1
|
Ali Z, Naeem M, Ghulam Muhu-Din Ahmed H, Hafeez A, Ali B, Sarfraz MH, Iqbal R, Ditta A, Abid I, Mustafa AEZMA. Diversity and Association Analysis of Physiological and Yield Indices in Rice Germplasm. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2024; 4:317-329. [DOI: 10.1021/acsagscitech.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Affiliation(s)
- Zeeshan Ali
- Department of Plant Breeding and Genetics Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Naeem
- Department of Plant Breeding and Genetics Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Hassan Sarfraz
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, U.K
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal Dir (U) 18000, Khyber Pakhtunkhwa, Pakistan
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Islem Abid
- Centre of Excellence in Biotechnology Research, King Saud University, P.O Box 2455, Riyadh 11495, Saudi Arabia
| | - Abd El-Zaher M. A. Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Wang W, Chen W, Wang J. FRIZZLE PANICLE (FZP) regulates rice spikelets development through modulating cytokinin metabolism. BMC PLANT BIOLOGY 2023; 23:650. [PMID: 38102566 PMCID: PMC10724965 DOI: 10.1186/s12870-023-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The number of grains per panicle is an important factor in determining rice yield. The DST-OsCKX2 module has been demonstrated to regulate panicle development in rice by controlling cytokinin content. However, to date, how the function of DST-OsCKX2 module is regulated during panicle development remains obscure. RESULT In this study, the ABNORMAL PANICLE 1 (ABP1), a severely allele of FRIZZY PANICLE (FZP), exhibits abnormal spikelets morphology. We show that FZP can repress the expression of DST via directly binding to its promotor. Consistently, the expression level of OsCKX2 increased and the cytokinin content decreased in the fzp mutant, suggesting that the FZP acts upstream of the DST-OsCKX2 to maintain cytokinin homeostasis in the inflorescence meristem. CONCLUSIONS Our results indicate that FZP plays an important role in regulating spikelet development and grain number through mediating cytokinin metabolism.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wenqiang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junmin Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
3
|
Guo D, Chen L, Liu S, Jiang W, Ye Q, Wu Z, Wang X, Hu X, Zhang Z, He H, Hu L. Curling Leaf 1, Encoding a MYB-Domain Protein, Regulates Leaf Morphology and Affects Plant Yield in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3127. [PMID: 37687373 PMCID: PMC10490398 DOI: 10.3390/plants12173127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The leaf is the main site of photosynthesis and is an important component in shaping the ideal rice plant architecture. Research on leaf morphology and development will lay the foundation for high-yield rice breeding. In this study, we isolated and identified a novel curling leaf mutant, designated curling leaf 1 (cl1). The cl1 mutant exhibited an inward curling phenotype because of the defective development of sclerenchymatous cells on the abaxial side. Meanwhile, the cl1 mutant showed significant reductions in grain yield and thousand-grain weight due to abnormal leaf development. Through map-based cloning, we identified the CL1 gene, which encodes a MYB transcription factor that is highly expressed in leaves. Subcellular localization studies confirmed its typical nuclear localization. Transcriptome analysis revealed a significant differential expression of the genes involved in photosynthesis, leaf morphology, yield formation, and hormone metabolism in the cl1 mutant. Yeast two-hybrid assays demonstrated that CL1 interacts with alpha-tubulin protein SRS5 and AP2/ERF protein MFS. These findings provide theoretical foundations for further elucidating the mechanisms of CL1 in regulating leaf morphology and offer genetic resources for practical applications in high-yield rice breeding.
Collapse
Affiliation(s)
- Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lianghai Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenxiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zheng Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiaoqing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiafei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zelin Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lifang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
| |
Collapse
|
4
|
Dauda WP, Shanmugam V, Tyagi A, Solanke AU, Kumar V, Krishnan SG, Bashyal BM, Aggarwal R. Genome-Wide Identification and Characterisation of Cytokinin-O-Glucosyltransferase (CGT) Genes of Rice Specific to Potential Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070917. [PMID: 35406897 PMCID: PMC9002877 DOI: 10.3390/plants11070917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/12/2023]
Abstract
Cytokinin glucosyltransferases (CGTs) are key enzymes of plants for regulating the level and function of cytokinins. In a genomic identification of rice CGTs, 41 genes with the plant secondary product glycosyltransferases (PSPG) motif of 44-amino-acid consensus sequence characteristic of plant uridine diphosphate (UDP)-glycosyltransferases (UGTs) were identified. In-silico physicochemical characterisation revealed that, though the CGTs belong to the same subfamily, they display varying molecular weights, ranging from 19.6 kDa to 59.7 kDa. The proteins were primarily acidic (87.8%) and hydrophilic (58.6%) and were observed to be distributed in the plastids (16), plasma membrane (13), mitochondria (5), and cytosol (4). Phylogenetic analysis of the CGTs revealed that their evolutionary relatedness ranged from 70-100%, and they aligned themselves into two major clusters. In a comprehensive analysis of the available transcriptomics data of rice samples representing different growth stages only the CGT, Os04g25440.1 was significantly expressed at the vegetative stage, whereas 16 other genes were highly expressed only at the reproductive growth stage. On the contrary, six genes, LOC_Os07g30610.1, LOC_Os04g25440.1, LOC_Os07g30620.1, LOC_Os04g25490.1, LOC_Os04g37820.1, and LOC_Os04g25800.1, were significantly upregulated in rice plants inoculated with Rhizoctonia solani (RS), Xoo (Xanthomonas oryzae pv. oryzae) and Mor (Magnaporthe oryzae). In a qRT-PCR analysis of rice sheath tissue susceptible to Rhizoctonia solani, Mor, and Xoo pathogens, compared to the sterile distilled water control, at 24 h post-infection only two genes displayed significant upregulation in response to all the three pathogens: LOC_Os07g30620.1 and LOC_Os04g25820.1. On the other hand, the expression of genes LOC_Os07g30610.1, LOC_Os04g25440, LOC_Os04g25490, and LOC_Os04g25800 were observed to be pathogen-specific. These genes were identified as the candidate-responsive CGT genes and could serve as potential susceptibility genes for facilitating pathogen infection.
Collapse
Affiliation(s)
- Wadzani Palnam Dauda
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
- Crop Science Unit, Department of Agronomy, Federal University, Gashua 1005, Nigeria
| | - Veerubommu Shanmugam
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
- Correspondence:
| | - Aditya Tyagi
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
| | - Amolkumar U. Solanke
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; (A.U.S.); (V.K.)
| | - Vishesh Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; (A.U.S.); (V.K.)
| | - Subbaiyan Gopala Krishnan
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
| | - Bishnu Maya Bashyal
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
| | - Rashmi Aggarwal
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (W.P.D.); (A.T.); (S.G.K.); (B.M.B.); (R.A.)
| |
Collapse
|
5
|
Characterization of a Novel Rice Dynamic Narrow-Rolled Leaf Mutant with Deficiencies in Aromatic Amino Acids. Int J Mol Sci 2020; 21:ijms21041521. [PMID: 32102218 PMCID: PMC7073152 DOI: 10.3390/ijms21041521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022] Open
Abstract
The leaf blade is the main photosynthetic organ and its morphology is related to light energy capture and conversion efficiency. We isolated a novel rice Dynamic Narrow-Rolled Leaf 1 (dnrl1) mutant showing reduced width of leaf blades, rolled leaves and lower chlorophyll content. The narrow-rolled leaf phenotype resulted from the reduced number of small longitudinal veins per leaf, smaller size and irregular arrangement of bulliform cells compared with the wild-type. DNRL1 was mapped to chromosome 7 and encoded a putative 3-deoxy-7-phosphoheptulonate synthase (DAHPS) which catalyzes the conversion of phosphoenolpyruvate and D-erythrose 4-phosphate to DAHP and phosphate. Sequence analysis revealed that a single base substitution (T–A) was detected in dnrl1, leading to a single amino acid change (L376H) in the coding protein. The mutation led to a lower expression level of DNRL1 as well as the lower activity of DAHPS in the mutant compared with the wild type. Genetic complementation and over-expression of DNRL1 could rescue the narrow-rolled phenotype. DNRL1 was constitutively expressed in all tested organs and exhibited different expression patterns from other narrow-rolled leaf genes. DNRL1-GFP located to chloroplasts. The lower level of chlorophyll in dnrl1 was associated with the downregulation of the genes responsible for chlorophyll biosynthesis and photosynthesis. Furthermore, dnrl1 showed significantly reduced levels of aromatic amino acids including Trp, Phe and Tyr. We conclude that OsDAHPS, encoded by DNRL1, plays a critical role in leaf morphogenesis by mediating the biosynthesis of amino acids in rice.
Collapse
|
6
|
Mutations in the Rice OsCHR4 Gene, Encoding a CHD3 Family Chromatin Remodeler, Induce Narrow and Rolled Leaves with Increased Cuticular Wax. Int J Mol Sci 2019; 20:ijms20102567. [PMID: 31130602 PMCID: PMC6566577 DOI: 10.3390/ijms20102567] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Leaf blade width, curvature, and cuticular wax are important agronomic traits of rice. Here, we report the rice Oschr4-5 mutant characterized by pleiotropic phenotypes, including narrow and rolled leaves, enhanced cuticular wax deposition and reduced plant height and tiller number. The reduced leaf width is caused by a reduced number of longitudinal veins and increased auxin content. The cuticular wax content was significantly higher in the Oschr4-5 mutant, resulting in reduced water loss rate and enhanced drought tolerance. Molecular characterization reveals that a single-base deletion results in a frame-shift mutation from the second chromodomain of OsCHR4, a CHD3 (chromodomain helicase DNA-binding) family chromatin remodeler, in the Oschr4-5 mutant. Expressions of seven wax biosynthesis genes (GL1-4, WSL4, OsCER7, LACS2, LACS7, ROC4 and BDG) and four auxin biosynthesis genes (YUC2, YUC3, YUC5 and YUC6) was up-regulated in the Oschr4-5 mutant. Chromatin immunoprecipitation assays revealed that the transcriptionally active histone modification H3K4me3 was increased, whereas the repressive H3K27me3 was reduced in the upregulated genes in the Oschr4-5 mutant. Therefore, OsCHR4 regulates leaf morphogenesis and cuticle wax formation by epigenetic modulation of auxin and wax biosynthetic genes expression.
Collapse
|