1
|
Chi Y, Li Y, Ding C, Liu X, Luo M, Wang Z, Bi Y, Luo S. Structural and biofunctional diversity of sulfated polysaccharides from the genus Codium (Bryopsidales, Chlorophyta): A review. Int J Biol Macromol 2024; 263:130364. [PMID: 38401579 DOI: 10.1016/j.ijbiomac.2024.130364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
It is believed that polysaccharides will become a focal point for future production of food, pharmaceuticals, and materials due to their ubiquitous and renewable nature, as well as their exceptional properties that have been extensively validated in the fields of nutrition, healthcare, and materials. Sulfated polysaccharides derived from seaweed sources have attracted considerable attention owing to their distinctive structures and properties. The genus Codium, represented by the species C. fragile, holds significance as a vital economic green seaweed and serves as a traditional Chinese medicinal herb. To date, the cell walls of the genus Codium have been found to contain at least four types of sulfated polysaccharides, specifically pyruvylated β-d-galactan sulfates, sulfated arabinogalactans, sulfated β-l-arabinans, and sulfated β-d-mannans. These sulfated polysaccharides exhibit diverse biofunctions, including anticoagulant, immune-enhancing, anticancer, antioxidant activities, and drug-carrying capacity. This review explores the structural and biofunctional diversity of sulfated polysaccharides derived from the genus Codium. Additionally, in addressing the impending challenges within the industrialization of these polysaccharides, encompassing concerns regarding scale-up production and quality control, we outline potential strategies to address these challenges from the perspectives of raw materials, extraction processes, purification technologies, and methods for quality control.
Collapse
Affiliation(s)
- Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.
| | - Yang Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Chengcheng Ding
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Xiao Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Meilin Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| |
Collapse
|
2
|
Kumari N, Kumar M, Radha, Rais N, Puri S, Sharma K, Natta S, Dhumal S, Damale RD, Kumar S, Senapathy M, Deshmukh SV, Anitha T, Prabhu T, Shenbagavalli S, Balamurugan V, Lorenzo JM, Kennedy JF. Exploring apple pectic polysaccharides: Extraction, characterization, and biological activities - A comprehensive review. Int J Biol Macromol 2024; 255:128011. [PMID: 37951444 DOI: 10.1016/j.ijbiomac.2023.128011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Apple (Malus domestica) is a popular and ancient fruit of the Myrtaceae family. Apple fruit is well-known for its great nutritional and phytochemical content consisted of beneficial compounds such as polyphenols, polysaccharides, sterols, and organic acids. Polysaccharides extracted from different parts of the apple fruit, including the peel, pomace, or the whole fruit, have been extensively studied. Researchers have investigated the structural characteristics of these polysaccharides, such as molecular weight, type of monosaccharide unit, type of linkage and its position and arrangement. Besides this, functional properties and physicochemical and of apple polysaccharides have also been studied, along with the effects of extraction procedures, storage, and processing on cell wall polysaccharides. Various extraction techniques, including hot water extraction, enzymatic extraction, and solvent-assisted extraction, have been studied. From the findings, it was evident that apple polysaccharides are mainly composed of (1 → 3), (1 → 6): α-β-glycosidic linkage. Moreover, the apple polysaccharides were demonstrated to exhibit antioxidant, hepatoprotective, anti-cancer, hypoilipidemic, and enzyme inhibitory properties in vitro and in vivo. The potential applications of apple polysaccharides in the food, cosmetic, pharmaceutical, nutraceutical industries have also been explored in the present review. Overall, the research on apple polysaccharides highlights their significant potential as a source of biologically active compounds with various health benefits and practical applications.
Collapse
Affiliation(s)
- Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India.
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan 305004, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Suman Natta
- ICAR-National Research Centre for Orchids, Pakyong 737106, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Rahul D Damale
- ICAR-National Research Centre on Pomegranate, Solapur 413255, India
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram 250110, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Sheetal Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - T Prabhu
- Department of Spices and Plantation Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - S Shenbagavalli
- Department of Natural Resource and Management, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - V Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia n° 4, San Cibrao das Viñas, 32900 Ourense, Spain
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
3
|
Glycoside Hydrolase family 30 harbors fungal subfamilies with distinct polysaccharide specificities. N Biotechnol 2021; 67:32-41. [PMID: 34952234 DOI: 10.1016/j.nbt.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022]
Abstract
Efficient bioconversion of agro-industrial side streams requires a wide range of enzyme activities. Glycoside Hydrolase family 30 (GH30) is a diverse family that contains various catalytic functions and has so far been divided into ten subfamilies (GH30_1-10). In this study, a GH30 phylogenetic tree using over 150 amino acid sequences was contructed. The members of GH30 cluster into four subfamilies and eleven candidates from these subfamilies were selected for biochemical characterization. Novel enzyme activities were identified in GH30. GH30_3 enzymes possess β-(1→6)-glucanase activity. GH30_5 targets β-(1→6)-galactan with mainly β-(1→6)-galactobiohydrolase catalytic behavior. β-(1→4)-Xylanolytic enzymes belong to GH30_7 targeting β-(1→4)-xylan with several activities (e.g. xylobiohydrolase, endoxylanase). Additionally, a new fungal subfamily in GH30 was proposed, i.e. GH30_11, which displays β-(1→6)-galactobiohydrolase. This study confirmed that GH30 fungal subfamilies harbor distinct polysaccharide specificity and have high potential for the production of short (non-digestible) di- and oligosaccharides.
Collapse
|
4
|
Cell Wall Polysaccharides. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
5
|
Schmid V, Trabert A, Keller J(S, Bunzel M, Karbstein HP, Emin MA. Functionalization of Enzymatically Treated Apple Pomace from Juice Production by Extrusion Processing. Foods 2021; 10:foods10030485. [PMID: 33668342 PMCID: PMC7996331 DOI: 10.3390/foods10030485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Food by-products can be used as natural and sustainable food ingredients. However, a modification is needed to improve the technofunctional properties according to the specific needs of designated applications. A lab-scale twin-screw extruder was used to process enzymatically treated apple pomace from commercial fruit juice production. To vary the range of the thermomechanical treatment, various screw speeds (200, 600, 1000 min−1), and screw configurations were applied to the raw material. Detailed chemical and functional analyses were performed to develop a comprehensive understanding of the impact of the extrusion processing on apple pomace composition and technofunctional properties as well as structures of individual polymers. Extrusion at moderate thermomechanical conditions increased the water absorption, swelling, and viscosity of the material. An increase in thermomechanical stress resulted in a higher water solubility index, but negatively affected the water absorption index, viscosity, and swelling. Scanning electron microscopy showed an extrusion-processing-related disruption of the cell wall. Dietary fiber analysis revealed an increase of soluble dietary fiber from 12.6 to 17.2 g/100 g dry matter at maximum thermo-mechanical treatment. Dietary fiber polysaccharide analysis demonstrated compositional changes, mainly in the insoluble dietary fiber fraction. In short, pectin polysaccharides seem to be susceptible to thermo-mechanical stress, especially arabinans as neutral side chains of rhamnogalacturonan I.
Collapse
Affiliation(s)
- Vera Schmid
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (V.S.); (H.P.K.)
| | - Antje Trabert
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.T.); (J.K.); (M.B.)
| | - Judith (Schäfer) Keller
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.T.); (J.K.); (M.B.)
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (A.T.); (J.K.); (M.B.)
| | - Heike P. Karbstein
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (V.S.); (H.P.K.)
| | - M. Azad Emin
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (V.S.); (H.P.K.)
- Correspondence: ; Tel.: +49-721-608-48311
| |
Collapse
|
6
|
Lemaire A, Duran Garzon C, Perrin A, Habrylo O, Trezel P, Bassard S, Lefebvre V, Van Wuytswinkel O, Guillaume A, Pau-Roblot C, Pelloux J. Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydr Polym 2020; 248:116752. [DOI: 10.1016/j.carbpol.2020.116752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
|
7
|
McGregor NGS, Turkenburg JP, Mørkeberg Krogh KBR, Nielsen JE, Artola M, Stubbs KA, Overkleeft HS, Davies GJ. Structure of a GH51 α-L-arabinofuranosidase from Meripilus giganteus: conserved substrate recognition from bacteria to fungi. Acta Crystallogr D Struct Biol 2020; 76:1124-1133. [PMID: 33135683 PMCID: PMC7604909 DOI: 10.1107/s205979832001253x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 03/17/2023] Open
Abstract
α-L-Arabinofuranosidases from glycoside hydrolase family 51 use a stereochemically retaining hydrolytic mechanism to liberate nonreducing terminal α-L-arabinofuranose residues from plant polysaccharides such as arabinoxylan and arabinan. To date, more than ten fungal GH51 α-L-arabinofuranosidases have been functionally characterized, yet no structure of a fungal GH51 enzyme has been solved. In contrast, seven bacterial GH51 enzyme structures, with low sequence similarity to the fungal GH51 enzymes, have been determined. Here, the crystallization and structural characterization of MgGH51, an industrially relevant GH51 α-L-arabinofuranosidase cloned from Meripilus giganteus, are reported. Three crystal forms were grown in different crystallization conditions. The unliganded structure was solved using sulfur SAD data collected from a single crystal using the I23 in vacuo diffraction beamline at Diamond Light Source. Crystal soaks with arabinose, 1,4-dideoxy-1,4-imino-L-arabinitol and two cyclophellitol-derived arabinose mimics reveal a conserved catalytic site and conformational itinerary between fungal and bacterial GH51 α-L-arabinofuranosidases.
Collapse
Affiliation(s)
- Nicholas G. S. McGregor
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | - Jens Erik Nielsen
- Protein Biochemistry and Stability, Novozymes A/S, Krogshøjvej 36, 2880 Bagsvaerd, Denmark
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Gideon J. Davies
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
8
|
Roch L, Prigent S, Klose H, Cakpo CB, Beauvoit B, Deborde C, Fouillen L, van Delft P, Jacob D, Usadel B, Dai Z, Génard M, Vercambre G, Colombié S, Moing A, Gibon Y. Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5823-5836. [PMID: 32592486 PMCID: PMC7540837 DOI: 10.1093/jxb/eraa302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Fleshy fruits are very varied, whether in terms of their composition, physiology, or rate and duration of growth. To understand the mechanisms that link metabolism to phenotypes, which would help the targeting of breeding strategies, we compared eight fleshy fruit species during development and ripening. Three herbaceous (eggplant, pepper, and cucumber), three tree (apple, peach, and clementine) and two vine (kiwifruit and grape) species were selected for their diversity. Fruit fresh weight and biomass composition, including the major soluble and insoluble components, were determined throughout fruit development and ripening. Best-fitting models of fruit weight were used to estimate relative growth rate (RGR), which was significantly correlated with several biomass components, especially protein content (R=84), stearate (R=0.72), palmitate (R=0.72), and lignocerate (R=0.68). The strong link between biomass composition and RGR was further evidenced by generalized linear models that predicted RGR with R-values exceeding 0.9. Comparison of the fruit also showed that climacteric fruit (apple, peach, kiwifruit) contained more non-cellulosic cell-wall glucose and fucose, and more starch, than non-climacteric fruit. The rate of starch net accumulation was also higher in climacteric fruit. These results suggest that the way biomass is constructed has a major influence on performance, especially growth rate.
Collapse
Affiliation(s)
- Léa Roch
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Sylvain Prigent
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Holger Klose
- Institute for Biology, BioSC, RWTH Aachen University, Worringer Weg, Aachen, Germany
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Bertrand Beauvoit
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Catherine Deborde
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Laetitia Fouillen
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- UMR 5200, CNRS, Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Pierre van Delft
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- UMR 5200, CNRS, Univ. Bordeaux, Laboratoire de Biogenèse Membranaire, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Daniel Jacob
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Björn Usadel
- Institute for Biology, BioSC, RWTH Aachen University, Worringer Weg, Aachen, Germany
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Zhanwu Dai
- UMR 1287 EGFV, INRAE, Univ. Bordeaux, Bordeaux Sci Agro, Villenave d’Ornon, France
| | | | | | - Sophie Colombié
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Annick Moing
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine – Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d’Ornon, France
| |
Collapse
|
9
|
Modification of Apple Pomace by Extrusion Processing: Studies on the Composition, Polymer Structures, and Functional Properties. Foods 2020; 9:foods9101385. [PMID: 33019534 PMCID: PMC7601807 DOI: 10.3390/foods9101385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/29/2023] Open
Abstract
By-products of fruit and vegetable processing are an inexpensive and sustainable source of dietary fiber, potentially offering valuable functional properties such as water binding and thickening. Due to these favorable properties, they can be utilized to reformulate widely-consumed foods, e.g., bakery products or beverages. In this study, apple pomace was used as a model system to study whether extrusion technology affects food by-product functionality and thus has the potential to broaden the application of by-products in foods. The effect of the process parameters and the extent of thermo-mechanical treatment on the structural and functional properties of apple pomace were analyzed after extrusion trials using various screw speeds, water contents, and barrel temperatures. Compared to the raw material, apple pomace extruded at Tbarrel = 100 °C, n = 700 min-1 and mH2O = 17% showed an increased water solubility up to 33%. The water absorption increased from 5 to 19 Pa·s and the paste viscosity from 5 to 339 Pa·s by extrusion processing. Analyses of dietary fiber contents and fiber polysaccharide structures revealed that thermo-mechanical stress (n = 700 min-1, mH2O = 22%) increased the content of soluble dietary fiber from 12.5 to 16.7 g/100 g dry matter, and that the harshest conditions even enabled the formation of low-molecular-weight dietary fiber. Arabinans (as neutral rhamnogalacturonan I side chains) appeared to be most sensitive to thermo-mechanical stress, whereas xylans (i.e., a group of minor polysaccharides) were an example of a more stable fiber polysaccharide. Also, the degree of methylation of the pectic polysaccharides was strongly reduced from 50% to 15% when thermo-mechanical stress was applied. Imaging and pore size analysis showed that extrusion processing could disrupt the rigid cell wall macromolecular structure.
Collapse
|
10
|
Ye M, Yu J, Shi X, Zhu J, Gao X, Liu W. Polysaccharides catabolism by the human gut bacterium - Bacteroides thetaiotaomicron: advances and perspectives. Crit Rev Food Sci Nutr 2020; 61:3569-3588. [PMID: 32779480 DOI: 10.1080/10408398.2020.1803198] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the degradation processes of polysaccharides by human gut microbiota are receiving considerable attention due to the discoveries of the powerful function of gut microbiota. Gut microbiota has developed a sensitive, accurate, and complex system for sensing, capturing, and degrading different polysaccharides. Among the gut microbiota, Bacteroides thetaiotaomicron, a representative species of Bacteroides, is considered as the best degrader of polysaccharides and a potential probiotic in pharmaceutical and food industries. Here, we summarize the degradation system of B. thetaiotaomicron and the degradation pathways of different polysaccharides by B. thetaiotaomicron. We also describe a technical route for investigating a specific polysaccharide degradation pathway by human gut bacteria. In addition, we also provide the future perspectives in the development of novel polysaccharides or oligosaccharides drugs, precision microbiology medicine, and personalized nutrition.
Collapse
Affiliation(s)
- Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xuexia Shi
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| | - Jingyi Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.,Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| |
Collapse
|
11
|
Schmid V, Steck J, Mayer-Miebach E, Behsnilian D, Briviba K, Bunzel M, Karbstein HP, Emin MA. Impact of defined thermomechanical treatment on the structure and content of dietary fiber and the stability and bioaccessibility of polyphenols of chokeberry (Aronia melanocarpa) pomace. Food Res Int 2020; 134:109232. [PMID: 32517902 DOI: 10.1016/j.foodres.2020.109232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 01/29/2023]
Abstract
Dietary fiber is a potential replacement for other ingredients such as starch in reformulated extruded breakfast cereals. Analysis of chokeberry pomace powder revealed a total dietary fiber content of 57.8 ± 2 g/100 g with 76% being insoluble, 20% high molecular soluble and 4% low molecular soluble dietary fiber. The fiber polysaccharide composition was analyzed in detail by using a variety of analytical approaches. Extrusion-like processing conditions were studies in a Closed Cavity Rheometer enabling the application of defined thermal (temperature range 100-160 °C) and mechanical treatments (shear rates between 0.1 s-1 and 50 s-1) to chokeberry pomace powder. Application of temperatures up to 140 °C irrespective of the mechanical treatment does not remarkably alter dietary fiber structure or content, but reduces the initial content of total polyphenols by about 40% to a final content of 3.3 ± 0.5 g/100 g including 0.63 ± 0.1 g/100 g of anthocyanins, 0.18 ± 0.02 g/100 g of phenolic acids and 0.090 ± 0.007 g/100 g of flavonols, respectively. The retained polyphenols are fully bioaccessible after in vitro digestion, and antioxidant capacity remains unchanged as compared to the untreated pomace powder. Glucose bioaccessibility remains unaffected, whereas glucose content is reduced. It is concluded that chokeberry pomace powder is a good source of dietary fiber with the potential to partially substitute starch in extruded breakfast cereals.
Collapse
Affiliation(s)
- Vera Schmid
- Max Rubner-Institut (MRI), Department of Food Technology and Bioprocess Engineering, Karlsruhe, Germany; Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jan Steck
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Esther Mayer-Miebach
- Max Rubner-Institut (MRI), Department of Food Technology and Bioprocess Engineering, Karlsruhe, Germany.
| | - Diana Behsnilian
- Max Rubner-Institut (MRI), Department of Food Technology and Bioprocess Engineering, Karlsruhe, Germany
| | - Karlis Briviba
- Max Rubner-Institut (MRI), Department of Physiology and Biochemistry of Nutrition, Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Heike P Karbstein
- Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - M Azad Emin
- Institute of Process Engineering in Life Sciences, Section I: Food Process Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|