1
|
Campos MD, Varanda C, Patanita M, Amaro Ribeiro J, Campos C, Materatski P, Albuquerque A, Félix MDR. A TaqMan ® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases. BIOLOGY 2023; 12:268. [PMID: 36829545 PMCID: PMC9953614 DOI: 10.3390/biology12020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In tomato plants, Fusarium spp. have been increasingly associated with several wilt and rot diseases that are responsible for severe yield losses. Here, we present a real-time PCR TaqMan® MGB (Minor Groove Binder) assay to detect and discriminate Fusarium spp. from other fungal species that affect tomato plants. The methodology used is based on the selective amplification of the internal transcribed spacer (ITS) region of Fusarium spp. This assay revealed to be highly specific and sensitive for Fusarium species, targeting only the 29 Fusarium isolates from the 45 tested isolates associated to tomato diseases. Sensitivity was assessed with serial dilutions of Fusarium genomic DNA, with the limit of detection of 3.05 pg. An absolute DNA quantification method was also established, based on the determination of the absolute number of target copies. Finally, the effectiveness of the assay was successfully validated with the detection and quantification of Fusarium spp. in potentially infected tomato plants from an experimental field and in control plants grown under controlled conditions. The established methodology allows a reliable, sensitive, and reproducible estimation of Fusarium accumulation in infected tomato plants, gaining new insights for disease control and providing an additional tool in the screening of resistant plants.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Carla Varanda
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Mariana Patanita
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Joana Amaro Ribeiro
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Patrick Materatski
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - André Albuquerque
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria do Rosário Félix
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
2
|
Çelik A, Emiralioğlu O, Yeken MZ, Çiftçi V, Özer G, Kim Y, Baloch FS, Chung YS. A novel study on bean common mosaic virus accumulation shows disease resistance at the initial stage of infection in Phaseolus vulgaris. Front Genet 2023; 14:1136794. [PMID: 37021006 PMCID: PMC10067576 DOI: 10.3389/fgene.2023.1136794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Accurate and early diagnosis of bean common mosaic virus (BCMV) in Phaseolus vulgaris tissues is critical since the pathogen can spread easily and have long-term detrimental effects on bean production. The use of resistant varieties is a key factor in the management activities of BCMV. The study reported here describes the development and application of a novel SYBR Green-based quantitative real-time PCR (qRT-PCR) assay targeting the coat protein gene to determine the host sensitivity to the specific NL-4 strain of BCMV. The technique showed high specificity, validated by melting curve analysis, without cross-reaction. Further, the symptoms development of twenty advanced common bean genotypes after mechanical BCMV-NL-4 infection was evaluated and compared. The results showed that common bean genotypes exhibit varying levels of host susceptibility to this BCMV strain. The YLV-14 and BRS-22 genotypes were determined as the most resistant and susceptible genotypes, respectively, in terms of aggressiveness of symptoms. The accumulation of BCMV was analyzed in the resistant and susceptible genotypes 3, 6, and 9 days following the inoculation by the newly developed qRT-PCR. The mean cycle threshold (Ct) values showed that the viral titer was significantly lower in YLV-14, which was evident in both root and leaf 3 days after the inoculation. The qRT-PCR thus facilitated an accurate, specific, and feasible assessment of BCMV accumulation in bean tissues even in low virus titers, allowing novel clues in selecting resistant genotypes in the early stages of infection, which is critical for disease management. To the best of our knowledge, this is the first study of a successfully performed qRT-PCR to estimate BCMV quantification.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Orkun Emiralioğlu
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Mehmet Zahit Yeken
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Yoonha Kim
- Laboratory of Crop Production, Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| |
Collapse
|
3
|
Bhagat N, Magotra S, Gupta R, Sharma S, Verma S, Verma PK, Ali T, Shree A, Vakhlu J. Invasion and Colonization of Pathogenic Fusarium oxysporum R1 in Crocus sativus L. during Corm Rot Disease Progression. J Fungi (Basel) 2022; 8:1246. [PMID: 36547579 PMCID: PMC9784501 DOI: 10.3390/jof8121246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The corm rot of saffron caused by Fusarium oxysporum (Fox) has been reported to be the most destructive fungal disease of the herb globally. The pathogen, Fusarium oxysporum R1 (Fox R1) isolated by our group from Kashmir, India, was found to be different from Fusarium oxysporum f.sp. gladioli commonly reported corm rot agent of saffron. In the present study, Fox R1 was further characterized using housekeeping genes and pathogenicity tests, as Fusarium oxysporum R1 f.sp. iridacearum race 4. Though Fox R1 invaded the saffron plant through both corm and roots, the corm was found to be the preferred site of infection. In addition, the route of pathogen movement wastracked by monitoring visual symptoms, semi-quantitative PCR, quantitative-PCR (q-PCR), real-time imaging of egfp-tagged Fusarium oxysporum R1, and Fox R1 load quantification. This study is the first study of its kind on the bidirectional pathogenesis from corm to roots and vice-versa, as the literature only reports unidirectional upward movement from roots to other parts of the plant. In addition, the colonization pattern of Fox R1 in saffron corms and roots was studied. The present study involved a systematic elucidation of the mode and mechanism of pathogenesis in the saffron Fusarium oxysporum strain R1 pathosystem.
Collapse
Affiliation(s)
- Nancy Bhagat
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Shanu Magotra
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
- University Institute of Biotechnology, Chandigarh University, Ajitgarh 140413, India
| | - Rikita Gupta
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Shikha Sharma
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tahir Ali
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Jyoti Vakhlu
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India
| |
Collapse
|
4
|
Identification and complete genome sequencing of a divergent olive virus T isolate and an olive leaf yellowing-associated virus isolate naturally infecting olive trees in Greece. Virus Genes 2022; 58:560-569. [PMID: 36152231 PMCID: PMC9636108 DOI: 10.1007/s11262-022-01934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
Abstract
Several new full genome sequences of olive viruses came to light recently via high-throughput sequencing (HTS) analysis. In this study, total RNA HTS analysis of two Greek olive trees revealed the presence of an olive virus T (OlVT) isolate and an olive leaf yellowing-associated virus (OLYaV) isolate. The full viral genome of OlVT isolate (50Ch) is composed of 6862 nucleotides encoding for three proteins (replicase, movement protein, and capsid protein) with typical betaflexiviruses' genomic features. However, both sequence and phylogenetic data analysis exhibited high levels of variability between 50Ch and the previously characterized OlVT isolates. In addition, the almost full genome of the Greek OLYaV isolate (OL2) was obtained, which is composed of 16,693 nucleotides encoding for 11 open reading frames (ORFs) and shares common genomic features with the recently characterized OLYaV isolates from Spain and Brazil. Sequence and phylogenetic analysis revealed high similarity between these three isolates. Due to problems encountered with the detection of both viruses, new nested RT-PCR assays were developed and applied. In addition, recombination events were observed in OlVT isolates (50Ch GR-168), thus highlighting the potential role of this mechanism in the evolution of the virus. This study is adding further knowledge to the limited information available about these recently characterized olive infecting viral pathogens and highlights their widespread distribution in Greece, one of the most important olive producing countries of the world.
Collapse
|
5
|
Zellama MS, Chahdoura H, Zairi A, Ziani BEC, Boujbiha MA, Snoussi M, Ismail S, Flamini G, Mosbah H, Selmi B, El-Bok S, Chaouachi M. Chemical characterization and nutritional quality investigations of healthy extra virgin olive oil flavored with chili pepper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16392-16403. [PMID: 34651266 DOI: 10.1007/s11356-021-16645-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The production of extra virgin olive oil (EVOO) flavored with diverse spices, herbs, fruits, and vegetables or natural aromas is believed to provide advantageous properties considering either the high nutritional value or biological activity in addition to the flavoring and industrial aspects. The biological activities including antioxidant and antimicrobial properties of Tunisian EVOO obtained from "Chemlali" variety and mixed with chili pepper were investigated. Molecular analyses, including the detection of twelve olive-infecting viruses and Pseudomonas savastanoi pv savastanoi, were performed to ensure that the samples were obtained from healthy olive trees and EVOO quality was not affected. Quality parameters like free acidity, peroxide number, oxidative stability, and specific absorption at K232 nm and K270 nm were also investigated and no significant variation was revealed. The content of minor compounds such as chlorophylls, carotenoids, and total phenols showed minor changes. However, the profiles of the volatile compounds showed remarkable differences, which appeared to be the main factor for the observed variability in consumer acceptance. The results showed for the first time high quantities of polyphenols and ortho-diphenols. Four colorimetric methods were used for the determination of the antioxidant activity, namely DPPH, ABTS, FRAP, and β-carotene test. Compared to the control, a higher level of antioxidant activity was observed for the flavored EVOO. Furthermore, significant results were obtained in the antimicrobial tests. The quality parameters of the mixture showed no alteration compared to the control. Finally, all the measurements and the chemical characterization gave a scientific basis for food technology innovation of new food products.
Collapse
Affiliation(s)
- Mohamed Salem Zellama
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, 5000, Monastir, Tunisia
| | - Hassiba Chahdoura
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Amira Zairi
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, 5000, Monastir, Tunisia
| | | | - Mohamed Ali Boujbiha
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, 5000, Monastir, Tunisia
| | - Mejdi Snoussi
- Department of Biology, University of Hail, P.O. 81451, Ha'il, Saudi Arabia
| | - Sara Ismail
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, 5000, Monastir, Tunisia
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Habib Mosbah
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Boulbaba Selmi
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia
| | - Safia El-Bok
- Laboratoire de Biodiversité, Biotechnologies & Changements Climatiques (LR11ES09), Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El-Manar, Campus Universitaire, 2092, Tunis, Tunisia
| | - Maher Chaouachi
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, 5000, Monastir, Tunisia.
| |
Collapse
|
6
|
Defense Strategies: The Role of Transcription Factors in Tomato-Pathogen Interaction. BIOLOGY 2022; 11:biology11020235. [PMID: 35205101 PMCID: PMC8869667 DOI: 10.3390/biology11020235] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/21/2023]
Abstract
Simple Summary Tomato is one of the most cultivated and economically important vegetable crops throughout the world. It is affected by a panoply of different pathogens that cause infectious diseases that reduce tomato yield and affect product quality, with the most common symptoms being wilts, leaf spots/blights, fruit spots, and rots. To survive, tomato, as other plants, have developed elaborate defense mechanisms against plant pathogens. Among several genes already identified in tomato response to pathogens, we highlight those encoding the transcription factors (TFs). TFs are regulators of gene expression and are involved in large-scale biological phenomena. Here, we present an overview of recent studies of tomato TFs regarding defense responses to pathogen attack, selected for their abundance, importance, and availability of functionally well-characterized members. Tomato TFs’ roles and the possibilities related to their use for genetic engineering in view of crop breeding are presented. Abstract Tomato, one of the most cultivated and economically important vegetable crops throughout the world, is affected by a panoply of different pathogens that reduce yield and affect product quality. The study of tomato–pathogen system arises as an ideal system for better understanding the molecular mechanisms underlying disease resistance, offering an opportunity of improving yield and quality of the products. Among several genes already identified in tomato response to pathogens, we highlight those encoding the transcription factors (TFs). TFs act as transcriptional activators or repressors of gene expression and are involved in large-scale biological phenomena. They are key regulators of central components of plant innate immune system and basal defense in diverse biological processes, including defense responses to pathogens. Here, we present an overview of recent studies of tomato TFs regarding defense responses to biotic stresses. Hence, we focus on different families of TFs, selected for their abundance, importance, and availability of functionally well-characterized members in response to pathogen attack. Tomato TFs’ roles and possibilities related to their use for engineering pathogen resistance in tomato are presented. With this review, we intend to provide new insights into the regulation of tomato defense mechanisms against invading pathogens in view of plant breeding.
Collapse
|
7
|
Virus Surveys in Olive Orchards in Greece Identify Olive Virus T, a Novel Member of the Genus Tepovirus. Pathogens 2021; 10:pathogens10050574. [PMID: 34066889 PMCID: PMC8150953 DOI: 10.3390/pathogens10050574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Field surveys were conducted in Greek olive orchards from 2017 to 2020 to collect information on the sanitary status of the trees. Using a high-throughput sequencing approach, viral sequences were identified in total RNA extracts from several trees and assembled to reconstruct the complete genomes of two isolates of a new viral species of the genus Tepovirus (Betaflexiviridae), for which the name olive virus T (OlVT) is proposed. A reverse transcription–polymerase chain reaction assay was developed which detected OlVT in samples collected in olive growing regions in Central and Northern Greece, showing a virus prevalence of 4.4% in the olive trees screened. Sequences of amplified fragments from the movement–coat protein region of OlVT isolates varied from 75.64% to 99.35%. Three olive varieties (Koroneiki, Arbequina and Frantoio) were infected with OlVT via grafting to confirm a graft-transmissible agent, but virus infections remained latent. In addition, cucumber mosaic virus, olive leaf yellowing-associated virus and cherry leaf roll virus were identified.
Collapse
|