1
|
Alzate Zuluaga MY, Fattorini R, Cesco S, Pii Y. Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: the case of PGPR-based biofertilizers. Front Microbiol 2024; 15:1440978. [PMID: 39176279 PMCID: PMC11338843 DOI: 10.3389/fmicb.2024.1440978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Biofertilizers based on plant growth promoting rhizobacteria (PGPR) are nowadays gaining increasingly attention as a modern tool for a more sustainable agriculture due to their ability in ameliorating root nutrient acquisition. For many years, most research was focused on the screening and characterization of PGPR functioning as nitrogen (N) or phosphorus (P) biofertilizers. However, with the increasing demand for food using far fewer chemical inputs, new investigations have been carried out to explore the potential use of such bacteria also as potassium (K), sulfur (S), zinc (Zn), or iron (Fe) biofertilizers. In this review, we update the use of PGPR as biofertilizers for a smarter and more sustainable crop production and deliberate the prospects of using microbiome engineering-based methods as potential tools to shed new light on the improvement of plant mineral nutrition. The current era of omics revolution has enabled the design of synthetic microbial communities (named SynComs), which are emerging as a promising tool that can allow the formulation of biofertilizers based on PGPR strains displaying multifarious and synergistic traits, thus leading to an increasingly efficient root acquisition of more than a single essential nutrient at the same time. Additionally, host-mediated microbiome engineering (HMME) leverages advanced omics techniques to reintroduce alleles coding for beneficial compounds, reinforcing positive plant-microbiome interactions and creating plants capable of producing their own biofertilizers. We also discusses the current use of PGPR-based biofertilizers and point out possible avenues of research for the future development of more efficient biofertilizers for a smarter and more precise crop fertilization. Furthermore, concerns have been raised about the effectiveness of PGPR-based biofertilizers in real field conditions, as their success in controlled experiments often contrasts with inconsistent field results. This discrepancy highlights the need for standardized protocols to ensure consistent application and reliable outcomes.
Collapse
|
2
|
Fuentes M, Bosch G, de Hita D, Olaetxea M, Erro J, Zamarreño AM, Garcia-Mina JM. Supramolecular Arrangement of Lignosulfonate-Based Iron Heteromolecular Complexes and Consequences of Their Interaction with Ca 2+ at Alkaline pH and Fe Plant Root Uptake Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11404-11417. [PMID: 37462422 PMCID: PMC10401718 DOI: 10.1021/acs.jafc.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Previous studies have shown that natural heteromolecular complexes might be an alternative to synthetic chelates to correct iron (Fe) deficiency. To investigate the mechanism of action of these complexes, we have studied their interaction with Ca2+ at alkaline pH, Fe-binding stability, Fe-root uptake in cucumber, and chemical structure using molecular modeling. The results show that a heteromolecular Fe complex including citric acid and lignosulfonate as binding ligands (Ls-Cit) forms a supramolecular system in solution with iron citrate interacting with the hydrophobic inner core of the lignosulfonate system. These structural features are associated with high stability against Ca2+ at basic pH. Likewise, unlike Fe-EDDHA, root Fe uptake from Ls-Cit implies the activation of the main root responses under Fe deficiency at the transcriptional level but not at the post-transcriptional level. These results are consistent with the involvement of some plant responses to Fe deficiency in the plant assimilation of complexed Fe in Ls-Cit under field conditions.
Collapse
Affiliation(s)
- Marta Fuentes
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - German Bosch
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - David de Hita
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Maite Olaetxea
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Javier Erro
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Angel Ma Zamarreño
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Jose Ma Garcia-Mina
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| |
Collapse
|
3
|
Soares EV, Petropoulos SA, Soares HMVM. Editorial: Bio-based solutions for sustainable development of agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:1056140. [PMID: 36325558 PMCID: PMC9619078 DOI: 10.3389/fpls.2022.1056140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Eduardo V. Soares
- Bioengineering Laboratory, Instituto Superior de Engenharia do Porto (ISEP)-School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
- Centro de Engenharia Biológica (CEB)−Centre of Biological Engineering, University of Minho, Braga, Portugal
- Laboratório Associado em Biotecnologia, Bioengenharia e Sistemas Eletromecânicos (LABBELS) – Associate Laboratory, Braga−Guimarães, Portugal
| | - Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Helena M. V. M. Soares
- Rede de Química e Tecnologia (REQUIMTE)/Laboratório Associado para a Química Verde (LAQV), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
5
|
Yang YZ, Wei QP, Zhou J, Li MJ, Zhang Q, Li XL, Zhou BB, Zhang JK. Nano-Sized Antioxidative Trimetallic Complex Based on Maillard Reaction Improves the Mineral Nutrients of Apple ( Malus domestica Borkh.). Front Nutr 2022; 9:848857. [PMID: 35558743 PMCID: PMC9086434 DOI: 10.3389/fnut.2022.848857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The metallic complex is widely used in agricultural applications. Due to the oxidation of the metal and environmental unfriendliness of ligand, maintaining an efficient mineral supply for plants without causing environmental damage is difficult. Herein, an antioxidative trimetallic complex with high stability was synthesized by interacting Ca2+, Fe2+, and Zn2+ with the biocompatible ligands from the Maillard reaction. The composite structure elucidation was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR). Thermal stability was measured by thermogravimetric (TG). Antioxidative activities were evaluated by ferric reducing antioxidant power and radical scavenging activity assays. The three metals were successfully fabricated on the Maillard reaction products (MRPs) with contents of Ca (9.01%), Fe (8.25%), and Zn (9.67%). Microscopy images revealed that the three metals were uniformly distributed on the MRPs with partial aggregation of <30 nm. FTIR and XPS results revealed that the metals were interacted with MRPs by metal-O and metal-N bonds. TG and antioxidative activity assays showed that the trimetallic complex meets the requirements of thermodynamics and oxidation resistance of horticultural applications. Additionally, the results of the exogenous spraying experiment showed that the trimetallic complex significantly increased the mineral contents of the "Fuji" apple. By treatment with the complex, the concentrations of Ca, Fe, and Zn were increased by 85.4, 532.5, and 931.1% in the leaf; 16.0, 225.2, and 468.6% in the peel; and 117.6, 217.9, and 19.5% in the flesh, respectively. The MRP-based complexes offered a higher growth rate of the mineral content in apples than ones based on sugars or amino acids. The results of the spraying experiment carried out in 2 years show that the method has high reproducibility. This study thus promotes the development of green metallic complexes and expands the scope of agrochemical strategy.
Collapse
Affiliation(s)
- Yu-Zhang Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qin-Ping Wei
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min-Ji Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiang Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xing-Liang Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bei-Bei Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jun-Ke Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Sun J, Luo H, Jiang Y, Wang L, Xiao C, Weng L. Influence of Nutrient (NPK) Factors on Growth, and Pharmacodynamic Component Biosynthesis of Atractylodes chinensis: An Insight on Acetyl-CoA Carboxylase (ACC), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGR), and Farnesyl Pyrophosphate Synthase (FPPS) Signaling Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:799201. [PMID: 35371119 PMCID: PMC8972053 DOI: 10.3389/fpls.2022.799201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/16/2022] [Indexed: 05/03/2023]
Abstract
In the planting of crops, especially medicinal plants, formula fertilization is important for improving the utilization rate of elements, soil quality, crop yield, and quality. Therefore, it is important to study targeted fertilizer application schemes for sustainable agricultural development and environmental protection. In this study, an L9(34) orthogonal design was used to conduct a field experiment to study the effects of NPK combined application on the growth and pharmacodynamic component biosynthesis of Atractylodes chinensis (DC.) Koidz. Results showed that after applying a base fertilizer at the seedling stage (late May), topdressing at the vegetative stage (late June) and fruit stage (late August) was beneficial to the growth and development of A. chinensis. The high concentrations of phosphorus were conducive to the accumulation of yield and effective components, and the best harvest time was after late October. Principal component analysis (PCA) showed that the comprehensive score of T6 treatment was the highest, indicating that the optimal fertilization scheme for the high yield and high quality of A. chinensis was (N2P3K1): N 180, P2O5 225, and K2O 105 kg⋅ha-1. A signaling response analysis showed that during the growth and development of A. chinensis, the T6 fertilization scheme had clear effects on the activity and gene expression of the key enzymes acetyl-CoA carboxylase (ACC) and farnesyl pyrophosphate synthase (FPPS). Under the T4 [(N2P1K2): N 180, P2O5 75, and K2O 210 kg⋅ha-1] fertilization scheme, the activity and gene expression of the key enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) were higher. Moreover, ACC was closely related to the synthesis of the polyacetylene component atractylodin, and FPPS played an important regulatory role in the synthesis of sesquiterpene components atractylenolide II, β-eudesmol, and atractylon. In summary, the high phosphorus fertilization scheme T6 could notably increase the yield of A. chinensis, and promote the accumulation of polyacetylene and sesquiterpene volatile oils by increasing the expression of ACC and FPPS. Therefore, we postulate that the precise application of nutrients (NPK) plays a vital role in the yield formation and quality regulation of A. chinensis.
Collapse
Affiliation(s)
| | | | | | | | - Chunping Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Weng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Santos CS, Rodrigues E, Ferreira S, Moniz T, Leite A, Carvalho SMP, Vasconcelos MW, Rangel M. Foliar application of 3-hydroxy-4-pyridinone Fe-chelate [Fe(mpp) 3 ] induces responses at the root level amending iron deficiency chlorosis in soybean. PHYSIOLOGIA PLANTARUM 2021; 173:235-245. [PMID: 33629743 DOI: 10.1111/ppl.13367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Iron (Fe) deficiency chlorosis (IDC) affects the growth of several crops, especially when growing in alkaline soils. The application of synthetic Fe-chelates is one of the most commonly used strategies in IDC amendment, despite their associated negative environmental impacts. In a previous work, the Fe-chelate tris(3-hydroxy-1-(H)-2-methyl-4-pyridinonate) iron(III) [Fe(mpp)3 ] has shown great potential for alleviating IDC in soybean (Glycine max) in the early stages of plant development under hydroponic conditions. Herein, its efficacy was verified under soil conditions in soybean grown from seed to full maturity. Chlorophyll levels, plant growth, root and shoot mineral accumulation (K, Mg, Ca, Na, P, Mn, Zn, Ni, and Co) and FERRITIN expression were accessed at V5 phenological stage. Compared to a commonly used Fe chelate, FeEDDHA, supplementation with [Fe(mpp)3 ] led to a 29% higher relative chlorophyll content, 32% higher root biomass, 36% higher trifoliate Fe concentration, and a twofold increase in leaf FERRITIN gene expression. [Fe(mpp)3 ] supplementation also resulted in increased accumulation of P, K, Zn, and Co. At full maturity, the remaining plants were harvested and [Fe(mpp)3 ] application led to a 32% seed yield increase when compared to FeEDDHA. This is the first report on the use of [Fe(mpp)3 ] under alkaline soil conditions for IDC correction, and we show that its foliar application has a longer-lasting effect than FeEDDHA, induces efficient root responses, and promotes the uptake of other nutrients.
Collapse
Affiliation(s)
- Carla S Santos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Elsa Rodrigues
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- GreenUPorto - Research Centre on Sustainable Agrifood Production and DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Sofia Ferreira
- REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tânia Moniz
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia Leite
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Susana M P Carvalho
- GreenUPorto - Research Centre on Sustainable Agrifood Production and DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Marta W Vasconcelos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Maria Rangel
- REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Identification of Beneficial Microbial Consortia and Bioactive Compounds with Potential as Plant Biostimulants for a Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9020426. [PMID: 33669534 PMCID: PMC7922931 DOI: 10.3390/microorganisms9020426] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/28/2023] Open
Abstract
A growing body of evidence demonstrates the potential of various microbes to enhance plant productivity in cropping systems although their successful field application may be impaired by several biotic and abiotic constraints. In the present work, we aimed at developing multifunctional synthetic microbial consortia to be used in combination with suitable bioactive compounds for improving crop yield and quality. Plant growth-promoting microorganisms (PGPMs) with different functional attributes were identified by a bottom-up approach. A comprehensive literature survey on PGPMs associated with maize, wheat, potato and tomato, and on commercial formulations, was conducted by examining peer-reviewed scientific publications and results from relevant European projects. Metagenome fragment recruitments on genomes of potential PGPMs represented in databases were also performed to help identify plant growth-promoting (PGP) strains. Following evidence of their ability to coexist, isolated PGPMs were synthetically assembled into three different microbial consortia. Additionally, the effects of bioactive compounds on the growth of individually PGPMs were tested in starvation conditions. The different combination products based on microbial and non-microbial biostimulants (BS) appear worth considering for greenhouse and open field trials to select those potentially adoptable in sustainable agriculture.
Collapse
|