1
|
Reyes-Rivera J, Terrazas T. Lignin Analysis by HPLC and FTIR: Spectra Deconvolution and S/G Ratio Determination. Methods Mol Biol 2024; 2722:149-169. [PMID: 37897607 DOI: 10.1007/978-1-0716-3477-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Fourier transform infrared spectroscopy (FTIR) is a simple nondestructive technique that allows the user to obtain quick and accurate information about the structure of the constituents of wood. Spectra deconvolution is a computational technique, complementary to FTIR analysis, which improves the resolution of overlapped or unobserved bands in the raw spectra. High performance liquid chromatography (HPLC) is an analytical technique useful to determine the ratio of the lignin monomers obtained by the alkaline nitrobenzene oxidation method. Furthermore, lignin content has been commonly determined by wet chemical methods; Klason lignin determination is a quick and accessible method. Here, we detail the procedures for chemical analysis of the wood lignin using these techniques. Additionally, the deconvolution process of FTIR spectra for the determination of the S/G ratio, in lignin isolated by this or other methods, is explained in detail.
Collapse
Affiliation(s)
| | - Teresa Terrazas
- Departamento de Botánica, Instituto de Biología, UNAM, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, Mexico.
| |
Collapse
|
2
|
Letourneau DR, Volmer DA. Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review. MASS SPECTROMETRY REVIEWS 2023; 42:144-188. [PMID: 34293221 DOI: 10.1002/mas.21716] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lignin is currently one of the most promising biologically derived resources, due to its abundance and application in biofuels, materials and conversion to value aromatic chemicals. The need to better characterize and understand this complex biopolymer has led to the development of many different analytical approaches, several of which involve mass spectrometry and subsequent data analysis. This review surveys the most important analytical methods for lignin involving mass spectrometry, first looking at methods involving gas chromatography, liquid chromatography and then continuing with more contemporary methods such as matrix assisted laser desorption ionization and time-of-flight-secondary ion mass spectrometry. Following that will be techniques that directly ionize lignin mixtures-without chromatographic separation-using softer atmospheric ionization techniques that leave the lignin oligomers intact. Finally, ultra-high resolution mass analyzers such as FT-ICR have enabled lignin analysis without major sample preparation and chromatography steps. Concurrent with an increase in the resolution of mass spectrometers, there have been a wealth of complementary data analyses and visualization methods that have allowed researchers to probe deeper into the "lignome" than ever before. These approaches extract trends such as compound series and even important analytical information about lignin substructures without performing lignin degradation either chemically or during MS analysis. These innovative methods are paving the way for a more comprehensive understanding of this important biopolymer, as we seek more sustainable solutions for our human species' energy and materials needs.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
3
|
Fradera-Soler M, Grace OM, Jørgensen B, Mravec J. Elastic and collapsible: current understanding of cell walls in succulent plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2290-2307. [PMID: 35167681 PMCID: PMC9015807 DOI: 10.1093/jxb/erac054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/11/2022] [Indexed: 05/11/2023]
Abstract
Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Correspondence: or
| | | | | | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Correspondence: or
| |
Collapse
|
4
|
Maceda A, Terrazas T. Fluorescence Microscopy Methods for the Analysis and Characterization of Lignin. Polymers (Basel) 2022; 14:961. [PMID: 35267784 PMCID: PMC8912355 DOI: 10.3390/polym14050961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Lignin is one of the most studied and analyzed materials due to its importance in cell structure and in lignocellulosic biomass. Because lignin exhibits autofluorescence, methods have been developed that allow it to be analyzed and characterized directly in plant tissue and in samples of lignocellulose fibers. Compared to destructive and costly analytical techniques, fluorescence microscopy presents suitable alternatives for the analysis of lignin autofluorescence. Therefore, this review article analyzes the different methods that exist and that have focused specifically on the study of lignin because with the revised methods, lignin is characterized efficiently and in a short time. The existing qualitative methods are Epifluorescence and Confocal Laser Scanning Microscopy; however, other semi-qualitative methods have been developed that allow fluorescence measurements and to quantify the differences in the structural composition of lignin. The methods are fluorescence lifetime spectroscopy, two-photon microscopy, Föster resonance energy transfer, fluorescence recovery after photobleaching, total internal reflection fluorescence, and stimulated emission depletion. With these methods, it is possible to analyze the transport and polymerization of lignin monomers, distribution of lignin of the syringyl or guaiacyl type in the tissues of various plant species, and changes in the degradation of wood by pulping and biopulping treatments as well as identify the purity of cellulose nanofibers though lignocellulosic biomass.
Collapse
Affiliation(s)
- Agustín Maceda
- Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Texcoco 56230, Mexico;
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| |
Collapse
|
5
|
Mylo MD, Hesse L, Masselter T, Leupold J, Drozella K, Speck T, Speck O. Morphology and Anatomy of Branch-Branch Junctions in Opuntia ficus-indica and Cylindropuntia bigelovii: A Comparative Study Supported by Mechanical Tissue Quantification. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112313. [PMID: 34834679 PMCID: PMC8618873 DOI: 10.3390/plants10112313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 05/09/2023]
Abstract
The Opuntioideae include iconic cacti whose lateral branch-branch junctions are intriguing objects from a mechanical viewpoint. We have compared Opuntia ficus-indica, which has stable branch connections, with Cylindropuntia bigelovii, whose side branches abscise under slight mechanical stress. To determine the underlying structures and mechanical characteristics of these stable versus shedding cacti junctions, we conducted magnetic resonance imaging, morphometric and anatomical analyses of the branches and tensile tests of individual tissues. The comparison revealed differences in geometry, shape and material properties as follows: (i) a more pronounced tapering of the cross-sectional area towards the junctions supports the abscission of young branches of C. bigelovii. (ii) Older branches of O. ficus-indica form, initially around the branch-branch junctions, collar-shaped periderm tissue. This secondary coverage mechanically stiffens the dermal tissue, giving a threefold increase in strength and a tenfold increase in the elastic modulus compared with the epidermis. (iii) An approximately 200-fold higher elastic modulus of the vascular bundles of O. ficus-indica is a prerequisite for the stable junction of its young branches. Our results provide, for both biological and engineered materials systems, important insights into the geometric characteristics and mechanical properties of branching joints that are either stable or easily detachable.
Collapse
Affiliation(s)
- Max D. Mylo
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-2604
| | - Linnea Hesse
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Tom Masselter
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
| | - Jochen Leupold
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstraße 5a, D-79106 Freiburg, Germany;
| | - Kathrin Drozella
- Faculty of Environment and Natural Resources, Bertoldstraße 17, D-79098 Freiburg, Germany;
| | - Thomas Speck
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
| | - Olga Speck
- Plant Biomechanics Group @ Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany; (L.H.); (T.M.); (T.S.); (O.S.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
6
|
Maceda A, Reyes-Rivera J, Soto-Hernández M, Terrazas T. Distribution and Chemical Composition of Lignin in Secondary Xylem of Cactaceae. Chem Biodivers 2021; 18:e2100431. [PMID: 34496126 DOI: 10.1002/cbdv.202100431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Cactaceae family has heterogeneity in the accumulation of lignocellulose due to the diversity of shapes and anatomy of the wood. Most studies focus on fibrous and dimorphic species; but the non-fibrous species are poorly studied. The aims of this work were to analyze the syringyl/guaiacyl ratio of lignin and its distribution in secondary xylem, especially in non-fibrous species. The syringyl/guaiacyl (S/G) ratio was quantified from 34 species of cacti by nitrobenzene oxidation of free-extractive wood. The distribution of lignocellulose in wood sections stained with safranin O/fast green was determined with epifluorescence microscopy. The S/G ratio was heterogeneous; most of the non-fibrous species had a higher percentage of syringyl, while the fibrous ones accumulate guaiacyl. Fluorescence emission showed that vessel elements and wide-band tracheids had similar tonalities. It is hypothesized that the presence of a higher percentage of syringyl in most cacti is part of the defense mechanism against pathogens, which together with the succulence of the stem represent adaptations that contribute to survival in their hostile environments.
Collapse
Affiliation(s)
- Agustín Maceda
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Estado de México, 56230, Mexico
| | - Jorge Reyes-Rivera
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, UNAM, Mexico City, 09230, Mexico
| | - Marcos Soto-Hernández
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Estado de México, 56230, Mexico
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
7
|
Liu T, Wang Y, Zhou J, Li M, Yue J. Preparation of Molded Fiber Products from Hydroxylated Lignin Compounded with Lewis Acid-Modified Fibers Its Analysis. Polymers (Basel) 2021; 13:1349. [PMID: 33919013 PMCID: PMC8122396 DOI: 10.3390/polym13091349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, molded fiber products (MFPs) were prepared from lignin compounded with Lewis acid-modified fibers using enzymatic hydrolysis lignin (EHL) as a bio-phenol. The fibers were modified and compounded entirely through hot-pressing. To improve the reactivity of enzymatic lignin, hydroxylated enzymatic hydrolysis lignin (HEHL) was prepared by hydroxylation modification of purified EHL with hydrogen peroxide (H2O2) and ferrous hydroxide (Fe(OH)3). HEHL was mixed uniformly with Lewis acid-modified fibers on a pressure machine and modified during the molding process. The purpose of Lewis acid degradation of hemicellulose-converted furfural with HEHL was to generate a resin structure to improve the mechanical properties of a MFPs. The microstructure of the MFP was shown to be generated by resin structure, and it was demonstrated that HEHL was compounded on Lewis acid-modified fibers during the molding process. The thermal stability of the MFP with composite HEHL did not change significantly owing to the addition of lignin and had higher tensile strength (46.28 MPa) and flexural strength (65.26 MPa) compared to uncompounded and modified MFP. The results of this study are expected to promote the application of high lignin content fibers in molded fibers.
Collapse
Affiliation(s)
| | | | | | | | - Jinquan Yue
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (T.L.); (Y.W.); (J.Z.); (M.L.)
| |
Collapse
|
8
|
Characterization of Phenolic Compounds Extracted from Cold Pressed Cactus ( Opuntia ficus-indica L.) Seed Oil and the Effect of Roasting on Their Composition. Foods 2020; 9:foods9081098. [PMID: 32796773 PMCID: PMC7465185 DOI: 10.3390/foods9081098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022] Open
Abstract
Phenolic compounds extracted from cactus seed oil were identified for the first time by HPLC-ESI-qToF-MS and subsequently quantified by HPLC-DAD. A total of 7 compounds were identified, vanillin, syringaldehyde, and ferulaldehyde were found to be the most abundant ones. The effect of geographical origin and roasting process of cactus seeds was evaluated. Differences between different locations were not found, however the roasting process had a significant effect on the amount of phenolic compounds. The amount of syringaldehyde, p-coumaric acid, p-coumaric acid ethyl ester, and ferulaldehyde increased during the roasting process. Nevertheless, the concentration of vanillin was not influenced by roasting. It was demonstrated that the increase of those compounds was due to the thermal degradation of lignin from the seeds during the roasting process of seeds.
Collapse
|
9
|
Torres-Silva G, Matos EM, Correia LF, Fortini EA, Soares WS, Batista DS, Otoni CG, Azevedo AA, Viccini LF, Koehler AD, Resende SV, Specht CD, Otoni WC. Anatomy, Flow Cytometry, and X-Ray Tomography Reveal Tissue Organization and Ploidy Distribution in Long-Term In Vitro Cultures of Melocactus Species. FRONTIERS IN PLANT SCIENCE 2020; 11:1314. [PMID: 32983203 PMCID: PMC7488924 DOI: 10.3389/fpls.2020.01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/11/2020] [Indexed: 05/17/2023]
Abstract
Cacti have a highly specialized stem that enables survival during extended dry periods. Despite the ornamental value of cacti and the fact that stems represent the main source of explants in tissue culture, there are no studies on their morpho-anatomical and cytological characteristics in Melocactus. The present study seeks to address the occurrence of cells with mixed ploidy level in cacti tissues. Specifically, we aim to understand how Melocactus stem tissue is organized, how mixoploidy is distributed when present, and whether detected patterns of ploidy change after long periods of in vitro culture. To analyze tissue organization, Melocactus glaucescens and Melocactus paucispinus plants that had been germinated and cultivated in vitro were analyzed for stem structure using toluidine blue, Xylidine Ponceau, Periodic Acid Schiff, ruthenium red, and acid floroglucin. To investigate patterns of ploidy, apical, medial, and basal zones of the stem, as well as, periphery, cortex, and stele (vascular tissue and pith) regions of the stem and root apexes from four- and ten-year old cultured in vitro were analyzed by flow cytometry. X-ray micro-computed tomography (XRµCT) was performed with fragments of stems from both species. The scarcity of support elements (i.e., sclereids and fibers) indicates that epidermis, hypodermis, and wide-band tracheids present in cortical vascular bundles and stele, as well as water stored in aquifer parenchyma cells along the cortex, provide mechanical support to the stem. Parenchyma cells increase in volume with a four-fold increase in ploidy. M. glaucescens and M. paucispinus exhibit the same pattern of cell ploidy irrespective of topophysical region or age, but there is a marked difference in ploidy between the stem periphery (epidermis and hypodermis), cortex, stele, and roots. Mixoploidy in Melocactus is not related to the age of the culture, but is a developmental trait, whereby endocycles promote cell differentiation to accumulate valuable water.
Collapse
Affiliation(s)
- Gabriela Torres-Silva
- Laboratory of Plant Tissue Culture II—BIOAGRO, Plant Biology Department, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Elyabe Monteiro Matos
- Laboratory of Genetics and Biotechnology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Ludmila Freitas Correia
- Laboratory of Plant Tissue Culture II—BIOAGRO, Plant Biology Department, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Evandro Alexandre Fortini
- Laboratory of Plant Tissue Culture II—BIOAGRO, Plant Biology Department, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Wellington Santos Soares
- Laboratory of Plant Tissue Culture II—BIOAGRO, Plant Biology Department, Federal University of Viçosa (UFV), Viçosa, Brazil
| | - Diego Silva Batista
- Department of Agriculture, Federal University of Paraíba (UFPB), Bananeiras, Brazil
| | - Caio Gomide Otoni
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Lyderson Facio Viccini
- Laboratory of Genetics and Biotechnology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Andréa Dias Koehler
- Laboratory of Plant Tissue Culture II—BIOAGRO, Plant Biology Department, Federal University of Viçosa (UFV), Viçosa, Brazil
| | | | - Chelsea Dvorak Specht
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- *Correspondence: Chelsea Dvorak Specht, ; Wagner Campos Otoni,
| | - Wagner Campos Otoni
- Laboratory of Plant Tissue Culture II—BIOAGRO, Plant Biology Department, Federal University of Viçosa (UFV), Viçosa, Brazil
- *Correspondence: Chelsea Dvorak Specht, ; Wagner Campos Otoni,
| |
Collapse
|
10
|
Maceda A, Soto-Hernández M, Peña-Valdivia CB, Trejo C, Terrazas T. Differences in the Structural Chemical Composition of the Primary Xylem of Cactaceae: A Topochemical Perspective. FRONTIERS IN PLANT SCIENCE 2019; 10:1497. [PMID: 31850014 PMCID: PMC6892835 DOI: 10.3389/fpls.2019.01497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/29/2019] [Indexed: 05/25/2023]
Abstract
The xylem of Cactaceae is a complex system with different types of cells whose main function is to conduct and store water, mostly during the development of primary xylem, which has vessel elements and wide-band tracheids. The anatomy of primary xylem of Cactaceae has been widely studied, but little is known about its chemical composition. The aim of this study was to determine the structural chemical composition of the primary xylem of Cactaceae and to compare it with the anatomy in the group. Seeds from eight cacti species were used, representing the Pereskioideae, Opuntioideae, and Cactoideae subfamilies. Seeds were germinated and grown for 8 months. Subsequently, only the stem of the seedling was selected, dried, milled, and processed following the TAPPI T-222 om-02 norm; lignin was quantified using the Klason method and cellulose with the Kurshner-Höffer method. Using Fourier transform infrared spectroscopy, the percentage of syringyl and guaiacyl in lignin was calculated. Seedlings of each species were fixed, sectioned, and stained for their anatomical description and fluorescence microscopy analysis for the topochemistry of the primary xylem. The results showed that there were significant differences between species (p < 0.05), except in the hemicelluloses. Through a principal component analysis, it was found that the amount of extractive-free stem and hot water-soluble extractives were the variables that separated the species, followed by cellulose and hemicelluloses since the seedlings developed mainly parenchyma cells and the conductive tissue showed vessel elements and wide-band tracheids, both with annular and helical thickenings in secondary walls. The type of lignin with the highest percentage was guaiacyl-type, which is accumulated mainly in the vessels, providing rigidity. Whereas in the wide-band tracheids from metaxylem, syringyl lignin accumulated in the secondary walls S2 and S3, which permits an efficient flow of water and gives the plant the ability to endure difficult conditions during seedling development. Only one species can be considered to have paedomorphosis since the conductive elements had a similar chemistry in primary and secondary xylem.
Collapse
Affiliation(s)
- Agustín Maceda
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico
| | - Marcos Soto-Hernández
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico
| | | | - Carlos Trejo
- Programa de Botánica, Colegio de Postgraduados en Ciencias Agrícolas, Texcoco, Mexico
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|