1
|
Liu S, Gong D, Wang Y, Wang H, Liu X, Huang J, Xu Q, Ma F, He C, Wang B. Responses of plant volatile emissions to increasing nitrogen deposition: A pilot study on Eucalyptus urophylla. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175887. [PMID: 39216761 DOI: 10.1016/j.scitotenv.2024.175887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) significantly impact atmospheric chemistry, with emissions potentially influenced by nitrogen (N) deposition. The response of BVOC emissions to increasing N deposition remains debated. In this study, we examined Eucalyptus urophylla (E. urophylla) using three N treatments: N0, N50, and N100 (0, 50, and 100 kg N hm-2 yr-1 N addition). These treatments were applied to mature E. urophylla trees in a plantation subjected to over 10 years of soil N addition in southern China, a region with severe N deposition. Seventeen BVOCs were measured, with isoprene (36.99 %), α-pinene (38.80 %), and d-limonene (14.27 %) being the predominant compounds under natural conditions. Total BVOC emissions under N50 were nearly double those under N0 and N100, with leaf net CO2 assimilation identified as the most critical photosynthetic parameter. Isoprene and α-pinene emissions significantly increased under N50 compared to N0, while d-limonene emission decreased under N100. Stronger correlations for individual BVOCs under N50 and N100 compared to N0 might be due to differences in BVOC biosynthetic pathways and storage structures. The localized canopy-scale emission factors (EFs) under N50 were significantly higher than the default values in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), suggesting the model might underestimate BVOC emissions from Eucalyptus in southern China under increased N deposition. Additionally, the secondary pollutant formation potentials of BVOCs were evaluated, identifying isoprene and monoterpenes as primary precursors of ozone and secondary organic aerosols. This study provides insights into the impacts of increased N deposition on BVOC emissions and their contribution to secondary atmospheric pollution. Updating localized BVOC EFs for subtropical tree species in southern China is crucial to reduce uncertainties in BVOC estimations under current and future N deposition scenarios.
Collapse
Affiliation(s)
- Shiwei Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Yujin Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| | - Xiaoting Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Juan Huang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Qiao Xu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Fangyuan Ma
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane QLD4000, Australia
| | - Boguang Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| |
Collapse
|
2
|
Kaur G, Patel A, Dwibedi V, Rath SK. Harnessing the action mechanisms of microbial endophytes for enhancing plant performance and stress tolerance: current understanding and future perspectives. Arch Microbiol 2023; 205:303. [PMID: 37561224 DOI: 10.1007/s00203-023-03643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Microbial endophytes are microorganisms that reside within plant tissues without causing any harm to their hosts. These microorganisms have been found to confer a range of benefits to plants, including increased growth and stress tolerance. In this review, we summarize the recent advances in our understanding of the mechanisms by which microbial endophytes confer abiotic and biotic stress tolerance to their host plants. Specifically, we focus on the roles of endophytes in enhancing nutrient uptake, modulating plant hormones, producing secondary metabolites, and activating plant defence responses. We also discuss the challenges associated with developing microbial endophyte-based products for commercial use, including product refinement, toxicology analysis, and prototype formulation. Despite these challenges, there is growing interest in the potential applications of microbial endophytes in agriculture and environmental remediation. With further research and development, microbial endophyte-based products have the potential to play a significant role in sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Gursharan Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India
| | - Arvind Patel
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, 140413, India.
- Institute of Soil, Water and Environmental Sciences, Volcani Resaerch Center, Agricultural Research Organization, 7528809, Rishon Lezion, Israel.
| | - Santosh Kumar Rath
- Department of Pharmaceutical Chemistry, School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, 248009, Uttarakhand, India.
| |
Collapse
|
3
|
McMahon J, Sayre R, Zidenga T. Cyanogenesis in cassava and its molecular manipulation for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1853-1867. [PMID: 34905020 DOI: 10.1093/jxb/erab545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
While cassava is one of the most important staple crops worldwide, it has received the least investment per capita consumption of any of the major global crops. This is in part due to cassava being a crop of subsistence farmers that is grown in countries with limited resources for crop improvement. While its starchy roots are rich in calories, they are poor in protein and other essential nutrients. In addition, they contain potentially toxic levels of cyanogenic glycosides which must be reduced to safe levels before consumption. Furthermore, cyanogens compromise the shelf life of harvested roots due to cyanide-induced inhibition of mitochondrial respiration, and associated production of reactive oxygen species that accelerate root deterioration. Over the past two decades, the genetic, biochemical, and developmental factors that control cyanogen synthesis, transport, storage, and turnover have largely been elucidated. It is now apparent that cyanogens contribute substantially to whole-plant nitrogen metabolism and protein synthesis in roots. The essential role of cyanogens in root nitrogen metabolism, however, has confounded efforts to create acyanogenic varieties. This review proposes alternative molecular approaches that integrate accelerated cyanogen turnover with nitrogen reassimilation into root protein that may offer a solution to creating a safer, more nutritious cassava crop.
Collapse
|
4
|
A population based expression atlas provides insights into disease resistance and other physiological traits in cassava (Manihot esculenta Crantz). Sci Rep 2021; 11:23520. [PMID: 34876620 PMCID: PMC8651776 DOI: 10.1038/s41598-021-02794-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Cassava, a food security crop in Africa, is grown throughout the tropics and subtropics. Although cassava can provide high productivity in suboptimal conditions, the yield in Africa is substantially lower than in other geographies. The yield gap is attributable to many challenges faced by cassava in Africa, including susceptibility to diseases and poor soil conditions. In this study, we carried out 3’RNA sequencing on 150 accessions from the National Crops Resources Research Institute, Uganda for 5 tissue types, providing population-based transcriptomics resources to the research community in a web-based queryable cassava expression atlas. Differential expression and weighted gene co-expression network analysis were performed to detect 8820 significantly differentially expressed genes (DEGs), revealing similarity in expression patterns between tissue types and the clustering of detected DEGs into 18 gene modules. As a confirmation of data quality, differential expression and pathway analysis targeting cassava mosaic disease (CMD) identified 27 genes observed in the plant–pathogen interaction pathway, several previously identified CMD resistance genes, and two peroxidase family proteins different from the CMD2 gene. Present research work represents a novel resource towards understanding complex traits at expression and molecular levels for the development of resistant and high-yielding cassava varieties, as exemplified with CMD.
Collapse
|
5
|
Zierer W, Rüscher D, Sonnewald U, Sonnewald S. Tuber and Tuberous Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:551-580. [PMID: 33788583 DOI: 10.1146/annurev-arplant-080720-084456] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Root and tuber crops have been an important part of human nutrition since the early days of humanity, providing us with essential carbohydrates, proteins, and vitamins. Today, they are especially important in tropical and subtropical regions of the world, where they help to feed an ever-growing population. Early induction and storage organ size are important agricultural traits, as they determine yield over time. During potato tuberization, environmental and metabolic status are sensed, ensuring proper timing of tuberization mediated by phloem-mobile signals. Coordinated cellular restructuring and expansion growth, as well as controlled storage metabolism in the tuber, are executed. This review summarizes our current understanding of potato tuber development and highlights similarities and differences to important tuberous root crop species like sweetpotato and cassava. Finally, we point out knowledge gaps that need to be filled before a complete picture of storage organ development can emerge.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| |
Collapse
|
6
|
Omondi JO, Yermiyahu U, Rachmilevitch S, Boahen S, Ntawuruhunga P, Sokolowski E, Lazarovitch N. Optimizing root yield of cassava under fertigation and the masked effect of atmospheric temperature. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4592-4600. [PMID: 32419154 DOI: 10.1002/jsfa.10519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fertigation is a rare and an expensive method of fertilizer application to cassava, and hence there is a need to optimize its efficiency for profitability. This study's objective was to optimize root yield of cassava through fertigation using a logistic model. RESULTS The field treatments were six fertigation concentrations against three cassava varieties, selected according to their maturity period. The logistic model predicted 52%, 116% and 281% benefit of fertigation for the varieties Mweru, Kampolombo and Nalumino, respectively. Furthermore, only half of the amount of fertilizer applied for Mweru was required to achieve twice the root yield of Kampolombo. During the experiment, an unknown importance of atmospheric temperature to cassava and its relationship to fertigation was observed. An elevation of 3.7 °C in atmospheric temperature led to 226%, 364% and 265% increase in root yield of Mweru, Kampolombo and Nalumino, respectively. Conversely, shoot biomass and root yield declined when the average atmospheric temperatures dropped by 3.6 °C. However, the cold temperatures affected the short-growth-duration (Mweru) and medium-growth-duration (Kampolombo) varieties earlier, 22 days after the drop, than the long-growth-duration variety (Nalumino) - 50 days after the drop. CONCLUSION Fertigation induced resilience of the shoot biomass production to cold which was most pronounced in the root yield of Mweru in response to the highest fertigation concentration. Thus, while fertigation improved cassava's resilience to cold, it only did so effectively for short-growth-duration variety, Mweru. Also, enhanced performance of cassava under increased atmospheric temperature indicated its importance as a climate-smart crop. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- John Okoth Omondi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - Uri Yermiyahu
- Gilat Research Centre, Agricultural Research Organization, Negev, Israel
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheba, Israel
| | - Steve Boahen
- International Institute of Tropical Agriculture, Mozambique
| | | | | | - Naftali Lazarovitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheba, Israel
| |
Collapse
|