1
|
Stefanini C, Csilléry K, Ulaszewski B, Burczyk J, Schaepman ME, Schuman MC. A novel synthesis of two decades of microsatellite studies on European beech reveals decreasing genetic diversity from glacial refugia. TREE GENETICS & GENOMES 2022; 19:3. [PMID: 36532711 PMCID: PMC9744708 DOI: 10.1007/s11295-022-01577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Genetic diversity influences the evolutionary potential of forest trees under changing environmental conditions, thus indirectly the ecosystem services that forests provide. European beech (Fagus sylvatica L.) is a dominant European forest tree species that increasingly suffers from climate change-related die-back. Here, we conducted a systematic literature review of neutral genetic diversity in European beech and created a meta-data set of expected heterozygosity (He) from all past studies providing nuclear microsatellite data. We propose a novel approach, based on population genetic theory and a min-max scaling to make past studies comparable. Using a new microsatellite data set with unprecedented geographic coverage and various re-sampling schemes to mimic common sampling biases, we show the potential and limitations of the scaling approach. The scaled meta-dataset reveals the expected trend of decreasing genetic diversity from glacial refugia across the species range and also supports the hypothesis that different lineages met and admixed north of the European mountain ranges. As a result, we present a map of genetic diversity across the range of European beech which could help to identify seed source populations harboring greater diversity and guide sampling strategies for future genome-wide and functional investigations of genetic variation. Our approach illustrates how to combine information from several nuclear microsatellite data sets to describe patterns of genetic diversity extending beyond the geographic scale or mean number of loci used in each individual study, and thus is a proof-of-concept for synthesizing knowledge from existing studies also in other species. Supplementary Information The online version contains supplementary material available at 10.1007/s11295-022-01577-4.
Collapse
Affiliation(s)
- Camilla Stefanini
- Biodiversity and Conservation Biology Unit, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Dietikon, Switzerland
| | - Katalin Csilléry
- Biodiversity and Conservation Biology Unit, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Dietikon, Switzerland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Michael E Schaepman
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meredith C Schuman
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Methods for Watering Seedlings in Arid Zones. FORESTS 2022. [DOI: 10.3390/f13020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper reviews different existing systems of seedling microirrigation in afforestation. These systems differ from agricultural irrigation methods since they only pursue the establishment of the planted seedlings instead of achieving good agricultural yields. They, therefore, involve very low irrigation doses compared to the usual irrigation doses found in the agricultural sector. These approaches are nonconventional localized irrigation systems with high efficiency in water application. Based on the water discharge equations they use, these methods can be classified into four groups: direct deep irrigation, irrigation through porous walls, irrigation with wicks, and irrigation with solar distillers. This paper describes a total of sixteen different systems suitable for afforestation. All the systems are compared with each other. To make the comparisons, four key parameters are considered: the cost of acquiring and installing the system, the water application efficiency, the maintenance of the system, and the possibility of irrigating several plants at the same time. The irrigation systems described in this review represent an important technical advance not only for dryland forestry but also for rainfed arboriculture, xeriscaping, and xerogardening. These systems make it possible to widely extend the planting period to almost throughout the year, not only in arid regions but also in less dry or even humid climates, especially when critical areas have to be afforested, including shallow, sandy, saline, or gypseous soils, suntraps, windy and desertified areas, open pit mines, and other areas. Seedling microirrigation is an emerging sector of the irrigation industry that is rapidly developing with new devices and patents. Two foreseeable future trends can be identified: the growing use of new permeable materials and the possibility of connecting individual emitters to irrigation lines.
Collapse
|
3
|
Varsamis G, Adamidis GC, Merou T, Takos I, Tseniklidou K, Dimitrakopoulos PG, Papageorgiou AC. Changes in Watering Frequency Stimulate Differentiated Adaptive Responses among Seedlings of Different Beech Populations. BIOLOGY 2022; 11:biology11020306. [PMID: 35205172 PMCID: PMC8868575 DOI: 10.3390/biology11020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Future precipitation changes are expected to affect plant populations’ adaptive responses. In southern Europe, annual precipitation is expected to decline and become unpredictable with occasional extreme rainfall events. Although there are many studies investigating water deficit effects in beech populations, they mainly refer to water withholding and rewatering or limited watering for prolonged periods. There is a lack of information considering the effect of simulated changes in monthly precipitation distribution on plants. In our study, we aimed to elucidate whether simulated distribution differences in monthly precipitation, expected to prevail in 2050, affects the response of various adaptive traits in beech seedlings originating from sites with contrasting climatic conditions. We found significant population differences according to watering interactions in most of the stem anatomical traits, but only for leaf circularity regarding the morphological traits. Our results indicate that beech populations in the southernmost region of their European distribution may demonstrate high variability in adaptive responses towards climate change conditions. Abstract Seasonality, rather than annual precipitation levels, is expected to affect the adaptive responses of plant populations under future climate change. To estimate adaptive traits’ variation, we conducted a common garden experiment with two beech populations from contrasting climatic origins (Evros with longer drought intervals during summer and higher precipitation seasonality, and Drama representing a more temperate ecosystem). We simulated two different watering treatments (frequent vs. non-frequent) on beech seedlings, according to predicted monthly precipitation levels expected to prevail in 2050 by the CSIRO MK3.6 SRESA1B model, considering as reference area a natural beech stand in Mt. Rodopi, Greece. A series of morphological and stem anatomical traits were measured. Seedling survival was greater for the Evros population compared to that of Drama under non-frequent watering, while no difference in survival was detected under frequent watering. Leaf morphological traits were not generally affected by watering frequency except for leaf circularity, which was found to be lower under non-frequent watering for both populations. Stomata density in leaves was found to be higher in the Evros population and lower in the Drama population under non-frequent watering than frequent. Stem anatomical traits were higher under non-frequent watering for Evros but lower for the Drama population. Multivariate analyses clearly discriminated populations under non-frequent rather than frequent watering, indicating genetic adaptation to the population’s environment of origin.
Collapse
Affiliation(s)
- Georgios Varsamis
- Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; (T.M.); (I.T.); (K.T.)
- Correspondence: (G.V.); (A.C.P.); Tel.: +30-25210-60473 (G.V.); +30-25510-30494 (A.C.P.)
| | - George C. Adamidis
- Section of Plant Biology, Department of Biology, University of Patras, Rio, 26504 Patras, Greece;
| | - Theodora Merou
- Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; (T.M.); (I.T.); (K.T.)
| | - Ioannis Takos
- Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; (T.M.); (I.T.); (K.T.)
| | - Katerina Tseniklidou
- Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; (T.M.); (I.T.); (K.T.)
| | | | - Aristotelis C. Papageorgiou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
- Correspondence: (G.V.); (A.C.P.); Tel.: +30-25210-60473 (G.V.); +30-25510-30494 (A.C.P.)
| |
Collapse
|
4
|
Petrovska R, Brang P, Gessler A, Bugmann H, Hobi ML. Grow slowly, persist, dominate-Explaining beech dominance in a primeval forest. Ecol Evol 2021; 11:10077-10089. [PMID: 34367560 PMCID: PMC8328449 DOI: 10.1002/ece3.7800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022] Open
Abstract
Being able to persist in deep shade is an important characteristic of juvenile trees, often leading to a strong dominance of shade-tolerant species in forests with low canopy turnover and a low disturbance rate. While leaf, growth, and storage traits are known to be key components of shade tolerance, their interplay during regeneration development and their influence on juveniles' survival time remains unclear. We assessed the ontogenetic effects of these three traits on the survival time of beech (Fagus sylvatica), and Norway and sycamore maples (Acer pseudoplatanus, Acer platanoides) in a primeval beech forest. Biomass allocation, age, and content of nonstructural carbohydrates (NSC) were measured in the stems and roots of 289 seedlings and saplings in high- and low-vitality classes. Saplings experienced a trade-off between absolute growth rate (AGR) and storage (NSC) as the leaf area ratio (LAR) decreases with biomass development. High LAR but low AGR and low NSC corresponded to beech with a marked ability to persist in deep shade while awaiting canopy release. In turn, a comparably small LAR in combination with a high AGR and higher storage (NSC), as observed in Norway maple and sycamore maple, reduced sapling survival time, thus offering an explanation for beech dominance and maple disappearance in the undergrowth of old-growth beech forests.
Collapse
Affiliation(s)
- Roksolana Petrovska
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Forest EcologyDepartment of Environmental Systems ScienceETH ZürichZurichSwitzerland
| | - Peter Brang
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Harald Bugmann
- Forest EcologyDepartment of Environmental Systems ScienceETH ZürichZurichSwitzerland
| | - Martina Lena Hobi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
5
|
Meger J, Ulaszewski B, Burczyk J. Genomic signatures of natural selection at phenology-related genes in a widely distributed tree species Fagus sylvatica L. BMC Genomics 2021; 22:583. [PMID: 34332553 PMCID: PMC8325806 DOI: 10.1186/s12864-021-07907-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diversity among phenology-related genes is predicted to be a contributing factor in local adaptations seen in widely distributed plant species that grow in climatically variable geographic areas, such as forest trees. European beech (Fagus sylvatica L.) is widespread, and is one of the most important broadleaved tree species in Europe; however, its potential for adaptation to climate change is a matter of uncertainty, and little is known about the molecular basis of climate change-relevant traits like bud burst. RESULTS We explored single nucleotide polymorphisms (SNP) at candidate genes related to bud burst in beech individuals sampled across 47 populations from Europe. SNP diversity was monitored for 380 candidate genes using a sequence capture approach, providing 2909 unlinked SNP loci. We used two complementary analytical methods to find loci significantly associated with geographic variables, climatic variables (expressed as principal components), or phenotypic variables (spring and autumn phenology, height, survival). Redundancy analysis (RDA) was used to detect candidate markers across two spatial scales (entire study area and within subregions). We revealed 201 candidate SNPs at the broadest scale, 53.2% of which were associated with phenotypic variables. Additive polygenic scores, which provide a measure of the cumulative signal across significant candidate SNPs, were correlated with a climate variable (first principal component, PC1) related to temperature and precipitation availability, and spring phenology. However, different genotype-environment associations were identified within Southeastern Europe as compared to the entire geographic range of European beech. CONCLUSIONS Environmental conditions play important roles as drivers of genetic diversity of phenology-related genes that could influence local adaptation in European beech. Selection in beech favors genotypes with earlier bud burst under warmer and wetter habitats within its range; however, selection pressures may differ across spatial scales.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Jaroslaw Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| |
Collapse
|
6
|
Low Population Differentiation but High Phenotypic Plasticity of European Beech in Germany. FORESTS 2020. [DOI: 10.3390/f11121354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drought is increasingly impairing the vitality of European beech (Fagus sylvatica L.) in several regions of its distribution range. In times of climate change, adaptive traits such as plant phenology and frost tolerance are also becoming more important. Adaptive patterns of European beech seem to be complex, as contrasting results regarding the relative effect of phenotypic plasticity and genetic variation in trait variation have been reported. Here, we used a large translocation experiment comprising more than 15,500 seedlings in three regions of Germany to investigate local adaptation and phenotypic plasticity in beech. We found low population differentiation regarding plant survival, and plant height increment, but high phenotypic plasticity for these traits. Survival showed a positive correlation with temperature variables and a less pronounced and negative correlation with precipitation-related variables. This suggests a predominant effect of temperature and growing degree days on the survival of beech seedlings under moderate drought stress. The high phenotypic plasticity may help beech to cope with changing environmental conditions, albeit increasing drought stress may make adaptive changes necessary in the long term.
Collapse
|
7
|
Müller M, Gailing O. Abiotic genetic adaptation in the Fagaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:783-795. [PMID: 31081234 DOI: 10.1111/plb.13008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Fagaceae can be found in tropical and temperate regions and contain species of major ecological and economic importance. In times of global climate change, tree populations need to adapt to rapidly changing environmental conditions. The predicted warmer and drier conditions will potentially result in locally maladapted populations. There is evidence that major genera of the Fagaceae are already negatively affected by climate change-related factors such as drought and associated biotic stressors. Therefore, knowledge of the mechanisms underlying adaptation is of great interest. In this review, we summarise current literature related to genetic adaptation to abiotic environmental conditions. We begin with an overview of genetic diversity in Fagaceae species and then summarise current knowledge related to drought stress tolerance, bud burst timing and frost tolerance in the Fagaceae. Finally, we discuss the role of hybridisation, epigenetics and phenotypic plasticity in adaptation.
Collapse
Affiliation(s)
- M Müller
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
| | - O Gailing
- Faculty for Forest Sciences and Forest Ecology, Forest Genetics and Forest Tree Breeding, University of Goettingen, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| |
Collapse
|
8
|
Indications of Genetic Admixture in the Transition Zone between Fagus sylvatica L. and Fagus sylvatica ssp. orientalis Greut. & Burd. DIVERSITY 2019. [DOI: 10.3390/d11060090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two subspecies of European beech (Fagus sylvatica L.) can be found in southeast Europe: Fagus sylvatica ssp. sylvatica L. and Fagus sylvatica ssp. orientalis (Lipsky) Greut. & Burd. (Fagus orientalis Lipsky). In a previous study, based on genetic diversity patterns and morphological characters, indications of hybridization between both subspecies were found in northeastern Greece, a known contact zone of F. sylvatica and F. orientalis. Nevertheless, potential genetic admixture has not been investigated systematically before. Here, we investigated genetic diversity and genetic structure of 14 beech populations originating from Greece and Turkey as well as of two reference F. sylvatica populations from Germany based on nine expressed sequence tag-simple sequence repeat (EST-SSR) markers. Very low genetic differentiation was detected among F. sylvatica populations (mean GST: 0.005) as well as among F. orientalis populations (mean GST: 0.008), but substantial differentiation was detected between populations of the two subspecies (mean GST: 0.122). Indications for hybridization between both subspecies were revealed for one population in Greece. One of the genetic markers showed specific allele frequencies for F. sylvatica and F. orientalis and may be used as a diagnostic marker in future studies to discriminate both subspecies.
Collapse
|