1
|
He L, Wang J, Ciais P, Ballantyne A, Yu K, Zhang W, Xiao J, Ritter F, Liu Z, Wang X, Li X, Peng S, Ma C, Zhou C, Li ZL, Xie Y, Ye JS. Non-symmetric responses of leaf onset date to natural warming and cooling in northern ecosystems. PNAS NEXUS 2023; 2:pgad308. [PMID: 37780232 PMCID: PMC10538477 DOI: 10.1093/pnasnexus/pgad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
The northern hemisphere has experienced regional cooling, especially during the global warming hiatus (1998-2012) due to ocean energy redistribution. However, the lack of studies about the natural cooling effects hampers our understanding of vegetation responses to climate change. Using 15,125 ground phenological time series at 3,620 sites since the 1950s and 31-year satellite greenness observations (1982-2012) covering the warming hiatus period, we show a stronger response of leaf onset date (LOD) to natural cooling than to warming, i.e. the delay of LOD caused by 1°C cooling is larger than the advance of LOD with 1°C warming. This might be because cooling leads to larger chilling accumulation and heating requirements for leaf onset, but this non-symmetric LOD response is partially offset by warming-related drying. Moreover, spring greening magnitude, in terms of satellite-based greenness and productivity, is more sensitive to LOD changes in the warming area than in the cooling. These results highlight the importance of considering non-symmetric responses of spring greening to warming and cooling when predicting vegetation-climate feedbacks.
Collapse
Affiliation(s)
- Lei He
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wang
- Department of Geography, The Ohio State University, Columbus, OH 43210, USA
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l′Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette 91191, France
| | - Ashley Ballantyne
- Laboratoire des Sciences du Climat et de l′Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette 91191, France
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59801, USA
| | - Kailiang Yu
- Laboratoire des Sciences du Climat et de l′Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette 91191, France
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wenxin Zhang
- Department of Physical Geography and Ecosystem Science, Lund University, Lund 22362, Sweden
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA
| | - François Ritter
- Laboratoire des Sciences du Climat et de l′Environnement, CEA/CNRS/UVSQ/Université Paris Saclay, Gif-sur-Yvette 91191, France
| | - Zhihua Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xufeng Wang
- Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaojun Li
- INRAE, UMR1391 ISPA, Université de Bordeaux, Villenave d′Ornon 33140, France
| | - Shouzhang Peng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Changhui Ma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenghu Zhou
- Center for Ocean Remote Sensing of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhao-Liang Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaowen Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China
| | - Jian-Sheng Ye
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Populus euphratica Phenology and Its Response to Climate Change in the Upper Tarim River Basin, NW China. FORESTS 2021. [DOI: 10.3390/f12101315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Quantifying the phenological variations of Populus euphratica Olivier (P. euphratica) resulting from climate change is vital for desert ecosystems. There has previously been great progress in the influence of climate change on vegetation phenology, but knowledge of the variations in P. euphratica phenology is lacking in extremely arid areas. In this study, a modified method was proposed to explore P. euphratica phenology and its response to climate change using 18-year Global Land Surface Satellite (GLASS) leaf area index (LAI) time series data (2000–2017) in the upper Tarim River basin. The start of the growing season (SOS), length of the growing season (LOS), and end of the growing season (EOS) were obtained with the dynamic threshold method from the reconstructed growth time series curve by using the Savitzky–Golay filtering method. The grey relational analysis (GRA) method was utilized to analyze the influence between the phenology and the key climatic periods and factors. Importantly, we also revealed the positive and negative effects between interannual climate factors and P. euphratica phenology using the canonical correlation analysis (CCA) method, and the interaction between the SOS in spring and EOS in autumn. The results revealed that trends of P. euphratica phenology (i.e., SOS, EOS, and LOS) were not significant during the period from 2000–2017. The spring temperature and sunshine duration (SD) controlled the SOS, and the EOS was mainly affected by the temperature and SD from June–November, although the impacts of average relative humidity (RH) and precipitation (PR) on the SOS and EOS cannot be overlooked. Global warming may lead to SOS advance and EOS delay, and the increase in SD and PR may lead to earlier SOS and later EOS. Runoff was found to be a more key factor for controlling P. euphratica phenology than PR in this region.
Collapse
|
3
|
Cox DTC, Maclean IMD, Gardner AS, Gaston KJ. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. GLOBAL CHANGE BIOLOGY 2020; 26:7099-7111. [PMID: 32998181 DOI: 10.1111/gcb.15336] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The impacts of the changing climate on the biological world vary across latitudes, habitats and spatial scales. By contrast, the time of day at which these changes are occurring has received relatively little attention. As biologically significant organismal activities often occur at particular times of day, any asymmetry in the rate of change between the daytime and night-time will skew the climatic pressures placed on them, and this could have profound impacts on the natural world. Here we determine global spatial variation in the difference in the mean annual rate at which near-surface daytime maximum and night-time minimum temperatures and mean daytime and mean night-time cloud cover, specific humidity and precipitation have changed over land. For the years 1983-2017, we derived hourly climate data and assigned each hour as occurring during daylight or darkness. In regions that showed warming asymmetry of >0.5°C (equivalent to mean surface temperature warming during the 20th century) we investigated corresponding changes in cloud cover, specific humidity and precipitation. We then examined the proportional change in leaf area index (LAI) as one potential biological response to diel warming asymmetry. We demonstrate that where night-time temperatures increased by >0.5°C more than daytime temperatures, cloud cover, specific humidity and precipitation increased. Conversely, where daytime temperatures increased by >0.5°C more than night-time temperatures, cloud cover, specific humidity and precipitation decreased. Driven primarily by increased cloud cover resulting in a dampening of daytime temperatures, over twice the area of land has experienced night-time warming by >0.25°C more than daytime warming, and has become wetter, with important consequences for plant phenology and species interactions. Conversely, greater daytime relative to night-time warming is associated with hotter, drier conditions, increasing species vulnerability to heat stress and water budgets. This was demonstrated by a divergent response of LAI to warming asymmetry.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Ilya M D Maclean
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | | | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| |
Collapse
|