1
|
Sougrakpam Y, Deswal R. Identification of nitric oxide regulated low abundant myrosinases from seeds and seedlings of Brassica juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111932. [PMID: 38030037 DOI: 10.1016/j.plantsci.2023.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Myrosinases constitute an important component of the glucosinolate-myrosinase system responsible for interaction of plants with microorganisms, insects, pest, and herbivores. It is a distinctive feature of Brassicales. Multiple isozymes of myrosinases are present in the vacuoles. Active myrosinases are also present in the apoplast and the nucleus however, the similarity or difference in the biochemical properties with the vacuolar myrosinases are not known. Here, we have attempted to isolate, characterize, and identify myrosinases from seeds, seedlings, apoplast, and nucleus to understand these forms. 2D-CN/SDS-PAGE coupled with western blotting and MS have shown low abundant myrosinases (65/70/72/75 kDa) in seeds and seedlings and apoplast & nucleus of seedlings to exist as dimers, oligomers, and as protein complex. Nuclear membrane associated form of myrosinase was also identified. The present study for the first time has shown enzymatically active myrosinase-alpha-mannosidase complex in seedlings. Both 65 and 70 kDa myrosinase in seedlings were S-nitrosated. Nitric oxide donor treatment (GSNO) led to 25% reduction in myrosinase activity which was reversed by DTT suggesting redox regulation of myrosinase. These S-nitrosated myrosinases might be a component of NO signalling in B. juncea.
Collapse
Affiliation(s)
- Yaiphabi Sougrakpam
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Szechyńska-Hebda M, Ghalami RZ, Kamran M, Van Breusegem F, Karpiński S. To Be or Not to Be? Are Reactive Oxygen Species, Antioxidants, and Stress Signalling Universal Determinants of Life or Death? Cells 2022; 11:cells11244105. [PMID: 36552869 PMCID: PMC9777155 DOI: 10.3390/cells11244105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In the environmental and organism context, oxidative stress is complex and unavoidable. Organisms simultaneously cope with a various combination of stress factors in natural conditions. For example, excess light stress is accompanied by UV stress, heat shock stress, and/or water stress. Reactive oxygen species (ROS) and antioxidant molecules, coordinated by electrical signalling (ES), are an integral part of the stress signalling network in cells and organisms. They together regulate gene expression to redirect energy to growth, acclimation, or defence, and thereby, determine cellular stress memory and stress crosstalk. In plants, both abiotic and biotic stress increase energy quenching, photorespiration, stomatal closure, and leaf temperature, while toning down photosynthesis and transpiration. Locally applied stress induces ES, ROS, retrograde signalling, cell death, and cellular light memory, then acclimation and defence responses in the local organs, whole plant, or even plant community (systemic acquired acclimation, systemic acquired resistance, network acquired acclimation). A simplified analogy can be found in animals where diseases vs. fitness and prolonged lifespan vs. faster aging, are dependent on mitochondrial ROS production and ES, and body temperature is regulated by sweating, temperature-dependent respiration, and gene regulation. In this review, we discuss the universal features of stress factors, ES, the cellular production of ROS molecules, ROS scavengers, hormones, and other regulators that coordinate life and death.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- W. Szafer Institute of Botany of the Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| | - Roshanak Zarrin Ghalami
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Muhammad Kamran
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Frank Van Breusegem
- UGent Department of Plant Biotechnology and Bioinformatics, VIB-UGent Center for Plant Systems Biology Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| |
Collapse
|
3
|
The Pseudomonas syringae type III effector HopG1 triggers necrotic cell death that is attenuated by AtNHR2B. Sci Rep 2022; 12:5388. [PMID: 35354887 PMCID: PMC8967837 DOI: 10.1038/s41598-022-09335-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
The plant pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) has become a paradigm to investigate plant-bacteria interactions due to its ability to cause disease in the model plant Arabidopsis thaliana. Pst DC3000 uses the type III secretion system to deliver type III secreted effectors (T3SEs) directly into the plant cytoplasm. Pst DC3000 T3SEs contribute to pathogenicity by suppressing plant defense responses and targeting plant’s physiological processes. Although the complete repertoire of effectors encoded in the Pst DC3000 genome have been identified, the specific function for most of them remains to be elucidated. Among those effectors, the mitochondrial-localized T3E HopG1, suppresses plant defense responses and promotes the development of disease symptoms. Here, we show that HopG1 triggers necrotic cell death that enables the growth of adapted and non-adapted pathogens. We further showed that HopG1 interacts with the plant immunity-related protein AtNHR2B and that AtNHR2B attenuates HopG1- virulence functions. These results highlight the importance of HopG1 as a multi-faceted protein and uncover its interplay with AtNHR2B.
Collapse
|
4
|
Delplace F, Huard-Chauveau C, Berthomé R, Roby D. Network organization of the plant immune system: from pathogen perception to robust defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:447-470. [PMID: 34399442 DOI: 10.1111/tpj.15462] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.
Collapse
Affiliation(s)
- Florent Delplace
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Carine Huard-Chauveau
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Richard Berthomé
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
5
|
Dulal N, Rogers AM, Proko R, Bieger BD, Liyanage R, Krishnamurthi VR, Wang Y, Egan MJ. Turgor-dependent and coronin-mediated F-actin dynamics drive septin disc-to-ring remodeling in the blast fungus Magnaporthe oryzae. J Cell Sci 2021; 134:jcs.251298. [PMID: 33414165 DOI: 10.1242/jcs.251298] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
The fungus Magnaporthe oryzae uses a specialized pressure-generating infection cell called an appressorium to break into rice leaves and initiate disease. Appressorium functionality is dependent on the formation of a cortical septin ring during its morphogenesis, but precisely how this structure assembles is unclear. Here, we show that F-actin rings are recruited to the circumference of incipient septin disc-like structures in a pressure-dependent manner, and that this is necessary for their contraction and remodeling into rings. We demonstrate that the structural integrity of these incipient septin discs requires both an intact F-actin and microtubule cytoskeleton and provide fundamental new insight into their functional organization within the appressorium. Lastly, using proximity-dependent labeling, we identify the actin modulator coronin as a septin-proximal protein and show that F-actin-mediated septin disc-to-ring remodeling is perturbed in the genetic absence of coronin. Taken together, our findings provide new insight into the dynamic remodeling of infection-specific higher-order septin structures in a globally significant fungal plant pathogen.
Collapse
Affiliation(s)
- Nawaraj Dulal
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Rinalda Proko
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA.,Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Baronger Dowell Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA.,Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Yong Wang
- Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA.,Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA.,Microelectronics-Photonics graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA .,Cell and Molecular Biology graduate program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|