, Tank DC. Increasing phylogenetic stochasticity at high elevations on summits across a remote North American wilderness. AMERICAN JOURNAL OF BOTANY 2019; 106:958-970. [PMID: 31291472 DOI: 10.1002/ajb2.1328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
PREMISE At the intersection of ecology and evolutionary biology, community phylogenetics can provide insights into overarching biodiversity patterns, particularly in remote and understudied ecosystems. To understand community assembly of the high alpine flora in the Sawtooth National Forest, USA, we analyzed phylogenetic structure within and between nine summit communities. METHODS We used high-throughput sequencing to supplement existing data and infer a nearly completely sampled community phylogeny of the alpine vascular flora. We calculated mean nearest taxon distance (MNTD) and mean pairwise distance (MPD) to quantify phylogenetic divergence within summits, and assessed whether maximum elevation explains phylogenetic structure. To evaluate similarities between summits, we quantified phylogenetic turnover, taking into consideration microhabitats (talus vs. meadows). RESULTS We found different patterns of community phylogenetic structure within the six most species-rich orders, but across all vascular plants phylogenetic structure was largely not different from random. There was a significant negative correlation between elevation and tree-wide phylogenetic diversity (MPD) within summits: overdispersion degraded as elevation increased. Between summits, we found high phylogenetic turnover driven by greater niche heterogeneity on summits with alpine meadows. CONCLUSIONS Our results provide further evidence that stochastic processes may also play an important role in the assembly of vascular plant communities in high alpine habitats at regional scales. However, order-specific patterns suggest that adaptations are still important for assembly of specific sectors of the plant tree of life. Further studies quantifying functional diversity will be important in disentangling the interplay of eco-evolutionary processes that likely shape broad community phylogenetic patterns in extreme environments.
Collapse
Affiliation(s)
- Hannah E Marx
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
| | - Melissa Richards
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
| | - Grahm M Johnson
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Dr. MS 3026, Moscow, Idaho, 83844-3026, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, 875 Perimeter Dr. MS 3051, Moscow, Idaho, 83844-3051, USA
- Stillinger Herbarium, University of Idaho, 875 Perimeter Dr. MS 3026, Moscow, Idaho, 83844-3026, USA
| |
Collapse
|
23
|
Tonin R, Gerdol R, Tomaselli M, Petraglia A, Carbognani M, Wellstein C. Intraspecific Functional Trait Response to Advanced Snowmelt Suggests Increase of Growth Potential but Decrease of Seed Production in Snowbed Plant Species. FRONTIERS IN PLANT SCIENCE 2019; 10:289. [PMID: 30923530 PMCID: PMC6426784 DOI: 10.3389/fpls.2019.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
In ecological theory, it is currently unclear if intraspecific trait responses to environmental variation are shared across plant species. We use one of the strongest environmental variations in alpine ecosystems, i.e., advanced snowmelt due to climate warming, to answer this question for alpine snowbed plants. Snowbeds are extreme habitats where long-lasting snow cover represents the key environmental factor affecting plant life. Intraspecific variation in plant functional traits is a key to understanding the performance and vulnerability of species in a rapidly changing environment. We sampled snowbed species after an above-average warm winter to assess their phenotypic adjustment to advanced snowmelt, based on differences in the natural snowmelt dynamics with magnitudes reflecting predicted future warming. We measured nine functional traits related to plant growth and reproduction in seven vascular species, comparing snowbeds of early and late snowmelt across four snowbed sites in the southern Alps in Italy. The early snowbeds provide a proxy for the advanced snowmelt caused by climatic warming. Seed production was reduced under advanced snowmelt in all seed-forming snowbed species. Higher specific leaf area (SLA) and lower leaf dry matter content (LDMC) were indicative of improved growth potential in most seed-forming species under advanced snowmelt. We conclude, first, that in the short term, advanced snowmelt can improve snowbed species' growth potential. However, in the long term, results from other studies hint at increasing competition in case of ongoing improvement of conditions for plant growth under continued future climate warming, representing a risk for snowbed species. Second, a lower seed production can negatively affect the seed rain. A reduction of propagule pressure can be crucial in a context of loss of the present snowbed sites and the formation of new ones at higher altitudes along with climate warming. Finally, our findings encourage using plant functional traits at the intraspecific level across species as a tool to understand the future ecological challenges of plants in changing environments.
Collapse
Affiliation(s)
- Rita Tonin
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Renato Gerdol
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marcello Tomaselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Camilla Wellstein
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
24
|
Kawai Y, Kudo G. Variations in ramet performance and the dynamics of an alpine evergreen herb, Gentiana nipponica, in different snowmelt conditions. AMERICAN JOURNAL OF BOTANY 2018; 105:1813-1823. [PMID: 30388310 DOI: 10.1002/ajb2.1186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Variation in demographic parameters reflects the life-history strategies of plants in response to specific environments. We aimed to investigate the intraspecific variation in life-history traits of a clonal alpine herb, Gentiana nipponica, in various snowmelt conditions. METHODS Individual ramets within genets accumulate leaves for 7-9 yr without shedding, and die after reproduction. We tested the physiological function of accumulated leaves for reproduction and monitored the ramet demography in early, intermediate, and late snowmelt populations over 3 yr. Then, we simulated ramet dynamics using the demographic parameters. KEY RESULTS Old leaves had a carbon storage function, and the initiation of reproduction depended on the amount of ramet leaves. Growth and reproductive performance were highest in the population with an intermediate snowmelt period. The early snowmelt population showed short persistence periods due to restricted growth and high mortality of the ramets. The late snowmelt populations showed slow growth, but high survival rate of the ramets, in which the ramet size at reproduction was smallest and fruit formation was often suppressed by the short growing period. CONCLUSIONS Limiting factors dictating the distribution of G. nipponica differed between the early and late snowmelt habitats. High mortality and restricted growth, because of the harsh environment, determine the distribution limit toward earlier snowmelt locations. By contrast, late snowmelt strongly limited fecundity because of the short period for fruit maturation. The difference in snowmelt time provides a clear gradient of selective forces that may promote local adaptation among neighboring populations.
Collapse
Affiliation(s)
- Yuka Kawai
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Gaku Kudo
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|