1
|
Anckaert A, Declerck S, Poussart LA, Lambert S, Helmus C, Boubsi F, Steels S, Argüelles-Arias A, Calonne-Salmon M, Ongena M. The biology and chemistry of a mutualism between a soil bacterium and a mycorrhizal fungus. Curr Biol 2024:S0960-9822(24)01230-2. [PMID: 39378881 DOI: 10.1016/j.cub.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi (e.g., Rhizophagus species) recruit specific bacterial species in their hyphosphere. However, the chemical interplay and the mutual benefit of this intricate partnership have not been investigated yet, especially as it involves bacteria known as strong producers of antifungal compounds such as Bacillus velezensis. Here, we show that the soil-dwelling B. velezensis migrates along the hyphal network of the AM fungus R. irregularis, forming biofilms and inducing cytoplasmic flow in the AM fungus that contributes to host plant root colonization by the bacterium. During hyphosphere colonization, R. irregularis modulates the biosynthesis of specialized metabolites in B. velezensis to ensure stable coexistence and as a mechanism to ward off mycoparasitic fungi and bacteria. These mutual benefits are extended into a tripartite context via the provision of enhanced protection to the host plant through the induction of systemic resistance.
Collapse
Affiliation(s)
- Adrien Anckaert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Laure-Anne Poussart
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Stéphanie Lambert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Catherine Helmus
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Farah Boubsi
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Sébastien Steels
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Anthony Argüelles-Arias
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| |
Collapse
|
2
|
Zakaria MAT, Sakimin SZ, Ismail MR, Ahmad K, Kasim S. Growth Enhancement and Resistance of Banana Plants to Fusarium Wilt Disease as Affected by Silicate Compounds and Application Frequency. PLANTS (BASEL, SWITZERLAND) 2024; 13:542. [PMID: 38498542 PMCID: PMC10892973 DOI: 10.3390/plants13040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 03/20/2024]
Abstract
The amendment of soils with silicate (Si) compounds is essential to promote growth performance and control Fusarium wilt disease in bananas. Two successive greenhouse trials were conducted at the experimental farm of the University of Putra Malaysia. The treatments were arranged in split plots using a randomized complete block design (RCBD) with four replicates to investigate the effects of Si compounds and application frequency on controlling FOC. Si compounds were used at a constant concentration of 0.1%: T0 (control), T1 (13% SiO2:20% K2O), T2 (26.6% SiO2:13.4% K2O) and T3 (36.2% SiO2:17% Na2O). There were three application frequencies by day intervals (DI): 0DI (without any application), 7DI (12× within 12 weeks after transplanting (WAT)), 15DI (6× within 12 WAT) and 30DI (3× within 12 WAT). From these findings, we observed that the photosynthesis rate started to increase from 10.6 to 19.4 µmol CO2 m-2s-1, when the total chlorophyll content started to increase from 3.85 to 7.61 mgcm-2. The transpiration rate started to increase from a value of 1.94 to 4.31 mmol H2O m-2s-1, when the stomata conductance started to increase from 0.237 to 0.958 mmol m-2s-1. The proline content started to increase from 22.89 to 55.07 µmg-1, when the relative water content started to increase from 42.92 to 83.57%.
Collapse
Affiliation(s)
- Md Aiman Takrim Zakaria
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.T.Z.); (M.R.I.)
| | - Siti Zaharah Sakimin
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.T.Z.); (M.R.I.)
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Razi Ismail
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.T.Z.); (M.R.I.)
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Susilawati Kasim
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
3
|
Zakaria MAT, Sakimin SZ, Ismail MR, Ahmad K, Kasim S, Baghdadi A. Biostimulant Activity of Silicate Compounds and Antagonistic Bacteria on Physiological Growth Enhancement and Resistance of Banana to Fusarium Wilt Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:1124. [PMID: 36903985 PMCID: PMC10005601 DOI: 10.3390/plants12051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/18/2023]
Abstract
Biostimulants such as silicate (SiO32-) compounds and antagonistic bacteria can alter soil microbial communities and enhance plant resistance to the pathogens and Fusarium oxysporum f. sp. cubense (FOC), the causal agent of Fusarium wilt disease in bananas. A study was conducted to investigate the biostimulating effects of SiO32- compounds and antagonistic bacteria on plant growth and resistance of the banana to Fusarium wilt disease. Two separate experiments with a similar experimental setup were conducted at the University of Putra Malaysia (UPM), Selangor. Both experiments were arranged in a split-plot randomized complete block design (RCBD) with four replicates. SiO32- compounds were prepared at a constant concentration of 1%. Potassium silicate (K2SiO3) was applied on soil uninoculated with FOC, and sodium silicate (Na2SiO3) was applied to FOC-contaminated soil before integrating with antagonistic bacteria; without Bacillus spp. ((0B)-control), Bacillus subtilis (BS), and Bacillus thuringiensis (BT). Four levels of application volume of SiO32- compounds [0, 20, 40, 60 mL) were used. Results showed that the integration of SiO32- compounds with BS (108 CFU mL-1) enhanced the physiological growth performance of bananas. Soil application of 28.86 mL of K2SiO3 with BS enhanced the height of the pseudo-stem by 27.91 cm. Application of Na2SiO3 and BS significantly reduced the Fusarium wilt incidence in bananas by 56.25%. However, it was recommended that infected roots of bananas should be treated with 17.36 mL of Na2SiO3 with BS to stimulate better growth performance.
Collapse
Affiliation(s)
- Md Aiman Takrim Zakaria
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Zaharah Sakimin
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Razi Ismail
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Susilawati Kasim
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ali Baghdadi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
4
|
Ugarte Fajardo J, Maridueña-Zavala M, Cevallos-Cevallos J, Ochoa Donoso D. Effective Methods Based on Distinct Learning Principles for the Analysis of Hyperspectral Images to Detect Black Sigatoka Disease. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192581. [PMID: 36235448 PMCID: PMC9573703 DOI: 10.3390/plants11192581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/03/2023]
Abstract
Current chemical methods used to control plant diseases cause a negative impact on the environment and increase production costs. Accurate and early detection is vital for designing effective protection strategies for crops. We evaluate advanced distributed edge intelligence techniques with distinct learning principles for early black sigatoka disease detection using hyperspectral imaging. We discuss the learning features of the techniques used, which will help researchers improve their understanding of the required data conditions and identify a method suitable for their research needs. A set of hyperspectral images of banana leaves inoculated with a conidial suspension of black sigatoka fungus (Pseudocercospora fijiensis) was used to train and validate machine learning models. Support vector machine (SVM), multilayer perceptron (MLP), neural networks, N-way partial least square-discriminant analysis (NPLS-DA), and partial least square-penalized logistic regression (PLS-PLR) were selected due to their high predictive power. The metrics of AUC, precision, sensitivity, prediction, and F1 were used for the models' evaluation. The experimental results show that the PLS-PLR, SVM, and MLP models allow for the successful detection of black sigatoka disease with high accuracy, which positions them as robust and highly reliable HSI classification methods for the early detection of plant disease and can be used to assess chemical and biological control of phytopathogens.
Collapse
Affiliation(s)
- Jorge Ugarte Fajardo
- Facultad de Ingeniería Industrial, Universidad de Guayaquil, Guayaquil 090601, Ecuador
- Correspondence:
| | - María Maridueña-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090902, Ecuador
| | - Juan Cevallos-Cevallos
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090902, Ecuador
- Facultad de Ciencias de la Vida (FCV), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090902, Ecuador
| | - Daniel Ochoa Donoso
- Facultad de Ingeniería Eléctrica y Computación (FIEC), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 0909022, Ecuador
| |
Collapse
|
5
|
The Role of Medicago lupulina Interaction with Rhizophagus irregularis in the Determination of Root Metabolome at Early Stages of AM Symbiosis. PLANTS 2022; 11:plants11182338. [PMID: 36145739 PMCID: PMC9501341 DOI: 10.3390/plants11182338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
The nature of plant–fungi interaction at early stages of arbuscular mycorrhiza (AM) development is still a puzzling problem. To investigate the processes behind this interaction, we used the Medicago lupulina MlS-1 line that forms high-efficient AM symbiosis with Rhizophagus irregularis. AM fungus actively colonizes the root system of the host plant and contributes to the formation of effective AM as characterized by a high mycorrhizal growth response (MGR) in the host plant. The present study is aimed at distinguishing the alterations in the M. lupulina root metabolic profile as an indicative marker of effective symbiosis. We examined the root metabolome at the 14th and 24th day after sowing and inoculation (DAS) with low substrate phosphorus levels. A GS-MS analysis detected 316 metabolites. Results indicated that profiles of M. lupulina root metabolites differed from those in leaves previously detected. The roots contained fewer sugars and organic acids. Hence, compounds supporting the growth of mycorrhizal fungus (especially amino acids, specific lipids, and carbohydrates) accumulated, and their presence coincided with intensive development of AM structures. Mycorrhization determined the root metabolite profile to a greater extent than host plant development. The obtained data highlight the importance of active plant–fungi metabolic interaction at early stages of host plant development for the determination of symbiotic efficiency.
Collapse
|
6
|
Mycorrhiza-Induced Alterations in Metabolome of Medicago lupulina Leaves during Symbiosis Development. PLANTS 2021; 10:plants10112506. [PMID: 34834870 PMCID: PMC8617643 DOI: 10.3390/plants10112506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
The present study is aimed at disclosing metabolic profile alterations in the leaves of the Medicago lupulina MlS-1 line that result from high-efficiency arbuscular mycorrhiza (AM) symbiosis formed with Rhizophagus irregularis under condition of a low phosphorus level in the substrate. A highly effective AM symbiosis was established in the period from the stooling to the shoot branching initiation stage (the efficiency in stem height exceeded 200%). Mycorrhization led to a more intensive accumulation of phosphates (glycerophosphoglycerol and inorganic phosphate) in M. lupulina leaves. Metabolic spectra were detected with GS-MS analysis. The application of complex mathematical analyses made it possible to identify the clustering of various groups of 320 metabolites and thus demonstrate the central importance of the carbohydrate and carboxylate-amino acid clusters. The results obtained indicate a delay in the metabolic development of mycorrhized plants. Thus, AM not only accelerates the transition between plant developmental stages but delays biochemical “maturation” mainly in the form of a lag of sugar accumulation in comparison with non-mycorrhized plants. Several methods of statistical modeling proved that, at least with respect to determining the metabolic status of host-plant leaves, stages of phenological development have priority over calendar age.
Collapse
|
7
|
Etesami H, Jeong BR, Glick BR. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate-Solubilizing Bacteria, and Silicon to P Uptake by Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:699618. [PMID: 34276750 PMCID: PMC8280758 DOI: 10.3389/fpls.2021.699618] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 05/22/2023]
Abstract
Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21+ Program), Graduate School, Gyeongsang National University, Jinju, South Korea
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
8
|
Kaur S, Suseela V. Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome. Metabolites 2020; 10:E335. [PMID: 32824704 PMCID: PMC7464697 DOI: 10.3390/metabo10080335] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) is among the most ubiquitous plant mutualists that enhance plant growth and yield by facilitating the uptake of phosphorus and water. The countless interactions that occur in the rhizosphere between plants and its AMF symbionts are mediated through the plant and fungal metabolites that ensure partner recognition, colonization, and establishment of the symbiotic association. The colonization and establishment of AMF reprogram the metabolic pathways of plants, resulting in changes in the primary and secondary metabolites, which is the focus of this review. During initial colonization, plant-AMF interaction is facilitated through the regulation of signaling and carotenoid pathways. After the establishment, the AMF symbiotic association influences the primary metabolism of the plant, thus facilitating the sharing of photosynthates with the AMF. The carbon supply to AMF leads to the transport of a significant amount of sugars to the roots, and also alters the tricarboxylic acid cycle. Apart from the nutrient exchange, the AMF imparts abiotic stress tolerance in host plants by increasing the abundance of several primary metabolites. Although AMF initially suppresses the defense response of the host, it later primes the host for better defense against biotic and abiotic stresses by reprogramming the biosynthesis of secondary metabolites. Additionally, the influence of AMF on signaling pathways translates to enhanced phytochemical content through the upregulation of the phenylpropanoid pathway, which improves the quality of the plant products. These phytometabolome changes induced by plant-AMF interaction depends on the identity of both plant and AMF species, which could contribute to the differential outcome of this symbiotic association. A better understanding of the phytochemical landscape shaped by plant-AMF interactions would enable us to harness this symbiotic association to enhance plant performance, particularly under non-optimal growing conditions.
Collapse
Affiliation(s)
| | - Vidya Suseela
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
9
|
Ugarte Fajardo J, Bayona Andrade O, Criollo Bonilla R, Cevallos-Cevallos J, Mariduena-Zavala M, Ochoa Donoso D, Vicente Villardón JL. Early detection of black Sigatoka in banana leaves using hyperspectral images. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11383. [PMID: 32995103 PMCID: PMC7507400 DOI: 10.1002/aps3.11383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
PREMISE Black Sigatoka is one of the most severe banana (Musa spp.) diseases worldwide, but no methods for the rapid early detection of this disease have been reported. This paper assesses the use of hyperspectral images for the development of a partial-least-squares penalized-logistic-regression (PLS-PLR) model and a hyperspectral biplot (HS biplot) as a visual tool for detecting the early stages of black Sigatoka disease. METHODS Young (three-month-old) banana plants were inoculated with a conidia suspension of the black Sigatoka fungus (Pseudocercospora fijiensis). Selected infected and control plants were evaluated using a hyperspectral imaging system at wavelengths in the range of 386-1019 nm. PLS-PLR models were run on the hyperspectral data set. The prediction power was assessed using leave-one-out cross-validation as well as external validation. RESULTS The PLS-PLR model was able to predict the presence of the disease with a 98% accuracy. The wavelengths with the highest contribution to the classification ranged from 577 to 651 nm and from 700 to 1019 nm. DISCUSSION PLS-PLR and HS biplot effectively estimated the presence of black Sigatoka disease at the early stages and can be used to graphically represent the relationship between groups of leaves and both visible and near-infrared wavelengths.
Collapse
Affiliation(s)
- Jorge Ugarte Fajardo
- Facultad de Ciencias Naturales y Matemáticas (FCNM) Escuela Superior Politécnica del Litoral (ESPOL) Guayaquil Ecuador
| | - Oswaldo Bayona Andrade
- Facultad de Ingeniería Eléctrica y Computación (FIEC) Escuela Superior Politécnica del Litoral (ESPOL) Guayaquil Ecuador
| | - Ronald Criollo Bonilla
- Facultad de Ingeniería Eléctrica y Computación (FIEC) Escuela Superior Politécnica del Litoral (ESPOL) Guayaquil Ecuador
| | - Juan Cevallos-Cevallos
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE) Escuela Superior Politécnica del Litoral (ESPOL) Guayaquil Ecuador
- Facultad de Ciencias de la Vida (FCV) Escuela Superior Politécnica del Litoral (ESPOL) Guayaquil Ecuador
| | - María Mariduena-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE) Escuela Superior Politécnica del Litoral (ESPOL) Guayaquil Ecuador
| | - Daniel Ochoa Donoso
- Facultad de Ingeniería Eléctrica y Computación (FIEC) Escuela Superior Politécnica del Litoral (ESPOL) Guayaquil Ecuador
| | | |
Collapse
|