1
|
Aversano R, Iovene M, Esposito S, L'Abbate A, Villano C, Di Serio E, Cardone MF, Bergamini C, Cigliano RA, D'Amelia V, Frusciante L, Carputo D. Distinct structural variants and repeat landscape shape the genomes of the ancient grapes Aglianico and Falanghina. BMC PLANT BIOLOGY 2024; 24:88. [PMID: 38317087 PMCID: PMC10845522 DOI: 10.1186/s12870-024-04778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Mounting evidence recognizes structural variations (SVs) and repetitive DNA sequences as crucial players in shaping the existing grape phenotypic diversity at intra- and inter-species levels. To deepen our understanding on the abundance, diversity, and distribution of SVs and repetitive DNAs, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), we re-sequenced the genomes of the ancient grapes Aglianico and Falanghina. The analysis of large copy number variants (CNVs) detected candidate polymorphic genes that are involved in the enological features of these varieties. In a comparative analysis of Aglianico and Falanghina sequences with 21 publicly available genomes of cultivated grapes, we provided a genome-wide annotation of grape TEs at the lineage level. We disclosed that at least two main clusters of grape cultivars could be identified based on the TEs content. Multiple TEs families appeared either significantly enriched or depleted. In addition, in silico and cytological analyses provided evidence for a diverse chromosomal distribution of several satellite repeats between Aglianico, Falanghina, and other grapes. Overall, our data further improved our understanding of the intricate grape diversity held by two Italian traditional varieties, unveiling a pool of unique candidate genes never so far exploited in breeding for improved fruit quality.
Collapse
Affiliation(s)
- Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Marina Iovene
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Portici, Italy.
| | - Salvatore Esposito
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Portici, Italy
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA-CI), Foggia, Italy
| | - Alberto L'Abbate
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council (IBIOM-CNR), Bari, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ermanno Di Serio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Maria Francesca Cardone
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Turi, Italy
| | - Carlo Bergamini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Turi, Italy
| | | | - Vincenzo D'Amelia
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Portici, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Ribeiro T, Vasconcelos E, de Mendonça Filho JR, Sato S, de Argollo Marques D, Brasileiro-Vidal AC. Differential amplification of the subtelomeric satellite DNA JcSAT1 in the genus Jatropha L. (Euphorbiaceae). Genetica 2024; 152:43-49. [PMID: 38349466 DOI: 10.1007/s10709-024-00204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Satellite DNAs (satDNAs) are highly repetitive sequences that occur in virtually all eukaryotic genomes and can undergo rapid copy number and nucleotide sequence variation among relatives. After chromosomal mapping of the satDNA JcSAT1, it was found a large accumulation at subtelomeres of Jatropha curcas (subgenus Curcas), but an absence of these monomers in J. integerrima (subgenus Jatropha). This fact suggests a dynamic scenario for this satellite repeat in Jatropha genomes. Here, we used a multitasking approach (sequence analysis, DNA blotting and chromosomal mapping) to investigate the molecular organization and chromosomal abundance and distribution of JcSAT1 in a broader group of species from the subgenus Jatropha (J. gossypiifolia, J. mollissima, J. podagrica, and J. multifida) in addition to J. curcas, with the aiming of understanding the evolution of this satDNA. Based on the analysis of BAC clone sequences of J. curcas, a large array (~ 30 kb) of 80 homogeneous monomers of JcSAT1 was identified in BAC 23J11. The monomer size was conserved (~ 358 bp) and contained a telomeric motif at the 5' end. PCR amplification coupled with a Southern blot revealed the presence of JcSAT1-like sequences in all species examined. However, a large set of genome copies was identified only in J. curcas, where a ladder-like pattern with multimers of different sizes was observed. In situ hybridization of BAC 23J11 confirmed the subtelomeric pattern for J. curcas, but showed no signals on chromosomes of species from the subgenus Jatropha. Our data indicate that JcSAT1 is a highly homogeneous satDNA that originated from a region near the telomeres and spread throughout the chromosomal subtermini, possibly due to frequent ectopic recombination between these regions. The abundance of JcSAT1 in the genome of J. curcas suggests that an amplification event occurred either at the base of the subgenus Curcas or at least in this species, although the repeat is shared by all species of the genus studied so far.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco (UFPE), Recife, PE, 50670-423, Brazil.
- Current address: Integrative Plant Research Laboratory, Department of Botany and Ecology, Federal University of Mato Grosso (UFMT), Cuiabá, MT, 78060-900, Brazil.
| | - Emanuelle Vasconcelos
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco (UFPE), Recife, PE, 50670-423, Brazil
| | - José Roseno de Mendonça Filho
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco (UFPE), Recife, PE, 50670-423, Brazil
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | | | - Ana Christina Brasileiro-Vidal
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco (UFPE), Recife, PE, 50670-423, Brazil.
| |
Collapse
|
3
|
Alisawi O, Richert-Pöggeler KR, Heslop-Harrison J(P, Schwarzacher T. The nature and organization of satellite DNAs in Petunia hybrida, related, and ancestral genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1232588. [PMID: 37868307 PMCID: PMC10587573 DOI: 10.3389/fpls.2023.1232588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
Introduction The garden petunia, Petunia hybrida (Solanaceae) is a fertile, diploid, annual hybrid species (2n=14) originating from P. axillaris and P. inflata 200 years ago. To understand the recent evolution of the P. hybrida genome, we examined tandemly repeated or satellite sequences using bioinformatic and molecular cytogenetic analysis. Methods Raw reads from available genomic assemblies and survey sequences of P. axillaris N (PaxiN), P. inflata S6, (PinfS6), P. hybrida (PhybR27) and the here sequenced P. parodii S7 (PparS7) were used for graph and k-mer based cluster analysis of TAREAN and RepeatExplorer. Analysis of repeat specific monomer lengths and sequence heterogeneity of the major tandem repeat families with more than 0.01% genome proportion were complemented by fluorescent in situ hybridization (FISH) using consensus sequences as probes to chromosomes of all four species. Results Seven repeat families, PSAT1, PSAT3, PSAT4, PSAT5 PSAT6, PSAT7 and PSAT8, shared high consensus sequence similarity and organisation between the four genomes. Additionally, many degenerate copies were present. FISH in P. hybrida and in the three wild petunias confirmed the bioinformatics data and gave corresponding signals on all or some chromosomes. PSAT1 is located at the ends of all chromosomes except the 45S rDNA bearing short arms of chromosomes II and III, and we classify it as a telomere associated sequence (TAS). It is the most abundant satellite repeat with over 300,000 copies, 0.2% of the genomes. PSAT3 and the variant PSAT7 are located adjacent to the centromere or mid-arm of one to three chromosome pairs. PSAT5 has a strong signal at the end of the short arm of chromosome III in P. axillaris and P.inflata, while in P. hybrida additional interstitial sites were present. PSAT6 is located at the centromeres of chromosomes II and III. PSAT4 and PSAT8 were found with only short arrays. Discussion These results demonstrate that (i) repeat families occupy distinct niches within chromosomes, (ii) they differ in the copy number, cluster organization and homogenization events, and that (iii) the recent genome hybridization in breeding P. hybrida preserved the chromosomal position of repeats but affected the copy number of repetitive DNA.
Collapse
Affiliation(s)
- Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
| | - Katja R. Richert-Pöggeler
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - J.S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Kovács Z, Mlinarec J, Höhn M. Living on the edge: morphological, karyological and genetic diversity studies of the Hungarian Plantago maxima populations and established ex situ collection. BOTANICAL STUDIES 2023; 64:2. [PMID: 36692644 PMCID: PMC9873897 DOI: 10.1186/s40529-022-00365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The analysis of genetic diversity of protected plant species can greatly support conservation efforts. Plantago maxima Juss. ex Jacq. is a perennial species distributed along the Eurasian steppe. The westernmost range edge of the species' distribution is located in the Pannonian basin, in Hungary where it is represented by a few, fragmented and highly endangered populations. We studied population diversity of all Hungarian range edge, natural populations, and one established ex situ population. One population from the centre of distribution (Kazakhstan) was implemented in the cpDNA haplotype study to compare the peripheral vs. central populations. We performed morphometric trait-based analysis, chromosome studies (morphometric analyses and FISH) and genetic diversity evaluations using inter simple sequence repeats (ISSR) and cpDNA trnL-trnF to evaluate differences between the in situ and ex situ populations as well as central vs. peripheral populations. RESULTS Our results showed no obvious morphological differences among the in situ and ex situ populations in the period between 2018 and 2020. One ex situ subpopulation develops flowers three years in a row from 2019, which is a favourable indicator of the introduction success. Hungarian populations are exclusively diploids (2n = 2x = 12). The karyogram consists of 5 metacentric and 1 acrocentric chromosome pair. Plantago maxima has one 35S and two 5S rDNA loci, located on the acrocentric chromosome pair. Eight variable ISSR primers yielded 100 fragments, of which 74.6% were polymorphic (mean He = 0.220). A high level of genetic variation within population was observed (92%) while the genetic differentiation among the populations was only 8%. STRUCTURE analysis revealed that the largest Kunpeszér population separated from the rest of the Hungarian populations, indicating a high rate of admixture among the other ones. Based on the trnL-trnF sequence analysis the Hungarian populations represent a single haplotype, which can indicate a reduced diversity due to isolation and recent population decline. By contrast, Kazakh population represents a distinct haplotype compared to the Hungarian samples. CONCLUSIONS The present study draws the attention to the high conservation value of the Plantago maxima populations from the westernmost range edge of the species' distribution.
Collapse
Affiliation(s)
- Zsófia Kovács
- Institute of Agronomy, Department of Botany, Hungarian University of Agriculture and Life Sciences, Villányi Út 29-43, Budapest, 1118, Hungary.
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, ELKH, Budapest, Hungary.
| | - Jelena Mlinarec
- Department of Nature Protection and Landscape Architecture, Oikon Ltd.-Institute of Applied Ecology, Trg Senjskih Uskoka 1-2, 10020, Zagreb, Croatia
| | - Mária Höhn
- Institute of Agronomy, Department of Botany, Hungarian University of Agriculture and Life Sciences, Villányi Út 29-43, Budapest, 1118, Hungary
| |
Collapse
|
5
|
Vozárová R, Wang W, Lunerová J, Shao F, Pellicer J, Leitch IJ, Leitch AR, Kovařík A. Mega-sized pericentromeric blocks of simple telomeric repeats and their variants reveal patterns of chromosome evolution in ancient Cycadales genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:646-663. [PMID: 36065632 PMCID: PMC9827991 DOI: 10.1111/tpj.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.
Collapse
Affiliation(s)
- Radka Vozárová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
- Department of Experimental Biology, Faculty of ScienceMasaryk University611 37BrnoCzech Republic
| | - Wencai Wang
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jana Lunerová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| | - Fengqing Shao
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jaume Pellicer
- Royal Botanic GardensKew, RichmondSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | | | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Aleš Kovařík
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| |
Collapse
|
6
|
Varga F, Liber Z, Jakše J, Turudić A, Šatović Z, Radosavljević I, Jeran N, Grdiša M. Development of Microsatellite Markers for Tanacetum cinerariifolium (Trevis.) Sch. Bip., a Plant with a Large and Highly Repetitive Genome. PLANTS 2022; 11:plants11131778. [PMID: 35807729 PMCID: PMC9269103 DOI: 10.3390/plants11131778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevis.) Sch. Bip.) is an outcrossing plant species (2n = 18) endemic to the eastern Adriatic coast and source of the natural insecticide pyrethrin. Due to the high repeatability and large genome (1C-value = 9.58 pg) our previous attempts to develop microsatellite markers using the traditional method were unsuccessful. Now we have used Illumina paired-end whole genome sequencing and developed a specific procedure to obtain useful microsatellite markers. A total of 796,130,142 high-quality reads (approx. 12.5× coverage) were assembled into 6,909,675 contigs using two approaches (de novo assembly and joining of overlapped pair-end reads). A total of 31,380 contigs contained one or more microsatellite sequences, of which di-(59.7%) and trinucleotide (25.9%) repeats were the most abundant. Contigs containing microsatellites were filtered according to various criteria to achieve better yield of functional markers. After two rounds of testing, 17 microsatellite markers were developed and characterized in one natural population. Twelve loci were selected for preliminary genetic diversity analysis of three natural populations. Neighbor-joining tree, based on the proportion of shared alleles distances, grouped individuals into clusters according to population affiliation. The availability of codominant SSR markers will allow analysis of genetic diversity and structure of natural Dalmatian pyrethrum populations as well as identification of breeding lines and cultivars.
Collapse
Affiliation(s)
- Filip Varga
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia; (F.V.); (Z.Š.); (N.J.); (M.G.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4898-092
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Ante Turudić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
| | - Zlatko Šatović
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia; (F.V.); (Z.Š.); (N.J.); (M.G.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
| | - Ivan Radosavljević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, 10000 Zagreb, Croatia
| | - Nina Jeran
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia; (F.V.); (Z.Š.); (N.J.); (M.G.)
| | - Martina Grdiša
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000 Zagreb, Croatia; (F.V.); (Z.Š.); (N.J.); (M.G.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska c. 25, 10000 Zagreb, Croatia; (A.T.); (I.R.)
| |
Collapse
|
7
|
Maravilla AJ, Rosato M, Álvarez I, Nieto Feliner G, Rosselló JA. Interstitial Arabidopsis-Type Telomeric Repeats in Asteraceae. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122794. [PMID: 34961265 PMCID: PMC8705333 DOI: 10.3390/plants10122794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Tandem repeats of telomeric-like motifs at intra-chromosomal regions, known as interstitial telomeric repeats (ITR), have drawn attention as potential markers of structural changes, which might convey information about evolutionary relationships if preserved through time. Building on our previous work that reported outstanding ITR polymorphisms in the genus Anacyclus, we undertook a survey across 132 Asteraceae species, focusing on the six most speciose subfamilies and considering all the ITR data published to date. The goal was to assess whether the presence, site number, and chromosomal location of ITRs convey any phylogenetic signal. We conducted fluorescent in situ hybridization (FISH) using an Arabidopsis-type telomeric sequence as a probe on karyotypes obtained from mitotic chromosomes. FISH signals of ITR sites were detected in species of subfamilies Asteroideae, Carduoideae, Cichorioideae, Gymnarhenoideae, and Mutisioideae, but not in Barnadesioideae. Although six small subfamilies have not yet been sampled, altogether, our results suggest that the dynamics of ITR formation in Asteraceae cannot accurately trace the complex karyological evolution that occurred since the early diversification of this family. Thus, ITRs do not convey a reliable signal at deep or shallow phylogenetic levels and cannot help to delimitate taxonomic categories, a conclusion that might also hold for other important families such as Fabaceae.
Collapse
Affiliation(s)
- Alexis J. Maravilla
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Marcela Rosato
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Inés Álvarez
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Gonzalo Nieto Feliner
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Josep A. Rosselló
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
- Correspondence: ; Tel.: +34-963-156-800
| |
Collapse
|
8
|
Maravilla AJ, Rosato M, Rosselló JA. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2541. [PMID: 34834904 PMCID: PMC8621592 DOI: 10.3390/plants10112541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
The discovery of telomeric repeats in interstitial regions of plant chromosomes (ITRs) through molecular cytogenetic techniques was achieved several decades ago. However, the information is scattered and has not been critically evaluated from an evolutionary perspective. Based on the analysis of currently available data, it is shown that ITRs are widespread in major evolutionary lineages sampled. However, their presence has been detected in only 45.6% of the analysed families, 26.7% of the sampled genera, and in 23.8% of the studied species. The number of ITR sites greatly varies among congeneric species and higher taxonomic units, and range from one to 72 signals. ITR signals mostly occurs as homozygous loci in most species, however, odd numbers of ITR sites reflecting a hemizygous state have been reported in both gymnosperm and angiosperm groups. Overall, the presence of ITRs appears to be poor predictors of phylogenetic and taxonomic relatedness at most hierarchical levels. The presence of ITRs and the number of sites are not significantly associated to the number of chromosomes. The longitudinal distribution of ITR sites along the chromosome arms indicates that more than half of the ITR presences are between proximal and terminal locations (49.5%), followed by proximal (29.0%) and centromeric (21.5%) arm regions. Intraspecific variation concerning ITR site number, chromosomal locations, and the differential presence on homologous chromosome pairs has been reported in unrelated groups, even at the population level. This hypervariability and dynamism may have likely been overlooked in many lineages due to the very low sample sizes often used in cytogenetic studies.
Collapse
Affiliation(s)
| | | | - Josep A. Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/Quart 80, E-46008 València, Spain; (A.J.M.); (M.R.)
| |
Collapse
|
9
|
Garrido-Ramos MA. The Genomics of Plant Satellite DNA. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:103-143. [PMID: 34386874 DOI: 10.1007/978-3-030-74889-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
Collapse
|
10
|
Boštjančić LL, Bonassin L, Anušić L, Lovrenčić L, Besendorfer V, Maguire I, Grandjean F, Austin CM, Greve C, Hamadou AB, Mlinarec J. The Pontastacus leptodactylus (Astacidae) Repeatome Provides Insight Into Genome Evolution and Reveals Remarkable Diversity of Satellite DNA. Front Genet 2021; 11:611745. [PMID: 33552130 PMCID: PMC7859515 DOI: 10.3389/fgene.2020.611745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Pontastacus leptodactylus is a native European crayfish species found in both freshwater and brackish environments. It has commercial importance for fisheries and aquaculture industries. Up till now, most studies concerning P. leptodactylus have focused onto gaining knowledge about its phylogeny and population genetics. However, little is known about the chromosomal evolution and genome organization of this species. Therefore, we performed clustering analysis of a low coverage genomic dataset to identify and characterize repetitive DNA in the P. leptodactylus genome. In addition, the karyogram of P. leptodactylus (2n = 180) is presented here for the first time consisting of 75 metacentric, 14 submetacentric, and a submetacentric/metacentric heteromorphic chromosome pair. We determined the genome size to be at ~18.7 gigabase pairs. Repetitive DNA represents about 54.85% of the genome. Satellite DNA repeats are the most abundant type of repetitive DNA, making up to ~28% of the total amount of repetitive elements, followed by the Ty3/Gypsy retroelements (~15%). Our study established a surprisingly high diversity of satellite repeats in P. leptodactylus. The genome of P. leptodactylus is by far the most satellite-rich genome discovered to date with 258 satellite families described. Of the five mapped satellite DNA families on chromosomes, PlSAT3-411 co-localizes with the AT-rich DAPI positive probable (peri)centromeric heterochromatin on all chromosomes, while PlSAT14-79 co-localizes with the AT-rich DAPI positive (peri)centromeric heterochromatin on one chromosome and is also located subterminally and intercalary on some chromosomes. PlSAT1-21 is located intercalary in the vicinity of the (peri)centromeric heterochromatin on some chromosomes, while PlSAT6-70 and PlSAT7-134 are located intercalary on some P. leptodactylus chromosomes. The FISH results reveal amplification of interstitial telomeric repeats (ITRs) in P. leptodactylus. The prevalence of repetitive elements, especially the satellite DNA repeats, may have provided a driving force for the evolution of the P. leptodactylus genome.
Collapse
Affiliation(s)
| | - Lena Bonassin
- Division of Molecular Biology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Lucija Anušić
- Division of Molecular Biology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Leona Lovrenčić
- Division of Zoology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Višnja Besendorfer
- Division of Molecular Biology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Ivana Maguire
- Division of Zoology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Frederic Grandjean
- Laboratoire Ecologie Biologie des Interactions-UMR CNRS 7267, University of Poitiers, Poitiers, France
| | - Christopher M. Austin
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, VIC, Australia
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Jelena Mlinarec
- Division of Molecular Biology, Department of Biology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Zagorski D, Hartmann M, Bertrand YJK, Paštová L, Slavíková R, Josefiová J, Fehrer J. Characterization and Dynamics of Repeatomes in Closely Related Species of Hieracium (Asteraceae) and Their Synthetic and Apomictic Hybrids. FRONTIERS IN PLANT SCIENCE 2020; 11:591053. [PMID: 33224172 PMCID: PMC7667050 DOI: 10.3389/fpls.2020.591053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/09/2020] [Indexed: 05/05/2023]
Abstract
The repetitive content of the plant genome (repeatome) often represents its largest fraction and is frequently correlated with its size. Transposable elements (TEs), the main component of the repeatome, are an important driver in the genome diversification due to their fast-evolving nature. Hybridization and polyploidization events are hypothesized to induce massive bursts of TEs resulting, among other effects, in an increase of copy number and genome size. Little is known about the repeatome dynamics following hybridization and polyploidization in plants that reproduce by apomixis (asexual reproduction via seeds). To address this, we analyzed the repeatomes of two diploid parental species, Hieracium intybaceum and H. prenanthoides (sexual), their diploid F1 synthetic and their natural triploid hybrids (H. pallidiflorum and H. picroides, apomictic). Using low-coverage next-generation sequencing (NGS) and a graph-based clustering approach, we detected high overall similarity across all major repeatome categories between the parental species, despite their large phylogenetic distance. Medium and highly abundant repetitive elements comprise ∼70% of Hieracium genomes; most prevalent were Ty3/Gypsy chromovirus Tekay and Ty1/Copia Maximus-SIRE elements. No TE bursts were detected, neither in synthetic nor in natural hybrids, as TE abundance generally followed theoretical expectations based on parental genome dosage. Slight over- and under-representation of TE cluster abundances reflected individual differences in genome size. However, in comparative analyses, apomicts displayed an overabundance of pararetrovirus clusters not observed in synthetic hybrids. Substantial deviations were detected in rDNAs and satellite repeats, but these patterns were sample specific. rDNA and satellite repeats (three of them were newly developed as cytogenetic markers) were localized on chromosomes by fluorescence in situ hybridization (FISH). In a few cases, low-abundant repeats (5S rDNA and certain satellites) showed some discrepancy between NGS data and FISH results, which is due partly to the bias of low-coverage sequencing and partly to low amounts of the satellite repeats or their sequence divergence. Overall, satellite DNA (including rDNA) was markedly affected by hybridization, but independent of the ploidy or reproductive mode of the progeny, whereas bursts of TEs did not play an important role in the evolutionary history of Hieracium.
Collapse
|
12
|
Zattera ML, Gazolla CB, Soares ADA, Gazoni T, Pollet N, Recco-Pimentel SM, Bruschi DP. Evolutionary Dynamics of the Repetitive DNA in the Karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae). Front Genet 2020; 11:637. [PMID: 32793276 PMCID: PMC7385237 DOI: 10.3389/fgene.2020.00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
The large amphibian genomes contain numerous repetitive DNA components that have played an important role in the karyotypic diversification of this vertebrate group. Hypotheses based on the presumable primitive karyotype (2n = 20) of the anurans of the family Pipidae suggest that they have evolved principally through intrachromosomal rearrangements. Pipa is the only South American pipid, while all the other genera are found in Africa. The divergence of the South American lineages from the African ones occurred at least 136 million years ago and is thought to have had a strong biogeographic component. Here, we tested the potential of the repetitive DNA to enable a better understanding of the differentiation of the karyotype among the family Pipidae and to expand our capacity to interpret the chromosomal evolution in this frog family. Our results indicate a long history of conservation in the chromosome bearing the H3 histone locus, corroborating inferences on the chromosomal homologies between the species in pairs 6, 8, and 9. The chromosomal distribution of the microsatellite motifs also provides useful markers for comparative genomics at the chromosome level between Pipa carvalhoi and Xenopus tropicalis, contributing new insights into the evolution of the karyotypes of these species. We detected similar patterns in the distribution and abundance of the microsatellite arrangements, which reflect the shared organization in the terminal/subterminal region of the chromosomes between these two species. By contrast, the microsatellite probes detected a differential arrangement of the repetitive DNA among the chromosomes of the two species, allowing longitudinal differentiation of pairs that are identical in size and morphology, such as pairs 1, 2, 4, and 5. We also found evidence of the distinctive composition of the repetitive motifs of the centromeric region between the species analyzed in the present study, with a clear enrichment of the (CA) and (GA) microsatellite motifs in P. carvalhoi. Finally, microsatellite enrichment in the pericentromeric region of chromosome pairs 6, 8, and 9 in the P. carvalhoi karyotype, together with interstitial telomeric sequences (ITS), validate the hypothesis that pericentromeric inversions occurred during the chromosomal evolution of P. carvalhoi and reinforce the role of the repetitive DNA in the remodeling of the karyotype architecture of the Pipidae.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Amanda de Araújo Soares
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Thiago Gazoni
- Universidade Estadual Paulista (Unesp), Campus Rio Claro, Rio Claro, Brazil
| | - Nicolas Pollet
- Laboratoire Evolution Genomes Comportement Ecologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Daniel Pacheco Bruschi
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
13
|
Easterling KA, Pitra NJ, Morcol TB, Aquino JR, Lopes LG, Bussey KC, Matthews PD, Bass HW. Identification of tandem repeat families from long-read sequences of Humulus lupulus. PLoS One 2020; 15:e0233971. [PMID: 32502183 PMCID: PMC7274563 DOI: 10.1371/journal.pone.0233971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/16/2020] [Indexed: 11/28/2022] Open
Abstract
Hop (Humulus lupulus L.) is known for its use as a bittering agent in beer and has a rich history of cultivation, beginning in Europe and now spanning the globe. There are five wild varieties worldwide, which may have been introgressed with cultivated varieties. As a dioecious species, its obligate outcrossing, non-Mendelian inheritance, and genomic structural variability have confounded directed breeding efforts. Consequently, understanding the hop genome represents a considerable challenge, requiring additional resources. In order to facilitate investigations into the transmission genetics of hop, we report here a tandem repeat discovery pipeline developed using k-mer filtering and dot plot analysis of PacBio long-read sequences from the hop cultivar Apollo. From this we identified 17 new and distinct tandem repeat sequence families, which represent candidates for FISH probe development. For two of these candidates, HuluTR120 and HuluTR225, we produced oligonucleotide FISH probes from conserved regions of and demonstrated their utility by staining meiotic chromosomes from wild hop, var. neomexicanus to address, for example, questions about hop transmission genetics. Collectively, these tandem repeat sequence families represent new resources suitable for development of additional cytogenomic tools for hop research.
Collapse
Affiliation(s)
- Katherine A. Easterling
- Department of Biological Science, Florida State University, Tallahassee, FL, United States America
- Hopsteiner, S.S. Steiner, Inc., New York, New York, United States America
| | - Nicholi J. Pitra
- Hopsteiner, S.S. Steiner, Inc., New York, New York, United States America
| | - Taylan B. Morcol
- Hopsteiner, S.S. Steiner, Inc., New York, New York, United States America
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, United States America
- The Graduate Center, City University of New York, New York, New York, United States America
| | - Jenna R. Aquino
- Department of Biological Science, Florida State University, Tallahassee, FL, United States America
| | - Lauren G. Lopes
- Department of Biological Science, Florida State University, Tallahassee, FL, United States America
| | - Kristin C. Bussey
- Department of Biological Science, Florida State University, Tallahassee, FL, United States America
| | - Paul D. Matthews
- Hopsteiner, S.S. Steiner, Inc., New York, New York, United States America
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, FL, United States America
| |
Collapse
|
14
|
Garcia S, Wendel JF, Borowska-Zuchowska N, Aïnouche M, Kuderova A, Kovarik A. The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants. FRONTIERS IN PLANT SCIENCE 2020; 11:41. [PMID: 32117380 PMCID: PMC7025596 DOI: 10.3389/fpls.2020.00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups. RESULTS (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures. CONCLUSION We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Barcelona, Spain
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Jonathan F. Wendel
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, United States
| | - Natalia Borowska-Zuchowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Malika Aïnouche
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, Rennes, France
| | - Alena Kuderova
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| |
Collapse
|