1
|
Yang X, Wilkinson LG, Aubert MK, Houston K, Shirley NJ, Tucker MR. Ovule cell wall composition is a maternal determinant of grain size in barley. THE NEW PHYTOLOGIST 2023; 237:2136-2147. [PMID: 36600397 DOI: 10.1111/nph.18714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In cereal species, grain size is influenced by growth of the ovule integuments (seed coat), the spikelet hull (lemma and palea) and the filial endosperm. Whether a highly conserved ovule tissue, the nucellus, has any impact on grain size has remained unclear. Immunolabelling revealed that the barley nucellus comprises two distinct cell types that differ in terms of cell wall homogalacturonan (HG) accumulation. Transcriptional profiling of the nucellus identified two pectin methylesterase (PME) genes, OVULE PECTIN MODIFIER 1 (OPM1) and OPM2, which are expressed in the unfertilized ovule but absent from the seed. Ovules from an opm1 opm2 mutant and plants expressing an ovule-specific pectin methylesterase inhibitor (PMEI), exhibit reduced HG accumulation. This results in changes to ovule cell size and shape and ovules that are longer than wild-type (WT) controls. At grain maturity, this is manifested as significantly longer grain. These findings indicate that cell wall composition during ovule development acts to limit ovule and seed growth. The investigation of ovule PME and PMEI activity reveals an unexpected role of maternal tissues in controlling grain growth before fertilization, one that has been lacking from models exploring improvements in grain size.
Collapse
Affiliation(s)
- Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Laura G Wilkinson
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Matthew K Aubert
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
- Australian Grain Technologies, 100 Byfield Street, Northam, WA, 6401, Australia
| | - Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Neil J Shirley
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| |
Collapse
|
2
|
Yang X, Tucker MR. Establishing a regulatory blueprint for ovule number and function during plant development. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102095. [PMID: 34428719 DOI: 10.1016/j.pbi.2021.102095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The plant ovule is a fundamentally important organ that is the direct progenitor of the seed. It is one of the last structures to form in the flower and contains relatively few tissues, but undergoes complex developmental transitions that are essential for reproduction. Ovule number and flower fertility are important factors influencing yield, yet studies have identified challenges in trying to increase one without compromising the other. Recent findings in Arabidopsis and cereal crops highlight regulatory pathways that contribute to this yield constraint. Here, we consider the basis for variation in ovule number and development, with a particular focus on hormones and transcriptional regulators that constitute promising targets for the optimisation of reproductive traits and yield.
Collapse
Affiliation(s)
- Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
3
|
Selva C, Shirley NJ, Houston K, Whitford R, Baumann U, Li G, Tucker MR. HvLEAFY controls the early stages of floral organ specification and inhibits the formation of multiple ovaries in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:509-527. [PMID: 34382710 DOI: 10.1111/tpj.15457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Transition to the reproductive phase, inflorescence formation and flower development are crucial elements that ensure maximum reproductive success in a plant's life cycle. To understand the regulatory mechanisms underlying correct flower development in barley (Hordeum vulgare), we characterized the multiovary 5 (mov5.o) mutant. This mutant develops abnormal flowers that exhibit mosaic floral organs typified by multiple carpels at the total or partial expense of stamens. Genetic mapping positioned mov5 on the long arm of chromosome 2H, incorporating a region that encodes HvLFY, the barley orthologue of LEAFY from Arabidopsis. Sequencing revealed that, in mov5.o plants, HvLFY contains a single amino acid substitution in a highly conserved proline residue. CRISPR-mediated knockout of HvLFY replicated the mov5.o phenotype, suggesting that HvLFYmov5 represents a loss of function allele. In heterologous assays, the HvLFYmov5 polymorphism influenced protein-protein interactions and affinity for a putative binding site in the promoter of HvMADS58, a C-class MADS-box gene. Moreover, molecular analysis indicated that HvLFY interacts with HvUFO and regulates the expression of floral homeotic genes including HvMADS2, HvMADS4 and HvMADS16. Other distinct changes in expression differ from those reported in the rice LFY mutants apo2/rfl, suggesting that LFY function in the grasses is modulated in a species-specific manner. This pathway provides a key entry point for the study of LFY function and multiple ovary formation in barley, as well as cereal species in general.
Collapse
Affiliation(s)
- Caterina Selva
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Neil J Shirley
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Kelly Houston
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Ryan Whitford
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Ute Baumann
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Gang Li
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Matthew R Tucker
- School of Agriculture Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
4
|
Matros A, Houston K, Tucker MR, Schreiber M, Berger B, Aubert MK, Wilkinson LG, Witzel K, Waugh R, Seiffert U, Burton RA. Genome-wide association study reveals the genetic complexity of fructan accumulation patterns in barley grain. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2383-2402. [PMID: 33421064 DOI: 10.1093/jxb/erab002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/08/2021] [Indexed: 05/27/2023]
Abstract
We profiled the grain oligosaccharide content of 154 two-row spring barley genotypes and quantified 27 compounds, mainly inulin- and neoseries-type fructans, showing differential abundance. Clustering revealed two profile groups where the 'high' set contained greater amounts of sugar monomers, sucrose, and overall fructans, but lower fructosylraffinose. A genome-wide association study (GWAS) identified a significant association for the variability of two fructan types: neoseries-DP7 and inulin-DP9, which showed increased strength when applying a novel compound ratio-GWAS approach. Gene models within this region included three known fructan biosynthesis genes (fructan:fructan 1-fructosyltransferase, sucrose:sucrose 1-fructosyltransferase, and sucrose:fructan 6-fructosyltransferase). Two other genes in this region, 6(G)-fructosyltransferase and vacuolar invertase1, have not previously been linked to fructan biosynthesis and showed expression patterns distinct from those of the other three genes, including exclusive expression of 6(G)-fructosyltransferase in outer grain tissues at the storage phase. From exome capture data, several single nucleotide polymorphisms related to inulin- and neoseries-type fructan variability were identified in fructan:fructan 1-fructosyltransferase and 6(G)-fructosyltransferase genes. Co-expression analyses uncovered potential regulators of fructan biosynthesis including transcription factors. Our results provide the first scientific evidence for the distinct biosynthesis of neoseries-type fructans during barley grain maturation and reveal novel gene candidates likely to be involved in the differential biosynthesis of various types of fructan in barley.
Collapse
Affiliation(s)
- Andrea Matros
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Bettina Berger
- Australian Plant Phenomics Facility, The Plant Accelerator, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Brandenburg, Germany
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Udo Seiffert
- Australian Plant Phenomics Facility, The Plant Accelerator, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
- Biosystems Engineering, Fraunhofer IFF, Magdeburg, Saxony-Anhalt, Germany
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Shoesmith JR, Solomon CU, Yang X, Wilkinson LG, Sheldrick S, van Eijden E, Couwenberg S, Pugh LM, Eskan M, Stephens J, Barakate A, Drea S, Houston K, Tucker MR, McKim SM. APETALA2 functions as a temporal factor together with BLADE-ON-PETIOLE2 and MADS29 to control flower and grain development in barley. Development 2021; 148:dev.194894. [DOI: 10.1242/dev.194894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cereal grain develops from fertilised florets. Alterations in floret and grain development greatly influence grain yield and quality. Despite this, little is known about the underlying genetic control of these processes, especially in key temperate cereals such as barley and wheat. Using a combination of near-isogenic mutant comparisons, gene editing and genetic analyses, we reveal that HvAPETALA2 (HvAP2) controls floret organ identity, floret boundaries, and maternal tissue differentiation and elimination during grain development. These new roles of HvAP2 correlate with changes in grain size and HvAP2-dependent expression of specific HvMADS-box genes, including the B-sister gene, HvMADS29. Consistent with this, gene editing demonstrates that HvMADS29 shares roles with HvAP2 in maternal tissue differentiation. We also discovered that a gain-of-function HvAP2 allele masks changes in floret organ identity and grain size due to loss of barley LAXATUM.A/BLADE-ON-PETIOLE2 (HvBOP2) gene function. Taken together, we reveal novel pleiotropic roles and regulatory interactions for an AP2-like gene controlling floret and grain development in a temperate cereal.
Collapse
Affiliation(s)
- Jennifer R. Shoesmith
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Charles Ugochukwu Solomon
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu, Nigeria
| | - Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Laura G. Wilkinson
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott Sheldrick
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Ewan van Eijden
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Sanne Couwenberg
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Laura M. Pugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Mhmoud Eskan
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Jennifer Stephens
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Abdellah Barakate
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Sinéad Drea
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Matthew R. Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Sarah M. McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| |
Collapse
|
6
|
Rudall PJ. Evolution and patterning of the ovule in seed plants. Biol Rev Camb Philos Soc 2021; 96:943-960. [PMID: 33432779 DOI: 10.1111/brv.12684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The ovule and its developmental successor, the seed, together represent a highly characteristic feature of seed plants that has strongly enhanced the reproductive and dispersal potential of this diverse group of taxa. Ovules encompass multiple tissues that perform various roles within a highly constrained space, requiring a complex cascade of genes that generate localized cell proliferation and programmed cell death during different developmental stages. Many heritable morphological differences among lineages reflect relative displacement of these tissues, but others, such as the second (outer) integuments of angiosperms and Gnetales, represent novel and apparently profound and independent innovations. Recent studies, mostly on model taxa, have considerably enhanced our understanding of gene expression in the ovule. However, understanding its evolutionary history requires a comparative and phylogenetic approach that is problematic when comparing extant angiosperms not only with phylogenetically distant extant gymnosperms but also with taxa known only from fossils. This paper reviews ovule characters across a phylogenetically broad range of seed plants in a dynamic developmental context. It discusses both well-established and recent theories of ovule and seed evolution and highlights potential gaps in comparative data that will usefully enhance our understanding of evolutionary transitions and developmental mechanisms.
Collapse
Affiliation(s)
- Paula J Rudall
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, U.K
| |
Collapse
|