1
|
Li D, Wang Q, Xu Y, Chen Y, Zhang X, Ding S, Luo Z. The regulation of postharvest strawberry quality mediated by abscisic acid under elevated CO 2 stress. Food Chem 2024; 459:140439. [PMID: 39003853 DOI: 10.1016/j.foodchem.2024.140439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Elevated CO2 was a potential strategy for strawberry preservation. However, the regulatory mechanism remained unclear. In current study, transcriptome analysis showed that elevated CO2 played important roles in regulating strawberry fruit quality at the transcriptional level, and plant hormones metabolism at least partially involved in the regulatory process. Further, ABA was demonstrated to play important roles in the response to elevated CO2. Elevated CO2 inhibited the accumulation of ABA, which was 61% lower than that in control. Elevated CO2 repressed ABA synthesis by inhibiting NCED activity and the expression of FaNCED1/2, leading to the reduction of ABA accumulation as a result. Meanwhile, elevated CO2 also decreased ABA sensitivity by down-regulating FaSnRK2.4/2.6 and FaABI5 expression. The dual down-regulation of ABA signaling accounted for the regulation of fruit quality under elevated CO2 treatment. These results provide new insights into the mechanism of strawberry fruit response to elevated CO2.
Collapse
Affiliation(s)
- Dong Li
- The Rural Development Academy, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qingqing Wang
- The Rural Development Academy, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yanqun Xu
- The Rural Development Academy, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, People's Republic of China
| | - Yanpei Chen
- The Rural Development Academy, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University, Suzhou 234000, People's Republic of China.
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Zisheng Luo
- The Rural Development Academy, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, People's Republic of China.
| |
Collapse
|
2
|
Priyadarshi R, El-Araby A, Rhim JW. Chitosan-based sustainable packaging and coating technologies for strawberry preservation: A review. Int J Biol Macromol 2024; 278:134859. [PMID: 39163966 DOI: 10.1016/j.ijbiomac.2024.134859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Strawberry fruits are popular all over the world due to their rich organoleptic properties and enormous health benefits. However, it is highly susceptible to postharvest spoilage due to various factors, including moisture loss, nutrient oxidation, and microbial spoilage. Recently, various researchers have studied the effect of chitosan-based flexible films and surface coatings on the shelf life of strawberries. Despite various reviews providing general information on the effects of chitosan-based films and coatings on various food products, no review has focused solely on their effects on postharvest preservation and the shelf life of strawberries. The purpose of this review is to summarize the current research on chitosan-based formulations for extending the shelf life of strawberries. Chitosan, a cationic carbohydrate polymer, possesses excellent properties such as film formation, mechanical strength, non-toxicity, biodegradability, edibility, UV-blocking ability, antioxidant activity, and antibacterial functionality, justifying its potential as packaging/coating material for fresh agricultural products, including strawberries. This review covers the various factors responsible for strawberry spoilage and the properties of chitosan that help counteract these factors. Additionally, the advantages of chitosan-based preservation technology compared to existing strawberry preservation methods were explained, efficiency was evaluated, and future research directions were suggested.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea
| | - Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
3
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
4
|
Kavroumatzi CK, Boutsika A, Ortega P, Zambounis A, Tsitsigiannis DI. Unlocking the Transcriptional Reprogramming Repertoire between Variety-Dependent Responses of Grapevine Berries to Infection by Aspergillus carbonarius. PLANTS (BASEL, SWITZERLAND) 2024; 13:2043. [PMID: 39124161 PMCID: PMC11314482 DOI: 10.3390/plants13152043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Aspergillus carbonarius causes severe decays on berries in vineyards and is among the main fungal species responsible for grape contamination by ochratoxin A (OTA), which is the foremost mycotoxin produced by this fungus. The main goal of this study was to investigate at the transcriptome level the comparative profiles between two table grape varieties (Victoria and Fraoula, the white and red variety, respectively) after their inoculation with a virulent OTA-producing A. carbonarius strain. The two varieties revealed quite different transcriptomic signatures and the expression profiles of the differential expressed genes (DEGs) highlighted distinct and variety-specific responses during the infection period. The significant enrichment of pathways related to the modulation of transcriptional dynamics towards the activation of defence responses, the triggering of the metabolic shunt for the biosynthesis of secondary metabolites, mainly phenylpropanoids, and the upregulation of DEGs encoding phytoalexins, transcription factors, and genes involved in plant-pathogen interaction and immune signaling transduction was revealed in an early time point in Fraoula, whereas, in Victoria, any transcriptional reprogramming was observed after a delay. However, both varieties, to some extent, also showed common expression dynamics for specific DEG families, such as those encoding for laccases and stilbene synthases. Jasmonate (JA) may play a critical modulator role in the defence machinery as various JA-biosynthetic DEGs were upregulated. Along with the broader modulation of the transcriptome that was observed in white grape, expression profiles of specific A. carbonarius genes related to pathogenesis, fungal sporulation, and conidiation highlight the higher susceptibility of Victoria. Furthermore, the A. carbonarius transcriptional patterns directly associated with the regulation of the pathogen OTA-biosynthesis gene cluster were more highly induced in Victoria than in Fraoula. The latter was less contaminated by OTA and showed substantially lower sporulation. These findings contribute to uncovering the interplay beyond this plant-microbe interaction.
Collapse
Affiliation(s)
- Charikleia K. Kavroumatzi
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (C.K.K.); (P.O.)
- Hellenic Agricultural Organization—DIMITRA (ELGO—DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.B.); (A.Z.)
| | - Anastasia Boutsika
- Hellenic Agricultural Organization—DIMITRA (ELGO—DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.B.); (A.Z.)
| | - Paula Ortega
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (C.K.K.); (P.O.)
- Department of Agro-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya, 08860 Castelldefels, Spain
| | - Antonios Zambounis
- Hellenic Agricultural Organization—DIMITRA (ELGO—DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece; (A.B.); (A.Z.)
| | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (C.K.K.); (P.O.)
| |
Collapse
|
5
|
Priyadarshi R, Jayakumar A, de Souza CK, Rhim JW, Kim JT. Advances in strawberry postharvest preservation and packaging: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13417. [PMID: 39072989 DOI: 10.1111/1541-4337.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Strawberries spoil rapidly after harvest due to factors such as the ripening process, weight loss, and, most importantly, microbial contamination. Traditionally, several methods are used to preserve strawberries after harvest and extend their shelf life, including thermal, plasma, radiation, chemical, and biological treatments. Although these methods are effective, they are a concern from the perspective of safety and consumer acceptance of the treated food. To address these issues, more advanced environment-friendly technologies have been developed over the past decades, including modified and controlled atmosphere packaging, active biopolymer-based packaging, or edible coating formulations. This method can not only significantly extend the shelf life of fruit but also solve safety concerns. Some studies have shown that combining two or more of these technologies can significantly extend the shelf life of strawberries, which could significantly contribute to expanding the global supply chain for delicious fruit. Despite the large number of studies underway in this field of research, no systematic review has been published discussing these advances. This review aims to cover important information about postharvest physiology, decay factors, and preservation methods of strawberry fruits. It is a pioneering work that integrates, relates, and discusses all information on the postharvest fate and handling of strawberries in one place. Additionally, commercially used techniques were discussed to provide insight into current developments in strawberry preservation and suggest future research directions in this field of study. This review aims to enrich the knowledge of academic and industrial researchers, scientists, and students on trends and developments in postharvest preservation and packaging of strawberry fruits.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | | | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
6
|
Tsafouros A, Tsalgatidou PC, Boutsika A, Delis C, Mincuzzi A, Ippolito A, Zambounis A. Deciphering the Interaction between Coniella granati and Pomegranate Fruit Employing Transcriptomics. Life (Basel) 2024; 14:752. [PMID: 38929736 PMCID: PMC11205003 DOI: 10.3390/life14060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Pomegranate fruit dry rot is caused by Coniella granati, also referred as Pilidiella granati. In order to decipher the induced responses of mature pomegranates inoculated with the pathogen, an RNA-seq analysis was employed. A high number of differentially expressed genes (DEGs) were observed through a three-time series inoculation period. The transcriptional reprogramming was time-dependent, whereas the majority of DEGs were suppressed and the expression patterns of specific genes may facilitate the pathogen colonization at 1 day after inoculation (dai). In contrast, at 2 dai and mainly thereafter at 3 dai, defense responses were partially triggered in delay. Particularly, DEGs were mainly upregulated at the latest time point. Among them, specific DEGs involved in cell wall modification and degradation processes, pathogen recognition and signaling transduction cascades, activation of specific defense and metabolite biosynthesis-related genes, as well in induction of particular families of transcriptional factors, may constitute crucial components of a defense recruiting strategy employed by pomegranate fruit upon C. granati challenge. Overall, our findings provide novel insights to the compatible interaction of pomegranates-C. granati and lay the foundations for establishing integrated pest management (IPM) strategies involving advanced approaches, such as gene editing or molecular breeding programs for disease resistance, according to European Union (EU) goals.
Collapse
Affiliation(s)
- Athanasios Tsafouros
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Polina C. Tsalgatidou
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | - Anastasia Boutsika
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Annamaria Mincuzzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Antonios Zambounis
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| |
Collapse
|
7
|
Jia R, Xing K, Tian L, Dong X, Yu L, Shen X, Wang Y. Analysis of Methylesterase Gene Family in Fragaria vesca Unveils Novel Insights into the Role of FvMES2 in Methyl Salicylate-Mediated Resistance against Strawberry Gray Mold. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11392-11404. [PMID: 38717972 DOI: 10.1021/acs.jafc.4c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.
Collapse
Affiliation(s)
- Ruimin Jia
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Keyan Xing
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Lin Tian
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xiaomin Dong
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Ligang Yu
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
8
|
Maniatis EI, Karamichali I, Stefanidou E, Boutsika A, Tsitsigiannis DI, Paplomatas E, Madesis P, Zambounis A. Insights into the Transcriptional Reprogramming of Peach Leaves Inoculated with Taphrina deformans. PLANTS (BASEL, SWITZERLAND) 2024; 13:861. [PMID: 38592856 PMCID: PMC10976055 DOI: 10.3390/plants13060861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The dimorphic fungus Taphrina deformans is the causal agent of peach leaf curl disease, which affects leaves, flowers, and fruits. An RNA-seq approach was employed to gain insights into the transcriptional reprogramming of a peach cultivar during leaf inoculation with the yeast phase of the fungus across a compatible interaction. The results uncovered modulations of specific peach differentially expressed genes (DEGs) in peaches and pathways related to either the induction of host defense responses or pathogen colonization and disease spread. Expression profiles of DEGs were shown to be highly time-dependent and related to the presence of the two forms of the fungal growth, the inoculated yeast form and the later biotrophic phase during mycelial development. In parallel, this differential reprogramming was consistent with a diphasic detection of fungal load in the challenged leaves over the 120 h after inoculation (HAI) period. Leaf defense responses either occurred during the early yeast phase inoculation at 24 HAI, mediated primarily by cell wall modification processes, or more pronouncedly during the biotrophic phase at 72 HAI, as revealed by the activation of DEGs related to pathogen perception, signaling transduction, and secondary metabolism towards restraining further hypha proliferation. On the contrary, the expression patterns of specific DEGs at 120 HAI might further contribute to host susceptibility. These findings will further allow us to elucidate the molecular responses beyond the peach-T. deformans interaction.
Collapse
Affiliation(s)
- Elissaios I. Maniatis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Ioanna Karamichali
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece
| | - Eleni Stefanidou
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece
| | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece
| | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiotis Madesis
- Laboratory of Agrobiotechnology and Molecular Plant Breeding, Institute of Applied Biosciences (INAB), Center for Research and Technology (CERTH), 57001 Thessaloniki, Greece
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece
| |
Collapse
|
9
|
Aci MM, Tsalgatidou PC, Boutsika A, Dalianis A, Michaliou M, Delis C, Tsitsigiannis DI, Paplomatas E, Malacrinò A, Schena L, Zambounis A. Comparative transcriptome profiling and co-expression network analysis uncover the key genes associated with pear petal defense responses against Monilinia laxa infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1377937. [PMID: 38516670 PMCID: PMC10954844 DOI: 10.3389/fpls.2024.1377937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Pear brown rot and blossom blight caused by Monilinia laxa seriously affect pear production worldwide. Here, we compared the transcriptomic profiles of petals after inoculation with M. laxa using two pear cultivars with different levels of sensitivity to disease (Sissy, a relatively tolerant cultivar, and Kristalli, a highly susceptible cultivar). Physiological indexes were also monitored in the petals of both cultivars at 2 h and 48 h after infection (2 HAI and 48 HAI). RNA-seq data and weighted gene co-expression network analysis (WGCNA) allowed the identification of key genes and pathways involved in immune- and defense-related responses that were specific for each cultivar in a time-dependent manner. In particular, in the Kristalli cultivar, a significant transcriptome reprogramming occurred early at 2 HAI and was accompanied either by suppression of key differentially expressed genes (DEGs) involved in the modulation of any defense responses or by activation of DEGs acting as sensitivity factors promoting susceptibility. In contrast to the considerably high number of DEGs induced early in the Kristalli cultivar, upregulation of specific DEGs involved in pathogen perception and signal transduction, biosynthesis of secondary and primary metabolism, and other defense-related responses was delayed in the Sissy cultivar, occurring at 48 HAI. The WGCNA highlighted one module that was significantly and highly correlated to the relatively tolerant cultivar. Six hub genes were identified within this module, including three WRKY transcription factor-encoding genes: WRKY 65 (pycom05g27470), WRKY 71 (pycom10g22220), and WRKY28 (pycom17g13130), which may play a crucial role in enhancing the tolerance of pear petals to M. laxa. Our results will provide insights into the interplay of the molecular mechanisms underlying immune responses of petals at the pear-M. laxa pathosystem.
Collapse
Affiliation(s)
- Meriem Miyassa Aci
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | | | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Dimitra, Thessaloniki, Greece
| | - Andreas Dalianis
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization Dimitra, Heraklion, Greece
| | - Maria Michaliou
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization Dimitra, Heraklion, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, Kalamata, Greece
| | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Leonardo Schena
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Dimitra, Thessaloniki, Greece
| |
Collapse
|
10
|
Tsalgatidou PC, Boutsika A, Papageorgiou AG, Dalianis A, Michaliou M, Chatzidimopoulos M, Delis C, Tsitsigiannis DI, Paplomatas E, Zambounis A. Global Transcriptome Analysis of the Peach ( Prunus persica) in the Interaction System of Fruit-Chitosan- Monilinia fructicola. PLANTS (BASEL, SWITZERLAND) 2024; 13:567. [PMID: 38475414 DOI: 10.3390/plants13050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
The peach (Prunus persica L.) is one of the most important stone-fruit crops worldwide. Nevertheless, successful peach fruit production is seriously reduced by losses due to Monilinia fructicola the causal agent of brown rot. Chitosan has a broad spectrum of antimicrobial properties and may also act as an elicitor that activate defense responses in plants. As little is known about the elicitation potential of chitosan in peach fruits and its impact at their transcriptional-level profiles, the aim of this study was to uncover using RNA-seq the induced responses regulated by the action of chitosan in fruit-chitosan-M. fructicola interaction. Samples were obtained from fruits treated with chitosan or inoculated with M. fructicola, as well from fruits pre-treated with chitosan and thereafter inoculated with the fungus. Chitosan was found to delay the postharvest decay of fruits, and expression profiles showed that its defense-priming effects were mainly evident after the pathogen challenge, driven particularly by modulations of differentially expressed genes (DEGs) related to cell-wall modifications, pathogen perception, and signal transduction, preventing the spread of fungus. In contrast, as the compatible interaction of fruits with M. fructicola was challenged, a shift towards defense responses was triggered with a delay, which was insufficient to limit fungal expansion, whereas DEGs involved in particular processes have facilitated early pathogen colonization. Physiological indicators of peach fruits were also measured. Additionally, expression profiles of particular M. fructicola genes highlight the direct antimicrobial activity of chitosan against the fungus. Overall, the results clarify the possible mechanisms of chitosan-mediated tolerance to M. fructicola and set new foundations for the potential employment of chitosan in the control of brown rot in peaches.
Collapse
Affiliation(s)
- Polina C Tsalgatidou
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001 Thessaloniki, Greece
| | - Anastasia G Papageorgiou
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Andreas Dalianis
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Crops and Viticulture, ELGO-DEMETER, 71307 Heraklion, Greece
| | - Maria Michaliou
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Crops and Viticulture, ELGO-DEMETER, 71307 Heraklion, Greece
| | | | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Dimitrios I Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER, 57001 Thessaloniki, Greece
| |
Collapse
|
11
|
Bai Y, Wang H, Zhu K, Cheng ZM. The dynamic arms race during the early invasion of woodland strawberry by Botrytis cinerea revealed by dual dense high-resolution RNA-seq analyses. HORTICULTURE RESEARCH 2023; 10:uhad225. [PMID: 38143486 PMCID: PMC10745266 DOI: 10.1093/hr/uhad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/29/2023] [Indexed: 12/26/2023]
Abstract
Necrotrophic pathogens replicate massively upon colonizing plants, causing large-scale wilting and death of plant tissues. Understanding both mechanisms of pathogen invasion and host response processes prior to symptom appearance and their key regulatory networks is therefore important for defense against pathogen attack. Here, we investigated the mechanisms of interaction between woodland strawberry (Fragaria vesca) leaves and gray mold pathogen (Botrytis cinerea) at 14 infection time points during the first 12 hours of the infection period using a dense, high-resolution time series dual transcriptomic analysis, characterizing the arms race between strawberry F. vesca and B. cinerea before the appearance of localized lesions. Strawberry leaves rapidly initiated strong systemic defenses at the first sign of external stimulation and showed lower levels of transcriptomic change later in the infection process. Unlike the host plants, B. cinerea showed larger-scale transcriptomic changes that persisted throughout the infection process. Weighted gene co-expression network analysis identified highly correlated genes in 32 gene expression modules between B. cinerea and strawberry. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that the disease response protein FvRLP2 from woodland strawberry interacted with the cell death inducing proteins BcXYG1 and BcPG3 from B. cinerea. Overexpression of FvRLP2 in both strawberry and Arabidopsis inhibited B. cinerea infection, confirming these genes' respective functions. These findings shed light on the arms race process by which B. cinerea invades host plants and strawberry to defend against pathogen infection.
Collapse
Affiliation(s)
- Yibo Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaikai Zhu
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Mejía-Mendoza MA, Garcidueñas-Piña C, Barrera-Figueroa BE, Morales-Domínguez JF. Identification and Profiling Analysis of microRNAs in Guava Fruit ( Psidium guajava L.) and Their Role during Ripening. Genes (Basel) 2023; 14:2029. [PMID: 38002972 PMCID: PMC10670931 DOI: 10.3390/genes14112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The guava (Psidium guajava L.) is a climacteric fruit with an accelerated post-harvest overripening. miRNAs are small RNA sequences that function as gene regulators in eukaryotes and are essential for their survival and development. In this study, miRNA libraries were constructed, sequenced and analyzed from the breaker and ripe stages of guava fruit cv. Siglo XXI. One hundred and seventy-four mature miRNA sequences from 28 miRNA families were identified. The taxonomic distribution of the guava miRNAs showed a high level of conservation among the dicotyledonous plants. Most of the predicted miRNA target genes were transcription factors and genes involved in the metabolism of phytohormones such as abscisic acid, auxins, and ethylene, as revealed through an ontology enrichment analysis. The miRNA families miR168, miR169, miR396, miR397, and miR482 were classified as being directly associated with maturation, whereas the miRNA families miR160, miR165, miR167, miR3930, miR395, miR398, and miR535 were classified as being indirectly associated. With this study, we intended to increase our knowledge and understanding of the regulatory process involved in the ripening process, thereby providing valuable information for future research on the ripening of guava fruit.
Collapse
Affiliation(s)
- Mario Alejandro Mejía-Mendoza
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, Aguascalientes 20100, Mexico; (M.A.M.-M.); (C.G.-P.)
| | - Cristina Garcidueñas-Piña
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, Aguascalientes 20100, Mexico; (M.A.M.-M.); (C.G.-P.)
| | - Blanca Estela Barrera-Figueroa
- Centro de Investigaciones Científicas, Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Circuito Central #200, Parque Industrial, Tuxtepec 68301, Mexico;
| | - José Francisco Morales-Domínguez
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, Aguascalientes 20100, Mexico; (M.A.M.-M.); (C.G.-P.)
| |
Collapse
|
13
|
Lee MB, Han H, Lee S. The role of WRKY transcription factors, FaWRKY29 and FaWRKY64, for regulating Botrytis fruit rot resistance in strawberry (Fragaria × ananassa Duch.). BMC PLANT BIOLOGY 2023; 23:420. [PMID: 37691125 PMCID: PMC10494375 DOI: 10.1186/s12870-023-04426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The cultivated strawberry (Fragaria × ananassa Duch.) is one of the most economically important horticultural crops worldwide. Botrytis fruit rot (BFR) caused by the necrotrophic fungal pathogen Botrytis cinerea is the most devasting disease of cultivated strawberries. Most commercially grown strawberry varieties are susceptible to BFR, and controlling BFR relies on repeated applications of various fungicides. Despite extensive efforts, breeding for BFR resistance has been unsuccessful, primarily due to lack of information regarding the mechanisms of disease resistance and genetic resources available in strawberry. RESULTS Using a reverse genetics approach, we identified candidate genes associated with BFR resistance and screened Arabidopsis mutants using strawberry isolates of B. cinerea. Among the five Arabidopsis T-DNA knockout lines tested, the mutant line with AtWRKY53 showed the greatest reduction in disease symptoms of BFR against the pathogen. Two genes, FaWRKY29 and FaWRKY64, were identified as orthologs in the latest octoploid strawberry genome, 'Florida Brilliance'. We performed RNAi-mediated transient assay and found that the disease frequencies were significantly decreased in both FaWRKY29- and FaWRKY64-RNAi fruits of the strawberry cultivar, 'Florida Brilliance'. Furthermore, our transcriptomic data analysis revealed significant regulation of genes associated with ABA and JA signaling, plant cell wall composition, and ROS in FaWRKY29 or FaWRKY64 knockdown strawberry fruits in response to the pathogen. CONCLUSION Our study uncovered the foundational role of WRKY transcription factor genes, FaWRKY29 and FaWRKY64, in conferring resistance against B. cinerea. The discovery of susceptibility genes involved in BFR presents significant potential for developing resistance breeding strategies in cultivated strawberries, potentially leveraging CRISPR-based gene editing techniques.
Collapse
Affiliation(s)
- Man Bo Lee
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Korea
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Hyeondae Han
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
14
|
Iqbal M, Broberg A, Andreasson E, Stenberg JA. Biocontrol Potential of Beneficial Fungus Aureobasidium pullulans Against Botrytis cinerea and Colletotrichum acutatum. PHYTOPATHOLOGY 2023; 113:1428-1438. [PMID: 36945727 DOI: 10.1094/phyto-02-23-0067-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biological control is a promising approach to reduce plant diseases caused by fungal pathogens and ensure high productivity in horticultural production. In the present study, we evaluated the biocontrol potential and underlying mechanisms of the beneficial fungus Aureobasidium pullulans against Botrytis cinerea and Colletotrichum acutatum, casual agents of gray mold and anthracnose diseases in strawberry. Notably, this is the first time that A. pullulans has been tested against C. acutatum in strawberry. A. pullulans strains (AP-30044, AP-30273, AP-53383, and AP-SLU6) showed significant variation in terms of growth and conidia production. An inverse relationship was found between the growth and conidiation rate, suggesting a trade-off between resource allocation for growth and conidial production. Dual plate co-culturing assays showed that mycelial growth of B. cinerea and C. acutatum was reduced by up to 35 and 18%, respectively, when challenged with A. pullulans compared with control treatments. Likewise, culture filtrates of A. pullulans showed varying levels of antifungal activity against B. cinerea and C. acutatum, reducing the mycelial biomass by up to 90 and 72%, respectively. Furthermore, milk powder plate assays showed that A. pullulans produced substantial amounts of extracellular proteases, which are known to degrade fungal cuticle. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analyses revealed that A. pullulans produced exophilins, liamocins, and free fatty acids known to have antifungal properties. A. pullulans shows high potential for successful biological control of strawberry diseases and discuss opportunities for further optimization of this beneficial fungus.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Johan A Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| |
Collapse
|
15
|
Chen X, Wei Y, Zou X, Zhao Z, Jiang S, Chen Y, Xu F, Shao X. β-Glucan Enhances the Biocontrol Efficacy of Marine Yeast Scheffersomyeces spartinae W9 against Botrytis cinerea in Strawberries. J Fungi (Basel) 2023; 9:jof9040474. [PMID: 37108929 PMCID: PMC10142798 DOI: 10.3390/jof9040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The marine yeast Scheffersomyeces spartinae W9 is a promising biocontrol agent for gray mold caused by Botrytis cinerea in strawberries. Improving the biocontrol efficacy of S. spartinae W9 is necessary for its commercial application. In this study, different concentrations of β-glucan were added to the culture medium to evaluate its effect on the biocontrol efficacy of S. spartinae W9. The results showed that 0.1% β-glucan could increase the biocontrol effect of S. spartinae W9 against B. cinerea in strawberries and in vitro. We found that adding 0.1% β-glucan to the culture medium promoted the growth of S. spartinae W9 in wounds of strawberries, enhanced biofilm formation ability, and secreted more β-1,3-glucanase. In addition, 0.1% β-glucan increased the survival rate of S. spartinae W9 under oxidative, thermal, osmotic, and plasma membrane stressors. Transcriptome analysis revealed 188 differential expressed genes in S. spartinae W9 cultured with or without 0.1% β-glucan, including 120 upregulated and 68 downregulated genes. The upregulated genes were associated with stress response, cell wall formation, energy production, growth, and reproduction. Thus, culturing with 0.1% β-glucan is an effective way to improve the biocontrol ability of S. spartinae W9 against gray mold in strawberries.
Collapse
Affiliation(s)
- Xueyan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiurong Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan 512005, China
| | - Zichang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
16
|
Balsells-Llauradó M, Vall-Llaura N, Usall J, Silva CJ, Blanco-Ulate B, Teixidó N, Caballol M, Torres R. Transcriptional profiling of the terpenoid biosynthesis pathway and in vitro tests reveal putative roles of linalool and farnesal in nectarine resistance against brown rot. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111558. [PMID: 36493930 DOI: 10.1016/j.plantsci.2022.111558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The most devastating fungal disease of peaches and nectarines is brown rot, caused by Monilinia spp. Among the many plant responses against biotic stress, plant terpenoids play essential protective functions, including antioxidant activities and inhibition of pathogen growth. Herein, we aimed to characterize the expression of terpenoid biosynthetic genes in fruit tissues that presented different susceptibility to brown rot. For that, we performed artificial inoculations with Monilinia laxa at two developmental stages (immature and mature fruit) of two nectarine cultivars ('Venus' -mid-early season cultivar - and 'Albared' -late season cultivar-) and in vitro tests of the key compounds observed in the transcriptional results. All fruit were susceptible to M. laxa except for immature 'Venus' nectarines. In response to the pathogen, the mevalonic acid (MVA) pathway of the 'Venus' cultivar was highly induced in both stages rather than the methylerythritol phosphate (MEP) pathway, being the expression of some MEP-related biosynthetic genes [e.g., PROTEIN FARNESYLTRANSFERASE (PpPFT), and 3S-LINALOOL SYNTHASE (PpLIS)] different between stages. In 'Albared', both stages presented similar responses to M. laxa for both pathways. Comparisons between cultivars showed that HYDROXYMETHYLGLUTARYL-CoA REDUCTASE (PpHMGR1) expression levels were common in susceptible tissues. Within all the terpenoid biosynthetic pathway, linalool- and farnesal-related pathways stood out for being upregulated only in resistant tissues, which suggest their role in mediating the resistance to M. laxa. The in vitro antifungal activity of linalool and farnesol (precursor of farnesal) revealed fungicidal and fungistatic activities against M. laxa, respectively, depending on the concentration tested. Understanding the different responses between resistant and susceptible tissues could be further considered for breeding or developing new strategies to control brown rot in stone fruit.
Collapse
Affiliation(s)
- Marta Balsells-Llauradó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Núria Vall-Llaura
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Josep Usall
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Christian J Silva
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, United States.
| | - Barbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, United States.
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Maria Caballol
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| |
Collapse
|
17
|
Ma L, Haile ZM, Sabbadini S, Mezzetti B, Negrini F, Baraldi E. Functional characterization of MANNOSE-BINDING LECTIN 1, a G-type lectin gene family member, in response to fungal pathogens of strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:149-161. [PMID: 36219205 PMCID: PMC9786840 DOI: 10.1093/jxb/erac396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The mannose-binding lectin gene MANNOSE-BINDING LECTIN 1 (MBL1) is a member of the G-type lectin family and is involved in defense in strawberry (Fragaria × ananassa). Genome-wide identification of the G-type lectin family was carried out in woodland strawberry, F. vesca, and 133 G-lectin genes were found. Their expression profiles were retrieved from available databases and indicated that many are actively expressed during plant development or interaction with pathogens. We selected MBL1 for further investigation and generated stable transgenic FaMBL1-overexpressing plants of F. ×ananassa to examine the role of this gene in defense. Plants were selected and evaluated for their contents of disease-related phytohormones and their reaction to biotic stresses, and this revealed that jasmonic acid decreased in the overexpressing lines compared with the wild-type (WT). Petioles of the overexpressing lines inoculated with Colletotrichum fioriniae had lower disease incidence than the WT, and leaves of these lines challenged by Botrytis cinerea showed significantly smaller lesion diameters than the WT and higher expression of CLASS II CHITINASE 2-1. Our results indicate that FaMBL1 plays important roles in strawberry response to fungal diseases caused by C. fioriniae and B. cinerea.
Collapse
Affiliation(s)
- Lijing Ma
- Department of Agricultural and Food Science, DISTAL, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Zeraye Mehari Haile
- Department of Agricultural and Food Science, DISTAL, Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Plant Protection Research Division of Melkasa Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | | |
Collapse
|
18
|
Huang X, Liu W, Liu C, Hu J, Wang B, Ren A, Huang X, Yuan Y, Liu J, Li M. CMTM6 as a candidate risk gene for cervical cancer: Comprehensive bioinformatics study. Front Mol Biosci 2022; 9:983410. [PMID: 36589225 PMCID: PMC9798917 DOI: 10.3389/fmolb.2022.983410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background: CKLF like MARVEL transmembrane domain containing 6 (CMTM6) is an important programmed cell death 1 ligand 1 regulator (PD-L1). CMTM6 was reported as an important regulator of PD-L1 by promoting PD-L1 expression in tumor cells against T cells. However, the function of CMTM6 in cervical cancer is not well characterized. In addition, the role of CMTM6 in the induction of epithelial-mesenchymal transition (EMT) in the context of cervical cancer is unknown. Methods: In this study, we evaluated the role of CMTM6, including gene expression analysis, miRNA target regulation, and methylation characteristic, using multiple bioinformatics tools based on The Cancer Genome Atlas (TCGA) database. The expression of CMTM6 in cervical cancer tissues and non-cancerous adjacent tissues was assessed using immunohistochemistry. In vitro and in vivo function experiments were performed to explore the effects of CMTM6 on growth and metastasis of cervical cancer. Results: Human cervical cancer tissues showed higher expression of CMTM6 than the adjacent non-cancerous tissues. In vitro assays showed that CMTM6 promoted cervical cancer cell invasion, migration, proliferation, and epithelial-mesenchymal transition via activation of mitogen-activated protein kinase (MAPK) c-jun N-terminal kinase (JNK)/p38 signaling pathway. We identified transcription factors (TFs), miRNAs, and immune cells that may interact with CMTM6. Conclusion: These results indicate that CMTM6 is a potential therapeutic target in the context of cervical cancer.
Collapse
Affiliation(s)
- Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Anbang Ren
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaona Huang
- TCM Hospital of Liwan District, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinquan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Mingyi Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Badmi R, Tengs T, Brurberg MB, Elameen A, Zhang Y, Haugland LK, Fossdal CG, Hytönen T, Krokene P, Thorstensen T. Transcriptional profiling of defense responses to Botrytis cinerea infection in leaves of Fragaria vesca plants soil-drenched with β-aminobutyric acid. FRONTIERS IN PLANT SCIENCE 2022; 13:1025422. [PMID: 36570914 PMCID: PMC9772985 DOI: 10.3389/fpls.2022.1025422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Grey mold caused by the necrotrophic fungal pathogen Botrytis cinerea can affect leaves, flowers, and berries of strawberry, causing severe pre- and postharvest damage. The defense elicitor β-aminobutyric acid (BABA) is reported to induce resistance against B. cinerea and many other pathogens in several crop plants. Surprisingly, BABA soil drench of woodland strawberry (Fragaria vesca) plants two days before B. cinerea inoculation caused increased infection in leaf tissues, suggesting that BABA induce systemic susceptibility in F. vesca. To understand the molecular mechanisms involved in B. cinerea susceptibility in leaves of F. vesca plants soil drenched with BABA, we used RNA sequencing to characterize the transcriptional reprogramming 24 h post-inoculation. The number of differentially expressed genes (DEGs) in infected vs. uninfected leaf tissue in BABA-treated plants was 5205 (2237 upregulated and 2968 downregulated). Upregulated genes were involved in pathogen recognition, defense response signaling, and biosynthesis of secondary metabolites (terpenoid and phenylpropanoid pathways), while downregulated genes were involved in photosynthesis and response to auxin. In control plants not treated with BABA, we found a total of 5300 DEGs (2461 upregulated and 2839 downregulated) after infection. Most of these corresponded to those in infected leaves of BABA-treated plants but a small subset of DEGs, including genes involved in 'response to biologic stimulus', 'photosynthesis' and 'chlorophyll biosynthesis and metabolism', differed significantly between treatments and could play a role in the induced susceptibility of BABA-treated plants.
Collapse
Affiliation(s)
- Raghuram Badmi
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Torstein Tengs
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - May Bente Brurberg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Abdelhameed Elameen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Yupeng Zhang
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Lisa Karine Haugland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Carl Gunnar Fossdal
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Genetics, Genomics and Breeding, National Institute of Agricultural Botany- East Malling Research Station, East Malling, United Kingdom
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Tage Thorstensen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
20
|
The association between the susceptibility to Botrytis cinerea and the levels of volatile and non-volatile metabolites in red ripe strawberry genotypes. Food Chem 2022; 393:133252. [DOI: 10.1016/j.foodchem.2022.133252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022]
|
21
|
Li S, Wu P, Yu X, Cao J, Chen X, Gao L, Chen K, Grierson D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells 2022; 11:cells11162484. [PMID: 36010560 PMCID: PMC9406635 DOI: 10.3390/cells11162484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fleshy fruits are generally hard and unpalatable when unripe; however, as they mature, their quality is transformed by the complex and dynamic genetic and biochemical process of ripening, which affects all cell compartments. Ripening fruits are enriched with nutrients such as acids, sugars, vitamins, attractive volatiles and pigments and develop a pleasant taste and texture and become attractive to eat. Ripening also increases sensitivity to pathogens, and this presents a crucial problem for fruit postharvest transport and storage: how to enhance pathogen resistance while maintaining ripening quality. Fruit development and ripening involve many changes in gene expression regulated by transcription factors (TFs), some of which respond to hormones such as auxin, abscisic acid (ABA) and ethylene. Ethylene response factor (ERF) TFs regulate both fruit ripening and resistance to pathogen stresses. Different ERFs regulate fruit ripening and/or pathogen responses in both fleshy climacteric and non-climacteric fruits and function cooperatively or independently of other TFs. In this review, we summarize the current status of studies on ERFs that regulate fruit ripening and responses to infection by several fungal pathogens, including a systematic ERF transcriptome analysis of fungal grey mould infection of tomato caused by Botrytis cinerea. This deepening understanding of the function of ERFs in fruit ripening and pathogen responses may identify novel approaches for engineering transcriptional regulation to improve fruit quality and pathogen resistance.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (S.L.); (D.G.)
| | - Pan Wu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinping Cao
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Xia Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (S.L.); (D.G.)
| |
Collapse
|
22
|
Zhao Y, Vlasselaer L, Ribeiro B, Terzoudis K, Van den Ende W, Hertog M, Nicolaï B, De Coninck B. Constitutive Defense Mechanisms Have a Major Role in the Resistance of Woodland Strawberry Leaves Against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2022; 13:912667. [PMID: 35874021 PMCID: PMC9298464 DOI: 10.3389/fpls.2022.912667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The necrotrophic fungus Botrytis cinerea is a major threat to strawberry cultivation worldwide. By screening different Fragaria vesca genotypes for susceptibility to B. cinerea, we identified two genotypes with different resistance levels, a susceptible genotype F. vesca ssp. vesca Tenno 3 (T3) and a moderately resistant genotype F. vesca ssp. vesca Kreuzkogel 1 (K1). These two genotypes were used to identify the molecular basis for the increased resistance of K1 compared to T3. Fungal DNA quantification and microscopic observation of fungal growth in woodland strawberry leaves confirmed that the growth of B. cinerea was restricted during early stages of infection in K1 compared to T3. Gene expression analysis in both genotypes upon B. cinerea inoculation suggested that the restricted growth of B. cinerea was rather due to the constitutive resistance mechanisms of K1 instead of the induction of defense responses. Furthermore, we observed that the amount of total phenolics, total flavonoids, glucose, galactose, citric acid and ascorbic acid correlated positively with higher resistance, while H2O2 and sucrose correlated negatively. Therefore, we propose that K1 leaves are more resistant against B. cinerea compared to T3 leaves, prior to B. cinerea inoculation, due to a lower amount of innate H2O2, which is attributed to a higher level of antioxidants and antioxidant enzymes in K1. To conclude, this study provides important insights into the resistance mechanisms against B. cinerea, which highly depend on the innate antioxidative profile and specialized metabolites of woodland strawberry leaves.
Collapse
Affiliation(s)
- Yijie Zhao
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Liese Vlasselaer
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Bianca Ribeiro
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Konstantinos Terzoudis
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Wim Van den Ende
- KU Leuven Plant Institute, Heverlee, Belgium
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Maarten Hertog
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Bart Nicolaï
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| |
Collapse
|
23
|
Xiao G, Zhang Q, Zeng X, Chen X, Liu S, Han Y. Deciphering the Molecular Signatures Associated With Resistance to Botrytis cinerea in Strawberry Flower by Comparative and Dynamic Transcriptome Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:888939. [PMID: 35720571 PMCID: PMC9198642 DOI: 10.3389/fpls.2022.888939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Gray mold caused by Botrytis cinerea, which is considered to be the second most destructive necrotrophic fungus, leads to major economic losses in strawberry (Fragaria × ananassa) production. B. cinerea preferentially infects strawberry flowers and fruits, leading to flower blight and fruit rot. Compared with those of the fruit, the mechanisms of flower defense against B. cinerea remain largely unexplored. Therefore, in this study, we aimed to unveil the resistance mechanisms of strawberry flower through dynamic and comparative transcriptome analysis with resistant and susceptible strawberry cultivars. Our experimental data suggest that resistance to B. cinerea in the strawberry flower is probably regulated at the transcriptome level during the early stages of infection and strawberry flower has highly complex and dynamic regulatory networks controlling a multi-layered defense response to B. cinerea. First of all, the higher expression of disease-resistance genes but lower expression of cell wall degrading enzymes and peroxidases leads to higher resistance to B. cinerea in the resistant cultivar. Interestingly, CPKs, RBOHDs, CNGCs, and CMLs comprised a calcium signaling pathway especially play a crucial role in enhancing resistance by increasing their expression. Besides, six types of phytohormones forming a complex regulatory network mediated flower resistance, especially JA and auxin. Finally, the genes involved in the phenylpropanoid and amino acids biosynthesis pathways were gene sets specially expressed or different expression genes, both of them contribute to the flower resistance to B. cinerea. These data provide the foundation for a better understanding of strawberry gray mold, along with detailed genetic information and resistant materials to enable genetic improvement of strawberry plant resistance to gray mold.
Collapse
|
24
|
Bacterial Infection Induces Ultrastructural and Transcriptional Changes in the King Oyster Mushroom ( Pleurotus eryngii). Microbiol Spectr 2022; 10:e0144522. [PMID: 35616396 PMCID: PMC9241817 DOI: 10.1128/spectrum.01445-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pleurotus eryngii (king oyster mushroom) is a commercially important mushroom with high nutritional and economic value. However, soft rot disease, caused by the pathogenic bacterium Erwinia beijingensis, poses a threat to its quality and production. Morphological and ultrastructural observations of P. eryngii were conducted at early, middle, and late stages of infection. At 2 days postinoculation (dpi), small yellow spots on the fruiting body were observed. The infected tissue displayed hyphal deformations and breaks at 5 dpi. At 9 dpi, damage to cell wall integrity and absence of intact cellular organelles were observed and the diseased fruiting bodies were unable to grow normally. Transcriptome analysis identified 4,296 differentially expressed genes in the fruiting body following infection. In fact, broad transcriptional reprogramming was observed in infected fruiting bodies compared to controls. The affected pathways included antioxidant systems, peroxisome biogenesis, autophagy, and oxidation-reduction. More specifically, pex genes were downregulated during infection, indicating impaired peroxisome homeostasis and redox balance. Additionally, genes encoding chitinase, β-1,3-glucanase, and proteases associated with cell wall degradation were upregulated in infected P. eryngii. This study provides insights into the responses of P. eryngii during soft rot disease and facilitates the understanding of the pathogenic process of bacteriosis in mushrooms. IMPORTANCEPleurotus eryngii (king oyster mushroom) is a popular and economically valuable edible mushroom; however, it suffers from various bacterial diseases, including soft rot disease caused by the bacterium Erwinia beijingensis. Here, we examined bacterial infection of the mushroom through morphological and ultrastructural observations as well as transcriptome analysis. Pathogen attack damaged the cell structure of P. eryngii, including the cell wall, and also induced high levels of reactive oxygen species. These results were reflected in differential gene expression in P. eryngii as a response to the pathogenic bacteria, including genes involved in antioxidant systems, peroxisome biogenesis, autophagy, oxidation-reduction, ribosome biogenesis, and cell-wall degradation, among others. This study provides insights into the structural and molecular responses of P. eryngii during soft rot disease, improving our understanding and the potential control of the pathogenic process of bacteriosis in mushrooms.
Collapse
|
25
|
Mora J, Pott DM, Osorio S, Vallarino JG. Regulation of Plant Tannin Synthesis in Crop Species. Front Genet 2022; 13:870976. [PMID: 35586570 PMCID: PMC9108539 DOI: 10.3389/fgene.2022.870976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Plant tannins belong to the antioxidant compound family, which includes chemicals responsible for protecting biological structures from the harmful effects of oxidative stress. A wide range of plants and crops are rich in antioxidant compounds, offering resistance to biotic, mainly against pathogens and herbivores, and abiotic stresses, such as light and wound stresses. These compounds are also related to human health benefits, offering protective effects against cardiovascular and neurodegenerative diseases in addition to providing anti-tumor, anti-inflammatory, and anti-bacterial characteristics. Most of these compounds are structurally and biosynthetically related, being synthesized through the shikimate-phenylpropanoid pathways, offering several classes of plant antioxidants: flavonoids, anthocyanins, and tannins. Tannins are divided into two major classes: condensed tannins or proanthocyanidins and hydrolysable tannins. Hydrolysable tannin synthesis branches directly from the shikimate pathway, while condensed tannins are derived from the flavonoid pathway, one of the branches of the phenylpropanoid pathway. Both types of tannins have been proposed as important molecules for taste perception of many fruits and beverages, especially wine, besides their well-known roles in plant defense and human health. Regulation at the gene level, biosynthesis and degradation have been extensively studied in condensed tannins in crops like grapevine (Vitis vinifera), persimmon (Diospyros kaki) and several berry species due to their high tannin content and their importance in the food and beverage industry. On the other hand, much less information is available regarding hydrolysable tannins, although some key aspects of their biosynthesis and regulation have been recently discovered. Here, we review recent findings about tannin metabolism, information that could be of high importance for crop breeding programs to obtain varieties with enhanced nutritional characteristics.
Collapse
Affiliation(s)
| | | | | | - José G. Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”—Consejo Superior de Investigaciones Científicas-Universidad de Málaga- (IHSM-CSIC-UMA), Málaga, Spain
| |
Collapse
|
26
|
Lee HM, Park JS, Kim SJ, Kim SG, Park YD. Using Transcriptome Analysis to Explore Gray Mold Resistance-Related Genes in Onion (Allium cepa L.). Genes (Basel) 2022; 13:genes13030542. [PMID: 35328095 PMCID: PMC8955018 DOI: 10.3390/genes13030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Gray mold disease caused by Botrytis in onions (Allium cepa L.) during growth and storage negatively affects their yield and quality. Exploring the genes related to gray mold resistance in onion and their application to the breeding of resistant onion lines will support effective and ecological control methods of the disease. Here, the genetic relationship of 54 onion lines based on random amplified polymorphic DNA (RAPD) and in vitro-cultured onion lines infected with gray mold were used for screening resistance and susceptibility traits. Two genetically related onion lines were selected, one with a resistant and one with a susceptible phenotype. In vitro gray mold infection was repeated with these two lines, and leaf samples were collected for gene expression studies in time series. Transcript sequences obtained by RNA sequencing were subjected to DEG analysis, variant analysis, and KEGG mapping. Among the KEGG pathways, ‘α-linoleic acid metabolism’ was selected because the comparison of the time series expression pattern of Jasmonate resistant 1 (JAR1), Coronatine-insensitive protein 1 (COI 1), and transcription factor MYC2 (MYC2) genes between the resistant and susceptible lines revealed its significant relationship with gray-mold-resistant phenotypes. Expression pattern and SNP of the selected genes were verified by quantitative real-time PCR and high-resolution melting (HRM) analysis, respectively. The results of this study will be useful for the development of molecular marker and finally breeding of gray-mold-resistant onions.
Collapse
|
27
|
Bebek Markovinović A, Putnik P, Duralija B, Krivohlavek A, Ivešić M, Mandić Andačić I, Palac Bešlić I, Pavlić B, Lorenzo JM, Bursać Kovačević D. Chemometric Valorization of Strawberry ( Fragaria x ananassa Duch.) cv. 'Albion' for the Production of Functional Juice: The Impact of Physicochemical, Toxicological, Sensory, and Bioactive Value. Foods 2022; 11:640. [PMID: 35267273 PMCID: PMC8909511 DOI: 10.3390/foods11050640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/26/2022] Open
Abstract
Strawberries (Fragaria x ananassa Duch. cv. 'Albion') were harvested at two stages of ripeness (75% vs. 100%) and their physicochemical, sensory, toxicological, and bioactive properties were evaluated before and after processing into juice. The fresh fruits and their by-products were also evaluated. During processing into juice, the color change was higher in the fully ripe fruits, confirming the encouraging prospects for using the less ripe strawberries for processing. The analysis of heavy metals (Cu, Zn, Ni, As, Cd, Pb) was carried out, and in juice and by-product samples of 100% maturity, only Pb was higher than the MDK. Of the 566 pesticides analyzed, only cyprodinil was found in the by-products of the strawberries at 75% maturity, while pyrimethanil was detected in all samples. Fresh strawberries of both ripeness levels were rated similarly to the corresponding juices for all sensory attributes studied, indicating that sensory perception was not affected by processing. However, ripeness was found to be an important factor influencing most sensory attributes. The by-products were the materials with the highest levels of all bioactive compounds. Considering all quality parameters evaluated, the chemometric evaluation confirms the suitability of 75% ripe strawberries for processing into functional juice, which could be important for the juice industry.
Collapse
Affiliation(s)
- Anica Bebek Markovinović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Boris Duralija
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Adela Krivohlavek
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia; (A.K.); (M.I.); (I.M.A.); (I.P.B.)
| | - Martina Ivešić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia; (A.K.); (M.I.); (I.M.A.); (I.P.B.)
| | - Ivana Mandić Andačić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia; (A.K.); (M.I.); (I.M.A.); (I.P.B.)
| | - Iva Palac Bešlić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10000 Zagreb, Croatia; (A.K.); (M.I.); (I.M.A.); (I.P.B.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Universidade de Vigo, Area de Tecnoloxia dos Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
28
|
Pathogenic Fungi Diversity of ‘CuiXiang’ Kiwifruit Black Spot Disease during Storage. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kiwifruit black spot disease has become increasingly widespread in many ‘CuiXiang’ kiwifruit plantings regions. This research was aimed at the pathogenic microorganisms of black spot of the ‘CuiXiang’ cultivar. Physiological, morphological and transcriptional characteristics between black spot fruit and healthy fruits were evaluated. Then, it applied a high-throughput internal transcribed spacer (ITS) sequencing to analyze the black spot disease microbial community. The cell structure showed that mycelium was attached to the surface of the kiwifruit through black spot, and that consequently the mitochondria were damaged, starch particles were reduced, and shelf life was shortened. Transcriptome revealed that different genes in kiwifruit with black spot disease were involved in cell wall modification, pathogen perception, and signal transduction. ITS sequencing results described the disease-causing fungi and found that the microbial diversity of black spot-diseased fruit was lower than that of healthy fruit. We predict that candidate pathogenic fungi Cladosporium cladosporioides, Diaporthe phaseolorum, Alternaria alternata, and Trichothecium roseum may cause black spot. This study was to explore the pathogenic fungal community of ‘CuiXiang’ kiwifruit black spot disease and to provide essential information for field prevention.
Collapse
|
29
|
Reboledo G, Agorio AD, Vignale L, Batista-García RA, Ponce De León I. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea. PLANT MOLECULAR BIOLOGY 2021; 107:365-385. [PMID: 33521880 DOI: 10.1007/s11103-021-01116-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Evolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of Physcomitrium patens. Bryophytes and tracheophytes are descendants of early land plants that evolved adaptation mechanisms to cope with different kinds of terrestrial stresses, including drought, variations in temperature and UV radiation, as well as defense mechanisms against microorganisms present in the air and soil. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in bryophytes. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens (previously Physcomitrella patens) against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known functions in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, suggesting that they are important players in the moss immune response.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astri D Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
30
|
Roohigohar S, Clarke AR, Prentis PJ. Gene selection for studying frugivore-plant interactions: a review and an example using Queensland fruit fly in tomato. PeerJ 2021; 9:e11762. [PMID: 34434644 PMCID: PMC8359797 DOI: 10.7717/peerj.11762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Fruit production is negatively affected by a wide range of frugivorous insects, among them tephritid fruit flies are one of the most important. As a replacement for pesticide-based controls, enhancing natural fruit resistance through biotechnology approaches is a poorly researched but promising alternative. The use of quantitative reverse transcription PCR (RT-qPCR) is an approach to studying gene expression which has been widely used in studying plant resistance to pathogens and non-frugivorous insect herbivores, and offers a starting point for fruit fly studies. In this paper, we develop a gene selection pipe-line for known induced-defense genes in tomato fruit, Solanum lycopersicum, and putative detoxification genes in Queensland fruit fly, Bactrocera tryoni, as a basis for future RT-qPCR research. The pipeline started with a literature review on plant/herbivore and plant/pathogen molecular interactions. With respect to the fly, this was then followed by the identification of gene families known to be associated with insect resistance to toxins, and then individual genes through reference to annotated B. tryoni transcriptomes and gene identity matching with related species. In contrast for tomato, a much better studied species, individual defense genes could be identified directly through literature research. For B. tryoni, gene selection was then further refined through gene expression studies. Ultimately 28 putative detoxification genes from cytochrome P450 (P450), carboxylesterase (CarE), glutathione S-transferases (GST), and ATP binding cassette transporters (ABC) gene families were identified for B. tryoni, and 15 induced defense genes from receptor-like kinase (RLK), D-mannose/L-galactose, mitogen-activated protein kinase (MAPK), lipoxygenase (LOX), gamma-aminobutyric acid (GABA) pathways and polyphenol oxidase (PPO), proteinase inhibitors (PI) and resistance (R) gene families were identified from tomato fruit. The developed gene selection process for B. tryoni can be applied to other herbivorous and frugivorous insect pests so long as the minimum necessary genomic information, an annotated transcriptome, is available.
Collapse
Affiliation(s)
- Shirin Roohigohar
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Anthony R Clarke
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
31
|
De Tender C, Vandecasteele B, Verstraeten B, Ommeslag S, Kyndt T, Debode J. Biochar-Enhanced Resistance to Botrytis cinerea in Strawberry Fruits (But Not Leaves) Is Associated With Changes in the Rhizosphere Microbiome. FRONTIERS IN PLANT SCIENCE 2021; 12:700479. [PMID: 34497619 PMCID: PMC8419269 DOI: 10.3389/fpls.2021.700479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Biochar has been reported to play a positive role in disease suppression against airborne pathogens in plants. The mechanisms behind this positive trait are not well-understood. In this study, we hypothesized that the attraction of plant growth-promoting rhizobacteria (PGPR) or fungi (PGPF) underlies the mechanism of biochar in plant protection. The attraction of PGPR and PGPF may either activate the innate immune system of plants or help the plants with nutrient uptake. We studied the effect of biochar in peat substrate (PS) on the susceptibility of strawberry, both on leaves and fruits, against the airborne fungal pathogen Botrytis cinerea. Biochar had a positive impact on the resistance of strawberry fruits but not the plant leaves. On leaves, the infection was more severe compared with plants without biochar in the PS. The different effects on fruits and plant leaves may indicate a trade-off between plant parts. Future studies should focus on monitoring gene expression and metabolites of strawberry fruits to investigate this potential trade-off effect. A change in the microbial community in the rhizosphere was also observed, with increased fungal diversity and higher abundances of amplicon sequence variants classified into Granulicella, Mucilaginibacter, and Byssochlamys surrounding the plant root, where the latter two were reported as biocontrol agents. The change in the microbial community was not correlated with a change in nutrient uptake by the plant in either the leaves or the fruits. A decrease in the defense gene expression in the leaves was observed. In conclusion, the decreased infection of B. cinerea in strawberry fruits mediated by the addition of biochar in the PS is most likely regulated by the changes in the microbial community.
Collapse
Affiliation(s)
- Caroline De Tender
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Bart Vandecasteele
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Bruno Verstraeten
- Epigenetics and Defence Research Group, Department Biotechnology, Ghent University, Ghent, Belgium
| | - Sarah Ommeslag
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Tina Kyndt
- Epigenetics and Defence Research Group, Department Biotechnology, Ghent University, Ghent, Belgium
| | - Jane Debode
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
32
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
33
|
Testempasis S, Tanou G, Minas I, Samiotaki M, Molassiotis A, Karaoglanidis G. Unraveling Interactions of the Necrotrophic Fungal Species Botrytis cinerea With 1-Methylcyclopropene or Ozone-Treated Apple Fruit Using Proteomic Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:644255. [PMID: 33777080 PMCID: PMC7988217 DOI: 10.3389/fpls.2021.644255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/12/2021] [Indexed: 05/17/2023]
Abstract
Gray mold caused by the necrotrophic fungus Botrytis cinerea is one of the major postharvest diseases of apple fruit. The exogenous application of 1-methylcyclopropene (1-MCP) and gaseous ozone (O 3) is commonly used to ensure postharvest fruit quality. However, the effect of these treatments on the susceptibility of apple fruit to postharvest pathogens remains largely unknown. Herein, the effect of O 3 and 1-MCP treatments on the development of gray mold on apple fruit (cv. "Granny Smith") was investigated. Artificially inoculated apple fruits, treated or not with 1-MCP, were subjected for 2 months to cold storage [0°C, relative humidity (RH) 95%] either in an O3-enriched atmosphere or in a conventional cold chamber. Minor differences between 1-MCP-treated and control fruits were found in terms of disease expression; however, exposure to ozone resulted in a decrease of disease severity by more than 50% compared with 1-MCP-treated and untreated fruits. Proteomic analysis was conducted to determine proteome changes in the mesocarp tissue of control and 1-MCP- or O3-treated fruits in the absence or in the presence of inoculation with B. cinerea. In the non-inoculated fruits, 26 proteins were affected by 1-MCP, while 51 proteins were altered by ozone. Dynamic changes in fruit proteome were also observed in response to B. cinerea. In O3-treated fruits, a significant number of disease/defense-related proteins were increased in comparison with control fruit. Among these proteins, higher accumulation levels were observed for allergen, major allergen, ACC oxidase, putative NBS-LRR disease resistance protein, major latex protein (MLP)-like protein, or 2-Cys peroxiredoxin. In contrast, most of these proteins were down-accumulated in 1-MCP-treated fruits that were challenged with B. cinerea. These results suggest that ozone exposure may contribute to the reduction of gray mold in apple fruits, while 1-MCP was not effective in affecting this disease. This is the first study deciphering differential regulations of apple fruit proteome upon B. cinerea infection and postharvest storage treatments, underlying aspects of host response related to the gray mold disease.
Collapse
Affiliation(s)
- Stefanos Testempasis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, Thessaloniki, Greece
| | - Georgia Tanou
- Institute of Soil Science and Water Resources, ELGO-Demeter, Thessaloniki, Greece
| | - Ioannis Minas
- Laboratory of Pomology, Department of Horticulture and Landscape Architecture, Colorado State University, Colorado, CO, United States
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, Athens, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, Thessaloniki, Greece
| | - Georgios Karaoglanidis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
34
|
Lee K, Lee JG, Min K, Choi JH, Lim S, Lee EJ. Transcriptome Analysis of the Fruit of Two Strawberry Cultivars "Sunnyberry" and "Kingsberry" That Show Different Susceptibility to Botrytis cinerea after Harvest. Int J Mol Sci 2021; 22:ijms22041518. [PMID: 33546320 PMCID: PMC7913547 DOI: 10.3390/ijms22041518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Gray mold (Botrytis cinerea) is a fungal plant pathogen causing postharvest decay in strawberry fruit. Here, we conducted a comparative transcriptome analysis to identify differences in gene expression between the immature-green (IG) and mature-red (MR) stages of the “Sunnyberry” (gray mold-resistant) and “Kingsberry” (gray mold susceptible) strawberry cultivars. Most of the genes involved in lignin and alkane-type wax biosynthesis were relatively upregulated in “Sunnyberry”. However, pathogenesis-related proteins encoding R- and antioxidant-related genes were comparatively upregulated in “Kingsberry”. Analysis of gene expression and physiological traits in the presence and absence of B. cinerea inoculation revealed that the defense response patterns significantly differed between IG and MR rather than the cultivars. “Kingsberry” showed higher antioxidant induction at IG and upregulated hemicellulose-strengthening and R genes at MR. Hence, “Sunnyberry” and “Kingsberry” differed mainly in terms of the expression levels of the genes forming cuticle, wax, and lignin and controlling the defense responses. These discrepancies might explain the relative difference between these strawberry cultivars in terms of their postharvest responses to B. cinerea.
Collapse
Affiliation(s)
- Kyuweon Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
| | - Jeong Gu Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
| | - Kyeonglim Min
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
| | - Jeong Hee Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Sooyeon Lim
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Korea;
| | - Eun Jin Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (K.L.); (J.G.L.); (K.M.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
35
|
Strawberry FaWRKY25 Transcription Factor Negatively Regulated the Resistance of Strawberry Fruits to Botrytis cinerea. Genes (Basel) 2020; 12:genes12010056. [PMID: 33396436 PMCID: PMC7824073 DOI: 10.3390/genes12010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023] Open
Abstract
WRKY genes and jasmonic acid (JA) play a crucial role in plants’ responses against biotic and abiotic stress. However, the regulating mechanism of WRKY genes on strawberry fruits’ resistance against Botrytis cinerea is largely unknown, and few studies have been performed on their effect on the JA-mediated defense mechanism against B. cinerea. This study explored the effect of FaWRKY25 on the JA-mediated strawberry resistance against B. cinerea. Results showed that the JA content decreased significantly as the fruits matured, whereas the FaWRKY25 expression rose substantially, which led to heightened susceptibility to B. cinerea and in strawberries. External JA treatment significantly increased the JA content in strawberries and reduced the FaWRKY25 expression, thereby enhancing the fruits’ resistance against B. cinerea. FaWRKY25 overexpression significantly lowered the fruits’ resistance against B. cinerea, whereas FaWRKY25 silencing significantly increased resistance. Moreover, FaWRKY25 overexpression significantly lowered the JA content, whereas FaWRKY25 silencing significantly increased it. FaWRKY25 expression level substantially affects the expression levels of genes related to JA biosynthesis and metabolism, other members of the WRKY family, and defense genes. Accordingly, FaWRKY25 plays a crucial role in regulating strawberries’ resistance against B. cinerea and may negatively regulate their JA-mediated resistance mechanism against B. cinerea.
Collapse
|
36
|
Reboledo G, Agorio A, Vignale L, Batista-García RA, Ponce De León I. Botrytis cinerea Transcriptome during the Infection Process of the Bryophyte Physcomitrium patens and Angiosperms. J Fungi (Basel) 2020; 7:11. [PMID: 33379257 PMCID: PMC7824268 DOI: 10.3390/jof7010011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Botrytis cinerea is a necrotrophic pathogen that causes grey mold in many plant species, including crops and model plants of angiosperms. B. cinerea also infects and colonizes the bryophyte Physcomitrium patens (previously Physcomitrella patens), which perceives the pathogen and activates defense mechanisms. However, these defenses are not sufficient to stop fungal invasion, leading finally to plant decay. To gain more insights into B. cinerea infection and virulence strategies displayed during moss colonization, we performed genome wide transcriptional profiling of B. cinerea during different infection stages. We show that, in total, 1015 B. cinerea genes were differentially expressed in moss tissues. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that infection of P. patens tissues by B. cinerea depends on reactive oxygen species generation and detoxification, transporter activities, plant cell wall degradation and modification, toxin production and probable plant defense evasion by effector proteins. Moreover, a comparison with available RNAseq data during angiosperm infection, including Arabidopsis thaliana, Solanum lycopersicum and Lactuca sativa, suggests that B. cinerea has virulence and infection functions used in all hosts, while others are more specific to P. patens or angiosperms.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (G.R.); (A.A.); (L.V.)
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (G.R.); (A.A.); (L.V.)
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (G.R.); (A.A.); (L.V.)
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; (G.R.); (A.A.); (L.V.)
| |
Collapse
|
37
|
Advances in Biosynthesis and Biological Functions of Proanthocyanidins in Horticultural Plants. Foods 2020; 9:foods9121774. [PMID: 33265960 PMCID: PMC7759826 DOI: 10.3390/foods9121774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins are colorless flavonoid polymers condensed from flavan-3-ol units. They are essential secondary plant metabolites that contribute to the nutritional value and sensory quality of many fruits and the related processed products. Mounting evidence has shown that the accumulation of proanthocyanidins is associated with the resistance of plants against a broad spectrum of abiotic and biotic stress conditions. The biosynthesis of proanthocyanidins has been examined extensively, allowing for identifying and characterizing the key regulators controlling the biosynthetic pathway in many plants. New findings revealed that these specific regulators were involved in the proanthocyanidins biosynthetic network in response to various environmental conditions. This paper reviews the current knowledge regarding the control of key regulators in the underlying proanthocyanidins biosynthetic and molecular mechanisms in response to environmental stress. Furthermore, it discusses the directions for future research on the metabolic engineering of proanthocyanidins production to improve food and fruit crop quality.
Collapse
|
38
|
Yang Y, Wang X, Chen P, Zhou K, Xue W, Abid K, Chen S. Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:559070. [PMID: 33101327 PMCID: PMC7546314 DOI: 10.3389/fpls.2020.559070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/04/2020] [Indexed: 05/28/2023]
Abstract
Botrytis cinerea is an important necrotrophic fungal pathogen with a broad host range and the ability to causing great economic losses in cucumber. However, the resistance mechanism against this pathogen in cucumber was not well understood. In this study, the microscopic observation of the spore growth, redox status measurements and transcriptome analysis were carried out after Botrytis cinerea infection in the resistant genotype No.26 and its susceptible mutant 26M. Results revealed shorter hypha, lower rate of spore germination, less acceleration of H2O2, O2 -, and lower total glutathione content (GSH+GSSG) in No.26 than that in 26M, which were identified by the staining result of DAB and NBT. Transcriptome data showed that after pathogen infection, a total of 3901 and 789 different expression genes (DEGs) were identified in No.26 and 26M respectively. These DEGs were highly enriched in redox regulation pathway, hormone signaling pathway and plant-pathogen interaction pathway. The glutathione S-transferase genes, putative peroxidase gene, and NADPH oxidase were up-regulated in No.26 whereas these genes changed little in 26M after Botrytis cinerea infection. Jasmonic acid and ethylene biosynthesis and signaling pathways were distinctively activated in No.26 comparing with 26M upon infection. Much more plant defense related genes including mitogen-activated protein kinases, calmodulin, calmodulin-like protein, calcium-dependent protein kinase, and WRKY transcription factor were induced in No.26 than 26M after pathogen infection. Finally, a model was established which elucidated the resistance difference between resistant cucumber genotype and susceptible mutant after B. cinerea infection.
Collapse
Affiliation(s)
- Yuting Yang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Xuewei Wang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Panpan Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Keke Zhou
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Wanyu Xue
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Kan Abid
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| |
Collapse
|
39
|
Srivastava DA, Arya GC, Pandaranayaka EP, Manasherova E, Prusky DB, Elad Y, Frenkel O, Harel A. Transcriptome Profiling Data of Botrytis cinerea Infection on Whole Plant Solanum lycopersicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1103-1107. [PMID: 32552519 DOI: 10.1094/mpmi-05-20-0109-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Botrytis cinerea is a foliar necrotrophic fungal-pathogen capable of infecting >580 genera of plants, is often used as model organism for studying fungal-host interactions. We used RNAseq to study transcriptome of B. cinerea infection on a major (worldwide) vegetable crop, tomato (Solanum lycopersicum). Most previous works explored only few infection stages, using RNA extracted from entire leaf-organ diluting the expression of studied infected region. Many studied B. cinerea infection, on detached organs assuming that similar defense/physiological reactions occurs in the intact plant. We analyzed transcriptome of the pathogen and host in 5 infection stages of whole-plant leaves at the infection site. We supply high quality, pathogen-enriched gene count that facilitates future research of the molecular processes regulating the infection process.
Collapse
Affiliation(s)
- Dhruv Aditya Srivastava
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Gulab Chand Arya
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Eswari Pj Pandaranayaka
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Ekaterina Manasherova
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Dov B Prusky
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Arye Harel
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|