1
|
Shinde S, Ikuze E, Kaler E, Verma K, Louis J. Fall Armyworm Frass Induce Sorghum Defenses Against Insect Herbivores. J Chem Ecol 2025; 51:39. [PMID: 40080257 DOI: 10.1007/s10886-025-01591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The fall armyworm (FAW; Spodoptera frugiperda) is a global invasive agricultural pest. Sorghum (Sorghum bicolor), an important monocot crop cultivated worldwide, faces significant challenges from FAW, which has become a major threat to sorghum production. Plants have evolved a wide array of defense mechanisms to combat insect assault. Caterpillar secretions contain both elicitors and effectors, which can either amplify or suppress plant defenses, thereby influencing plant defense responses. In this study, we examined the role of FAW frass in modulating sorghum defenses. Our results suggest that frass application significantly induced sorghum defenses that impacted subsequent FAW herbivory. We also found that the exogenous frass application significantly elevated the phytohormone levels, specifically jasmonic acid and abscisic acid levels, potentially contributing to enhanced sorghum defense against FAW. Furthermore, FAW frass-treated plants exhibited transient increase in total flavonoids, a class of secondary metabolites, which was previously shown to have a detrimental impact on FAW growth and survival. FAW frass application on sorghum plants mitigated proliferation of specialist aphids (sugarcane aphids), though its effect on generalist aphids (greenbugs) was less pronounced. These findings highlight the role of FAW frass in mediating plant responses against both chewing and piercing-sucking insect pests, providing valuable insights into sorghum's defense mechanisms and its potential for pest management strategies.
Collapse
Affiliation(s)
- Sanket Shinde
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Edith Ikuze
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Esha Kaler
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Kashish Verma
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
2
|
Bede JC, Blande JD. Effects of Elevated CO 2 and O 3 on Aboveground Brassicaceous Plant-Insect Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:205-227. [PMID: 39357072 DOI: 10.1146/annurev-ento-022024-015159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Atmospheric gases, such as carbon dioxide (CO2) and ozone (O3), influence plant-insect interactions, with variable effects. The few studies that have investigated the direct effects of elevated CO2 (eCO2; 750-900 ppm) or elevated O3 (eO3; 60-200 ppb) on insects have shown mixed results. Instead, most research has focused on the indirect effects through changes in the host plant. In general, the lower nitrogen levels in C3 brassicaceous plants grown at eCO2 negatively affect insects and may result in compensatory feeding. Phytohormones involved in plant resistance may be altered by eCO2 or eO3. For example, stress-related jasmonate levels, which lead to induced resistance against chewing herbivores, are weakened at eCO2. In general, eCO2 does not affect herbivore-induced plant volatiles, which remain attractive to natural enemies. However, floral volatiles and herbivore-induced plant volatiles may be degraded by O3, affecting pollination and foraging natural enemy behavior. Thus, eCO2 and eO3 alter plant-insect interactions; however, many aspects remain poorly understood.
Collapse
Affiliation(s)
- Jacqueline C Bede
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada;
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Song HD, Zhang FB, Ji SX, Wang XQ, Wang JX, Liu YX, Wang XW, Han WH. The SA-WRKY70-PR-Callose Axis Mediates Plant Defense Against Whitefly Eggs. Int J Mol Sci 2024; 25:12076. [PMID: 39596145 PMCID: PMC11593482 DOI: 10.3390/ijms252212076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The molecular mechanisms of plant responses to phytophagous insect eggs are poorly understood, despite their importance in insect-plant interactions. This study investigates the plant defense mechanisms triggered by the eggs of whitefly Bemisia tabaci, a globally significant agricultural pest. A transcriptome comparison of tobacco plants with and without eggs revealed that whitefly eggs may activate the response of defense-related genes, including those involved in the salicylic acid (SA) signaling pathway. SA levels are induced by eggs, resulting in a reduction in egg hatching, which suggests that SA plays a key role in plant resistance to whitefly eggs. Employing Agrobacterium-mediated transient expression, virus-induced gene silencing assays, DNA-protein interaction studies, and bioassays, we elucidate the regulatory mechanisms involved. Pathogenesis-related proteins NtPR1-L1 and NtPR5-L2, downstream of the SA pathway, also affect whitefly egg hatching. The SA-regulated transcription factor NtWRKY70a directly binds to the NtPR1-L1 promoter, enhancing its expression. Moreover, NtPR1-L1 promotes callose deposition, which may impede the eggs' access to water and nutrients. This study establishes the SA-WRKY70-PR-callose axis as a key mechanism linking plant responses and defenses against whitefly eggs, providing new insights into the molecular interactions between plants and insect eggs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-D.S.); (F.-B.Z.); (S.-X.J.); (X.-Q.W.); (J.-X.W.); (Y.-X.L.); (X.-W.W.)
| |
Collapse
|
4
|
Wang J, Ma Z, Fu D, Wu Y, Zhou Z, Li C, Shen J. Identification, Cloning, and Characterization of Two Acupuncture-Injury-Inducing Promoters in Rice. Int J Mol Sci 2024; 25:10564. [PMID: 39408894 PMCID: PMC11476359 DOI: 10.3390/ijms251910564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
As an important global food crop, rice is damaged by a variety of piercing-sucking pests. Identifying a broad-spectrum promoter induced by the physical signal of sucking pests and applying it to transgenic breeding to mitigate the damage caused by different sucking pests will significantly improve the efficiency of our breeding. This study compared the transcriptome changes in two rice varieties under needle-wounding stress to investigate their differential responses to mechanical damage. The results showed that the insect-susceptible variety TN1 exhibited more differentially expressed genes (DEGs) and greater changes in expression levels after needle treatment, indicating a more active internal gene regulatory network. GO and KEGG enrichment analysis further revealed that TN1 not only exhibited changes in genes related to the extracellular environment, but also mobilized more genes associated with stress response and defense. By screening the differentially expressed genes, we identified two promoters (P1 and P2) with inducible expression characteristics in both the resistant and susceptible rice varieties. These promoters were able to effectively drive the expression of the insect resistance gene OsLecRK1* and enhance the resistance of transgenic plants against the brown planthopper. This study provides promoter resources for the development of insect-resistant transgenic crops.
Collapse
Affiliation(s)
- Jianyu Wang
- School of Life Sciences, Hubei University, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan 430062, China; (J.W.); (D.F.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China;
| | - Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Dong Fu
- School of Life Sciences, Hubei University, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan 430062, China; (J.W.); (D.F.)
| | - Yan Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China;
| | - Zaihui Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Changyan Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China;
| | - Junhao Shen
- School of Life Sciences, Hubei University, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan 430062, China; (J.W.); (D.F.)
| |
Collapse
|
5
|
Vougeleka V, Risoli S, Saitanis C, Agathokleous E, Ntatsi G, Lorenzini G, Nali C, Pellegrini E, Pisuttu C. Exogenous application of melatonin protects bean and tobacco plants against ozone damage by improving antioxidant enzyme activities, enhancing photosynthetic performance, and preventing membrane damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123180. [PMID: 38142812 DOI: 10.1016/j.envpol.2023.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Ozone (O3) pollution is harmful to plants and ecosystems. Several chemicals have been evaluated to protect plants against O3 deleterious effects. However, they are not adequately efficient and/or the environmental safety of their application is questioned. Hence, new chemicals that provide sufficient protection while being safer for environmental application are needed. This study investigates the response of two O3-sensitive plant species (Phaseolus vulgaris L. cv. Pinto and Nicotiana tabacum L. cv. Bel-W3) leaf-sprayed with deionized water (W, control), ethylenediurea (EDU, 1 mM) or melatonin at lower (1 mM) or higher (3 mM) concentrations (Mel_L and Mel_H, respectively), and then exposed to a square wave of 200 ppb O3, lasting 1 day (5 h day-1) for bean and 2 days (8 h day-1) for tobacco. In both species, the photosynthetic activity of O3-exposed plants was about halved. O3-induced membrane damage was also confirmed by increased malondialdehyde (MDA) byproducts compared to control (W). In EDU- and Mel-treated bean plants, the photosynthetic performance was not influenced by O3, leading to reduction of the incidence and severity of O3 visible injury. In bean plants, Mel_L mitigated the detrimental effect of O3 by boosting antioxidant enzyme activities or osmoprotectants (e.g. abscisic acid, proline, and glutathione transferase). In Mel_L-sprayed tobacco plants, O3 negatively influenced the photosynthetic activity. Conversely, Mel_H ameliorated the O3-induced oxidative stress by preserving the photosynthetic performance, preventing membrane damage, and reducing the visible injuries extent. Although EDU performed better, melatonin protected plants against O3 phytotoxicity, suggesting its potential application as a bio-safer and eco-friendlier phytoprotectant against O3. It is worth noting that the content of melatonin in EDU-treated plants remained unchanged, indicating that the protectant mode of action of EDU is not Mel-related.
Collapse
Affiliation(s)
- Vasiliki Vougeleka
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Costas Saitanis
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| | - Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa, 56124, Italy
| |
Collapse
|
6
|
Siddique AB, Parveen S, Rahman MZ, Rahman J. Revisiting plant stress memory: mechanisms and contribution to stress adaptation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:349-367. [PMID: 38623161 PMCID: PMC11016036 DOI: 10.1007/s12298-024-01422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 04/17/2024]
Abstract
Highly repetitive adverse environmental conditions are encountered by plants multiple times during their lifecycle. These repetitive encounters with stresses provide plants an opportunity to remember and recall the experiences of past stress-associated responses, resulting in better adaptation towards those stresses. In general, this phenomenon is known as plant stress memory. According to our current understanding, epigenetic mechanisms play a major role in plants stress memory through DNA methylation, histone, and chromatin remodeling, and modulating non-coding RNAs. In addition, transcriptional, hormonal, and metabolic-based regulations of stress memory establishment also exist for various biotic and abiotic stresses. Plant memory can also be generated by priming the plants using various stressors that improve plants' tolerance towards unfavorable conditions. Additionally, the application of priming agents has been demonstrated to successfully establish stress memory. However, the interconnection of all aspects of the underlying mechanisms of plant stress memory is not yet fully understood, which limits their proper utilization to improve the stress adaptations in plants. This review summarizes the recent understanding of plant stress memory and its potential applications in improving plant tolerance towards biotic and abiotic stresses.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250 Australia
| | - Sumaya Parveen
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Md. Zahidur Rahman
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Jamilur Rahman
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| |
Collapse
|
7
|
Han S, Shen Z, Gao Q, Jin N, Lou Y. Knocking Out OsRLK7-1 Impairs Rice Growth and Development but Enhances Its Resistance to Planthoppers. Int J Mol Sci 2023; 24:14569. [PMID: 37834016 PMCID: PMC10572756 DOI: 10.3390/ijms241914569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are an important subfamily of receptor-like kinases (RLKs) in plants that play key roles in sensing different biotic and abiotic stress. However, the role of LRR-RLKs in herbivore-induced plant defense remains largely elusive. Here, we found that the expression of a rice gene, OsRLK7-1, was induced by mechanical wounding, but was slightly suppressed by the infestation of gravid females of brown planthopper (BPH, Nilaparvata lugens) or white-backed planthopper (WBPH, Sogatella furcifera). Through targeted disruption of OsRLK7-1 (resulting in the ko-rlk lines), we observed an augmentation in transcript levels of BPH-induced OsMPK3, OsWRKY30, OsWRKY33, and OsWRKY45, alongside heightened levels of planthopper-induced jasmonic acid, JA-isoleucine, and abscisic acid in plant tissues. These dynamic changes further facilitated the biosynthesis of multiple phenolamides within the rice plants, culminating in an enhanced resistance to planthopper infestations under both lab and field conditions. In addition, knocking out OsRLK7-1 impaired plant growth and reproduction. These results suggest that OsRLK7-1 plays an important role in regulating rice growth, development, and rice-planthopper interactions.
Collapse
Affiliation(s)
- Shanjie Han
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifan Shen
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Gao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nuo Jin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
8
|
Tiwari M, Singh R, Jha R, Singh P. Heritable priming by Trichoderma: A sustainable approach for wheat protection against Bipolaris sorokiniana. FRONTIERS IN PLANT SCIENCE 2022; 13:1050765. [PMID: 36600913 PMCID: PMC9807111 DOI: 10.3389/fpls.2022.1050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Crop plants encounter a variety of biotic challenges in the field and faces significant reduction in crop yield. In the current scenario of an ever increasing global population, there is an urgent need to protect plant health by using sustainable approach to maximize the crop productivity and to mitigate the food demands. Nowadays, we mostly rely on chemical crop protection techniques, which are causing a number of environmental and health difficulties. Defence priming is a chemical-free, eco-friendly, and sustainable strategy of crop protection, which is also called "green vaccination. In the present study, for the first time, we used Trichoderma as a priming agent to protect wheat crop from spot blotch disease. We have established Trichoderma-mediated defence priming in wheat against Bipolaris sorokiniana for sustainable crop improvement. We have characterised the morphological, disease phenotype, biochemical and yield parameters of Trichoderma-primed and non-primed wheat under disease pressure. Trichoderma-primed plants were found to be more protected against B. sorokiniana as compared to non-primed plants. Biochemical studies indicated that there is no direct defence response after priming stimulus but the defence response was activated only after triggering stimulus in terms of enhanced defence metabolites in primed plants as compared to non-primed plants. In the present study, since defence was activated only when required, that is under disease pressure, there was no unnecessary allocation of resources towards defence. Hence, no yield penalty was shown in primed plants as compared to control. We further evaluated the inheritance of primed state to the next generation and found that progeny of primed parents also performed better than progeny of non-primed parents under disease pressure in terms of protection from B. sorokiniana as well as yield performance. This strategy has the potential to protect crop without any yield penalty and causing environmental degradation. Our research findings indicate that Trichoderma-mediated defence priming could be an alternative approach for improving wheat productivity under biotic stress. To be our best knowledge, this is the first documented report for the Trichoderma-mediated defence priming and induced inheritance in wheat plant. This study will open new arenas in sustainable crop protection strategies for the exploitation of defence priming in crop plants.
Collapse
Affiliation(s)
- Menka Tiwari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajat Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rintu Jha
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Kim D, Riu M, Oh SK, Ryu CM. Extracellular self-RNA: A danger elicitor in pepper induces immunity against bacterial and viral pathogens in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:864086. [PMID: 36226289 PMCID: PMC9549290 DOI: 10.3389/fpls.2022.864086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Plants and animals serve as hosts for microbes. To protect themselves from microbe-induced damage, plants and animals need to differentiate self-molecules/signals from non-self, microbe-derived molecules. Damage-associated molecular patterns (DAMPs) are danger signals released from the damaged host tissue or present on the surface of stressed cells. Although a self-extracellular DNA has previously been shown to act as a DAMP in different plant species, the existence of a self-extracellular RNA (eRNA) as a danger signal in plants remains unknown. Here, we firstly evaluated the ability of a pepper self-eRNA to activate immunity against viral and bacterial pathogens under field conditions. Pepper leaves pre-infiltrated with self-eRNA exhibited reduced titer of the naturally occurring Tomato spotted wilt virus and diminished symptoms of Xanthomonas axonopodis pv. vesicatoria infection through eliciting defense priming of abscisic acid signaling. At the end of the growing season at 90 days after transplanting, pepper plants treated with self- and non-self-eRNAs showed no difference in fruit yield. Taken together, our discovery demonstrated that self-eRNA can successfully activate plant systemic immunity without any growth penalty, indicating its potential as a novel disease management agent against a broad range of pathogenic microbes.
Collapse
Affiliation(s)
- Doyeon Kim
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Myoungjoo Riu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Sang-Keun Oh
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
10
|
Marchica A, Cotrozzi L, Lorenzini G, Nali C, Pellegrini E. Antioxidants and Phytohormones Act in Coordination to Regulate Sage Response to Long Term Ozone Exposure. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070904. [PMID: 35406884 PMCID: PMC9002621 DOI: 10.3390/plants11070904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 05/14/2023]
Abstract
Antioxidants and phytohormones are hallmarks of abiotic stress responses in plants. Although it is known that they can offer cell protection or accelerate programmed cell death (PCD) depending on the level of stress, the involvement of these metabolites in stress acclimation is still not fully elucidated. Here, we showed the role of antioxidants and phytohormones in Salvia officinalis tolerance to long-term ozone (O3) exposure (120 ppb for 36 days, 5 h day-1). Salicylic acid (SA) content was increased under O3 throughout the whole experiment (+150%, as average compared with control), being required to maintain the cellular redox state and potentiate defense responses. This accumulation was induced before the production of ethylene (ET), suggesting that ET was controlled by SA during O3 exposure to modulate the magnitude of chlorosis formation and the cell redox balance (by regulating ascorbate and glutathione levels). The synthesis and/or regeneration of these antioxidants did not protect membranes from lipid peroxidation, as demonstrated by the accumulation of malondialdehyde (+23% as average). However, these processes of lipid oxidation did not include the synthesis of the membrane breakdown products, as confirmed by the unchanged values of jasmonic acid, thus indicating that this compound was not involved in the regulation of PCD strategies.
Collapse
Affiliation(s)
- Alessandra Marchica
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2210563
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (G.L.); (C.N.); (E.P.)
- CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Nutrafood Research Center, University of Pisa, Via del Borghetto 50, 56124 Pisa, Italy
| |
Collapse
|
11
|
Wang S, Liu L, Mi X, Zhao S, An Y, Xia X, Guo R, Wei C. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:862-875. [PMID: 33595875 DOI: 10.1111/tpj.15203] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 05/18/2023]
Abstract
Gray blight (GB) is one of the most destructive diseases of tea plants, causing considerable damage and productivity losses; however, the dynamic roles of defense genes during pathogen infection remain largely unclear. To explore the numerous molecular interactions associated with GB stress in tea plants, we employed transcriptome, sRNAome and degradome sequencing from 1 to 13 days post-inoculation (dpi) at 3-day intervals. The transcriptomics results showed that differentially expressed genes (DEGs) related to flavonoid synthesis, such as chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL), were particularly induced at 4 dpi. Consistent with this, the contents of catechins (especially gallocatechin), which are the dominant flavonoids in tea plants, also increased in the leaves of tea plants infected with GB. Combined analysis of the sRNAome and degradome revealed that microRNAs could mediate tea plant immunity by regulating DEG expression at the post-transcriptional level. Co-expression network analysis demonstrated that miR530b-ethylene responsive factor 96 (ERF96) and miRn211-thaumatin-like protein (TLP) play crucial roles in the response to GB. Accordingly, gene-specific antisense oligonucleotide assays suggested that suppressing ERF96 decreased the levels of reactive oxygen species (ROS), whereas suppressing TLP increased the levels of ROS. Furthermore, ERF96 was induced, but TLP was suppressed, in susceptible tea cultivars. Our results collectively demonstrate that ERF96 is a negative regulator and TLP is a positive regulator in the response of tea plants to GB. Taken together, our comprehensive integrated analysis reveals a dynamic regulatory network linked to GB stress in tea plants and provides candidate genes for improvement of tea plants.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|